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Abstract—In this paper, we consider the problem of de-
termining the elasticity properties of deformable objects with
a mobile manipulator equipped with a force sensor.b We
learn the parameters by establishing a relation between the
applied forces and the corresponding surface deformations.
To determine the parameters, we minimize the difference
between the observed surface of an object that is deformed
by a real manipulator and the deformed surface obtained
with a deformation simulator based on finite element methods.
To establish the correspondences between the surfaces, our
approach applies a 3D registration technique based on point-
clouds which is used as the basis for comparing the results
of the simulation system with the observations of the real
deformations. As we demonstrate in real-world experiments,
our system is able to estimate appropriate parameters that can
be used to predict future deformations. This information can
directly be incorporated into motion planning approaches that
are designed for robots operating with deformable objects.

I. INTRODUCTION

A lot of effort has been invested into the simulation

of deformations and the generation of realistic deformable

models. There exists a variety of relevant applications in

computer graphics, robotics [21], virtual reality, games,

movies, and medical simulation [16, 7, 19]. As we demon-

strated in the past [10, 11], robots that are able to deal

with deformable objects in their environment can greatly

improve their navigation skills in the real world, especially in

domestic settings. Planning techniques as well as most other

applications considering deformations require an appropriate

model including reasonable elasticity parameters of objects

in the scene. In practice, the parameters are typically adjusted

manually. Thereby, the parameters are usually modified until

the simulation looks visually plausible. This might be appli-

cable for computer games or movies, but does not necessarily

lead to a physically realistic computation of the involved

forces. These forces, however, need to be known accurately

for navigation or manipulation in the presence of deformable

objects. For example, whenever robots interact with real-

world objects, only limited forces should be applied to them.

This is of utmost importance in medical applications but

also in domestic settings, for example when robots have to

manipulate plants or clothes. Especially in these domains,

robots need exact knowledge about the parameters of the

deformation process.

All authors are with the Department of Computer Science, University of
Freiburg, 79110 Freiburg, Germany.
{bfrank,stachnis,schmedd,burgard,teschner}@informatik.uni-freiburg.de

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8.

Fig. 1. Deformation of an object in reality (left) and the 3D perception of
the robot (right).

Generating realistic models of deformable objects not only

involves observing and reconstructing the three-dimensional

surface of an object. Physical interaction with the object

under consideration is required to learn about its behavior

when exposed to external forces. Therefore, we equipped our

robot with a force sensor at the end of the manipulator. This

allows the robot to interact with objects and to measure the

forces exerted on them. The robot can additionally perceive

the objects with a range camera. To reduce the effect of

occlusions during the deformation, our robot uses a rigid

stick to deform the object (see Figure 1).

Based on the observed deformations and forces, our ap-

proach seeks to estimate the elasticity parameters of the

object. This is done by simulating the object and the applied

forces. In our approach, we consider homogeneous and

isotropic materials and use a linear finite element model to

compute deformations. An error minimization approach is

applied to iteratively update the deformation parameters so

that the difference between the real object under deformation

and the simulation is minimized. As we will demonstrate

in the experimental section of this paper, our approach is

able to find the elasticity parameters that enable our robot to

accurately predict the deformation of real-world objects.

This paper is organized as follows. After discussing related

work in the following section, we present in Section III an

overview of our system for data acquisition and parameter

estimation. In Section IV, we present the deformation sim-

ulation before we describe how to acquire data of deformed

objects with a real robot in Section V. Section VI then

contains our approach to parameter estimation. Finally, in

Section VII, we present experimental results.

II. RELATED WORK

Deformable modeling and parameter estimation are active

areas of research. To represent non-rigid objects and to simu-

late deformations, mass-spring systems have been frequently
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used. They are easy to implement and can be simulated

efficiently [24, 8]. While such models are able to handle

large deformations, their major drawback is the tedious

modeling as there is no intuitive relation between spring

constants and physical material properties in general [18].

Finite element methods (FEMs) reflect physical properties

of the objects in a more natural way [1]. This allows for

more intuitive modeling since they require only a small

number of parameters. The disadvantage of FEMs lies in the

computational resources required to calculate deformations.

A computationally more efficient approach, which we also

use in our current system, is the co-rotational finite element

approach [12, 17] that avoids nonlinear computations.

There exist some approaches to determine the physical

parameters of models. Bianchi et al. [4] learn the stiffness

constants of mass-spring models by using a genetic algorithm

and comparing it to a FEM reference model. The identifica-

tion of mass-spring parameters is also discussed in the work

of Lloyd et al. [15]. They derive an analytical formulation for

the spring parameters from the linear finite element model for

different mesh topologies. Another approach that estimates

the stiffness properties of mass-spring models was proposed

by Burion et al. [6]. They use a particle filter to obtain

a posterior distribution over the stiffness parameters and

evaluate the particles by comparing simulated and observed

deformations. In contrast to our work, they do not compare

the deformed surfaces but the measured forces in the single

nodes of the object. Furthermore, we do not only work on

simulated data. Becker et al. [2] presented an approach for

the estimation of elasticity parameters for the finite element

method using Quadratic Programming. However, they also

work on simulated data only.

One approach that deals with real objects was presented

by Lang et al. [14]. They describe a deformable model as

a discrete boundary value problem and estimate Greens’

functions from measured forces and displacements. They

formulate the estimation of the deformation matrix as a

linear estimation problem. Fong [9] presents a system to

measure deformations of elastic objects using a structured-

light camera and a force-sensor. They extract force-fields for

different contact points and displacements on the objects.

For haptic rendering of unseen contact points the forces

are interpolated using radial basis functions. In a similar

way, Bickel et al. [5] present a data-driven representation of

heterogeneous and non-linear material by fitting radial basis

functions to different measured force-displacement samples.

They, however, use an underlying linear finite element model,

similar to our approach, to model the different homogeneous

parts of objects.

In contrast to most of the previous approaches our method

has been realized on a real mobile manipulation robot and

deals with real data. In our setup, the mobile manipulation

robot furthermore carries its sensors on-board and thus is

the basis for fully autonomous exploration. Furthermore,

the resulting models can directly be used for simulations,

which have been shown to be relevant to robot navigation in

environments containing deformable objects [10, 11].

III. SUMMARY OF OUR APPROACH

Our approach to determining physical deformation models

consists of two main steps:

• data acquisition with a manipulator (Section V), and

• parameter estimation via simulation and error minimiza-

tion (Section VI).

In the data acquisition process, our robot interacts with

an object and measures the forces it exerts on the object.

Additionally, it observes the surface of the undeformed and

deformed object with a depth camera. This allows us to

estimate a relationship between the displacement of the

surface points, the applied forces and the physical elasticity

parameters.

IV. DEFORMATION SIMULATION

The key idea of our elasticity parameter estimation ap-

proach is to modify the parameters of a realistic simulation

system until the deformations obtained in simulation approx-

imate the ones measured on the real object. Thereby the force

exerted on the simulated object is approximately identical to

the one applied in the real world. Additionally, the points

where the forces are applied correspond to each other. In

this section, we describe our simulation environment that is

based on finite element methods and is used to deform the

virtual object.

A. Modeling Objects using Tetrahedral Meshes

To simulate the deformations of the object, our system

requires a volumetric model of the object. Such models can

be obtained in advance by registering multiple 3D point

clouds obtained with a range scanner (see Section V-B).

From these point clouds, we then generate a triangular sur-

face mesh which in turn is used to determine the volumetric

tetrahedral mesh needed to calculate the internal forces based

on force-displacement-relations. To establish this tetrahedral

mesh, we employ the meshing approach by Spillmann et

al. [23]. This approach is particularly suited for real-world

data, as it can handle unorientable, non-manifold, and even

incomplete data. In this approach, one first computes a signed

distance field where voxels having a negative sign represent

the volume of the object. In a second step, one divides the

spatial domain by a uniform axis-aligned grid. We discard

all cells of this grid that do not contain any voxel with

negative sign. The remaining cells are an approximation

of the object’s volume, whose quality is given by the grid

resolution. We divide these cells into five tetrahedrons each.

In a post-processing step, we smooth the tetrahedrons to align

with the given surface mesh.

In our simulator, we perform all deformation computations

based on the tetrahedral mesh. The coupling of the surface

mesh to the tetrahedral mesh guarantees that the surface mesh

is also deformed. This allows us to compare it to the scanned

surface mesh of the real-world object.
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B. Elasticity Parameters

In our approach, we assume a linear and isotropic and

homogeneous deformation model. The physical elasticity

properties of such isotropic and homogeneous materials

can mainly be described by two parameters, the Young

modulus and the Poisson ratio. One can visualize the Young

modulus as a measure for the force that is needed to enlarge

respectively compress an object by some fixed amount. The

Poisson ratio can be seen as a measure for the change of

the thickness of the object’s material perpendicular to the

direction of the enlargement respectively the compression.

If a force F is applied to a bar of cross-section area A

and length L, the bar enlarges by an amount ∆l which is

proportional to F, L and 1

A
. This can be written as

∆l =
1

E

LF

A
, (1)

where the constant of proportionality E is called the Young

modulus. Its unit is force per area and it is frequently

specified in N
mm2 .

In contrast to the Young modulus, the Poisson ratio is

related to the contraction perpendicular to the direction of

the force. In our example, the force F causes a contraction

∆d perpendicular to the direction of the force. Let d be the

thickness of the bar, ∆d
d

the relative change of its thickness,

and ∆l
L

the relative change of its length. Then, the ratio of

the relative changes given by

ν =
L∆d

d∆l
(2)

is called the Poisson ratio ν, which is dimensionless.

While there is no theoretical upper bound for the Young

modulus, one can show that for real objects, the Poisson ratio

lies within the range of 0 and 0.5. A Poisson ratio of 0.5
would imply perfect volume conservation, while a Poisson

ratio of 0 would imply no volume conservation at all.

C. Deformation Model

Although our parameter estimation approach is indepen-

dent of the underlying deformation model, we briefly in-

troduce the basics of finite element methods used in our

simulator. To simulate the dynamic behavior of an object

and the reaction to external forces, we have to compute

the internal forces that act inside the object depending on

the current deformation. These forces are computed using a

force-displacement-relation that is derived from the underly-

ing deformation model.

The basic idea of finite elements is to divide an object into

smaller elements and to establish the force-displacement-

relations on these small elements. In our case, these elements

are the tetrahedrons mentioned above. This allows us to

assume constant stress over an element, which results in a

linear force-displacement-relation. Putting all these relations

together, one can establish the so-called stiffness matrix

K = K(E, ν) that depends on the Young modulus E and

the Poisson ratio ν. For n being the number of vertices of

an object, the dimension of K is 3n× 3n. The global force-

displacement relation then becomes

f = Kq, (3)

where f ∈ R
3n is the internal force induced by the displace-

ment q ∈ R
3n of the vertices of the tetrahedral mesh.

The stiffness matrix allows us to compute the internal

forces resulting from a deformation. To be able to establish

the inverse relation

q = K−1f , (4)

we have to consider some essential properties of K, as

K is not invertible in general. However, it can be shown

that K is invertible for a subspace, and that this subspace

of deformations and forces contains exactly those forces

and displacements which are interesting for the estimation

process. First, it can be easily shown that K is symmetric

and, hence, it is diagonalizable. Moreover, it can be shown

that exactly six eigenvalues are equal to zero, and further,

that these eigenvalues correspond exactly to the eigenvectors

that represent the three possible directions of translation and

three dimensions of infinitesimal rotations. That means, that

exactly the forces that cause translations and infinitesimal

rotations do not lie in the image space of K. Hence, all

remaining forces have an inverse image q with Kq = f . If

we additionally claim that q is orthogonal to the eigenvectors

of translation and rotation, the inverse image is unique.

Thus, restricting ourselves to forces that do neither cause

translations nor rotations, we are able to write the inverse

relationship q = K−1f .

Restricting to those forces having an inverse image is

exactly what we do in the real world experiments: In order

to ensure that the robot deforms an object and the force it

measures corresponds to the deformation, we fix the object

under consideration. Furthermore, by applying a registration

of the surfaces, we eliminate the effects of small translations

and rotations in the measured displacement.

Although we do not need the inverse for the computation,

but only as a theoretical argument, we show how K−1 could

be computed. First, we compute the diagonal matrix DK =
QKQT , where Q is an orthogonal matrix. Then, we take the

inverse of all non-zero eigenvalues and do not change the

zero eigenvalues which results in D−1

K , restricted to those

vectors in the image space having an inverse image. Then,

the inverse K−1 is given as QT D−1

K Q, also restricted to

those vectors having an inverse image.

V. DATA ACQUISITION

In this section, we present our robotic system that is used

for the acquisition of deformable models.

A. Technical Details

Our system for acquiring real data consists of a mobile

platform with a 7-DoF manipulator that is equipped with a

force-torque sensor and a depth camera (see Figure 2 (a)).

This setup allows us to observe objects from different view

points, to deform them and to measure the corresponding

deformation forces in a flexible way.

1879



(a) (b) (c) (d)

Fig. 2. Object reconstruction: The robot observing a deformable teddy
bear (a), a point cloud obtained with the time-of-flight camera (b), surface
mesh constructed from four different point clouds (c), and the tetrahedral
mesh computed from the surface mesh (d).

The manipulator consists of five Schunk Powercube mod-

ules and a 2-DoF hand. These modules have a high repeat

accuracy of 0.02◦ and therefore allow for an accurate es-

timation of the robot’s position. We measure the deforma-

tion forces with a Schunk-FTCL-050 force-torque sensor

integrated into the hand. This sensor is able to measure

forces up to 300N and torques up to 7Nm in all three

degrees of freedom. To perceive the object, we employ either

a Bumblebee stereo camera or a PMD-[vision]-O3 time-

of-flight camera, which is attached to the gripper of the

manipulator. Both cameras can be easily exchanged, and

we experimented with different depth sensors that both have

different drawbacks and advantages: the stereo camera has

a higher resolution, a bigger field of view, and gives good

results with textured objects. However, for uniformly colored

objects, the depth data is unsatisfactory. For such objects, we

used a time-of-flight camera. This type of camera has a rather

limited field of view, and the measurements are affected by

different sources of noise, for instance the illumination, the

color of objects, and the distance to the object.

B. Geometrical Models for Simulation

For the simulation of deformations, a volumetric model is

required (see Section IV-A). Such a model can be computed

from a surface mesh of the object.

We can obtain such a surface mesh by exploring the space

and by scanning the object from different view points as

described in a prior work [25]. These point clouds are then

registered into a consistent model (see Figure 2). A more

efficient way is to first take an observation of an undeformed

object and complete it heuristically by assuming a planar

surface on the backside, which can be extracted for instance

from the table or the wall that limit the maximum extent of

the object. This allows us to immediately start manipulating

the object and estimating its deformation parameters. Our

experiments show that a complete model is not needed to

estimate the deformation parameters – a partial model is

sufficient.

C. Deformation of Objects

To actually interact with the object, the robot uses its

manipulator to apply a force to the object. Whenever a force

is applied, we measure the surface points of the deformed

object to relate the forces to deformations. One practical

problem occurring at this point is that a robot that deforms

an object obviously occludes the deformed object part and

that the manipulator always is part of the observation. To

limit the occlusions introduced by the manipulator deforming

the object, we use a thin wooden stick attached to the

end-effector. This yields observations of the surface with

minimal occlusions. We use the model of the robot’s body to

label parts of the image as invalid where the measurements

correspond to the robot, and not to the object. Furthermore,

in order to ensure, that the object is deformed and not moved

by the robot, we assume that it is lying on a table or fixed

by a wall.

In our current implementation, the robot approaches the

object, and step by step, increases the force, until a maximum

force of 50N is applied or the end-effector moved for

more than 10 cm. In this way, we obtain a set of force

measurements z
f
t ∈ R

3 in combination with corresponding

surface meshes zs
t ∈ R

3n for every point in time t.

VI. PARAMETER ESTIMATION

In this section, we explain our approach to estimate the

Young modulus E and the Poisson ratio ν for real objects

based on observations of our robot. The key idea of our

approach is to apply a gradient–descent based error mini-

mization approach to minimize the difference between the

real deformation and the simulated one given the elasticity

parameters.

A. Error Function

To apply gradient descent, we need to define an appro-

priate error function, which in our case should reflect the

difference between the measured and the simulated surface,

since the surface can be observed by the robot. To compute

this difference, we first align the deformed surfaces with

a registration procedure and then measure the remaining

difference.

The task of registration algorithms is to align multiple

overlapping scans of the same object, i.e., to compute a

translation and a rotation that align the surfaces correctly.

In our approach, we apply the ICP-algorithm by Besl and

McKay [3], with some extensions similar to the ideas given

by Pulli [20] and Rusinkiewicz [22]. For known correspon-

dences, the transformation can be computed directly [13].

Since the correspondences are not known in general, the ICP

algorithm determines some correspondences, e. g. by using a

nearest-neighbor data association, computes a transformation

that aligns the scans for these correspondences, and then

determines new correspondences to compute a new relative

position. Typically, this procedure converges to a minimum

and yields an accurate alignment if a proper initial configu-

ration is chosen.

In our system, we can easily derive a good initial align-

ment from the position of the manipulator to which the

camera is attached. The quality of the initial alignment

mainly depends on the quality of the encoders in the ma-

nipulator. These encoders are typically accurate and for our

robot, the error is around 0.02 degrees per joint and thus

sufficient to allow the ICP algorithm to converge to an
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accurate alignment. After applying ICP, we can define the

error function between a model M and the measured surface

zs as

Err(E, ν) = dist(simulate(E, ν,M, z
f
t , pt), z

s
t ), (5)

with

dist(Mdef, z
s) =

∑

i∈zs

min
j∈Mdef

||i − j||2, (6)

where i and j refer to the points from the observed and the

simulated surface, respectively.

B. Gradient Descent for Parameter Estimation

After defining the error function above, we can apply

gradient descent to seek for a Young modulus E and Poisson

ratio ν that minimize the error. Algorithm 1 summarizes the

main routine. The variable M refers to the undeformed object

model which is generated from a first observation taken

before the deformation starts. This model is the basis for

all simulations. Line 3 of the algorithm requires to compute

the partial derivative of the error function. Since the error

function involves the simulation approach explained above,

the derivatives cannot be computed easily. Thus, we ap-

proximate this term numerically: A sequence of deformation

simulations is carried out by applying the measured force

and by varying the E and ν locally.

In the remainder of this section, we show that the gradient

descent-based error minimization is well suited for this

problem given a good initial guess.

First, we show that parameters close to the correct ones

result in a smaller difference in the displacement obtained

in simulation and in reality than parameters far from the

solution. Therefore, we relate the deviation between the

correct and the estimated parameters to the deviation between

the displacement in reality qr and the displacement in

simulation qe using the force-displacement-relation of the

finite element method:

Keqe = F (7)

Krqr = F (8)

Algorithm 1 Iterative parameter estimation

Require: Object model M , observations z
f
t , zs

t , contact

point pt,

1: Initialize (E0, ν0), i=1
2: loop

3: (Ei, νi)
T = (Ei−1, νi−1)

T − λ∇Err(Ei−1, νi−1)
4: Mdef = simulate(Ei, νi,M, z

f
t , pt)

5: err = dist(Mdef , z
s
t )

6: if err < ǫ then

7: return (Ei, νi)
8: end if

9: i++

10: end loop

(a) (b) (c) (d)

Fig. 3. Registration results for simulated data: the error decreases if the

estimated parameters converge to the correct parameters E = 1000
N

mm2
,

ν = 0.3. The estimated parameters are (a) E = 3000
N

mm2
, ν = 0.3,

(b) E = 2000
N

mm2
, ν = 0.3, (c) E = 1300

N

mm2
, ν = 0.3 and (d)

E = 1000
N

mm2
, ν = 0.3.
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Fig. 4. Convexity of the error function. The “correct” values are given

by E = 1000
N

mm2
and ν = 0.3. Varying values for E and ν result in a

registration error which gets bigger the farther the estimated parameters are
away from the correct ones.

By inverting Ke and Kr, we obtain

qe = K−1

e F (9)

qr = K−1

r F. (10)

Then, the quadratic deviation can be written as

‖qr − qe‖
2

=
∥

∥(K−1

r − K−1

e )F
∥

∥

2
(11)

As F is fixed in Eq. (11), we see that smaller deviations in

measured and simulated displacements directly correspond

to smaller deviations between the estimated and the real

stiffness matrix. This makes it reasonable to compare simu-

lated and measured displacements in order to estimate these

parameters.

VII. EXPERIMENTAL EVALUATION

The approach above has been implemented and evaluated

in several experiments using real and simulated data.

A. Simulation Experiment

The first experiment carried out in simulation is designed

to show that our approach works under comparably well-

defined conditions and is able to find the correct elasticity

parameters. In this experiment, we used a cow as a complex

geometric object with a Young modulus of 1000 N
mm2 and a

Poisson ratio of 0.3.
We executed our gradient descent-based estimation pro-

cedure after we deformed the cow with a given constant

force. Our method changes the elasticity parameters in sim-

ulation and performs a registration step to match the model

with unknown parameters against the model with known

ones. Figure 3 illustrates the results in terms of the model

matchings for different parameter estimates. The red and the
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Fig. 5. Experiment with a foam cube: force-distance curve derived
from the manipulator movement (a), the error function for one example
estimation experiment (b), and the estimated young modulus for different
force-deformation samples (c).

Fig. 6. Registration result of the deformed cube. Scan of the real cube
(left), simulation result (middle), and matching between the scanned and
the simulated model under deformation (right).

yellow areas correspond to the different models. In the left

image, a clear mismatch between the objects can be observed

since a correct alignment is impossible due to the different

object deformations. As the Young modulus approaches the

correct value of 1000 N
mm2 (from left to right), the two models

become more similar until the optimal parameter set is found

(right image). Figure 4 illustrates the error surface for this

experiment.

B. Real World Experiments

We tested our parameter estimation approach on different

real-world objects, namely a foam cube, an inflatable balloon

and a plush teddy bear.

1) Foam cube: In the first experiment, we determined

the elasticity parameters of a foam cube with an edge

length of 15 cm. The robot deforms the object in the center.

The force-vs-distance curve of this experiment is shown in

Figure 5 (a). In this experiment, we used the PMD time-

of-flight camera. The robot moved for 9 cm and collected

a force measurement and a surface scan every 1 cm. As

can be seen in that curve, the deformation behavior of the

cube is approximately linear, except in the beginning, where

slippage of the probe tip occurred. This shows that our

material assumptions are reasonable. We evaluated the error

function for a uniform sampling of elasticity parameters in

Fig. 7. The tetrahedral model of the inflatable balloon: undeformed (left)
and deformed with optimized parameters (right).

 0

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5  6  7  meanY
o

u
n

g
 m

o
d

u
lu

s
 E

 (
N

/d
m

2
)

Experiment

Fig. 8. Learning the deformation parameters of the inflatable balloon.
Shown are results for different force-deformation samples.

order to investigate, whether it contains local minima. This

is illustrated in Figure 5 (b). The error function is very high

if the simulated object is too deformable and the Young

modulus is too small, respectively, and slowly converges to

the error of the undeformed mesh, as the object becomes

stiffer with increasing young modulus. Furthermore, we

note, that the Young modulus has a substantially larger

influence on the error function than the Poisson ratio. The

plot in Figure 5 (c) illustrates the learned Young modulus

for the different force-deformation samples. It shows, that

the variance of our learning method is rather low among

the different runs. Figure 6 shows a comparison between

the scanned and the simulated deformation for one of the

experiments in Figure 5 (c).

2) Inflatable balloon: In a second experiment, we evalu-

ated our gradient-descent based parameter estimation with

the inflatable balloon that is shown in Figure 1. In this

experiment, we used the Bumblebee stereo camera. First, a

model of the undeformed object is constructed on the fly for

the simulation system, as shown in Figure 7. Second, the ICP

algorithm is used to obtain the alignment of the deformed

model with the observation of the deformed object. Then,

given the alignment, the error function can be computed. Fur-

thermore, we repeated the experiment by applying different

forces to the object to evaluate the robustness of the parame-

ter estimation. We deformed the ball with seven substantially

different forces and obtained seven different surface scans.

The resulting estimate for the young modulus is shown in

Figure 8. We can see that the estimation converges to similar

values for the young modulus, indicating a homogeneous

deformation behavior of the object. The simulations were

carried out on a model that consists of 815 tetrahedrons. The

average run-time for computing the optimal parameters per

force-displacement sample was 192.5 seconds, on average 7

iterations of deformation simulations with different parame-
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Fig. 9. Parameter estimation results for deformation experiments with
different body parts of the teddy bear. In each experiment, the average over
different force-displacement samples was computed.

Fig. 10. Comparison of the real deformation and the deformed model.

ters were needed before the parameter estimation converged.

3) Plush teddy: In order to evaluate the robustness of

our parameter estimation, we furthermore deformed the

plush teddy bear from Figure 2 at different body parts,

e. g. the head, the belly, and the back, and analyzed the

results of our parameter estimation approach. The results are

summarized in Figure 9. In each experiment, the parameters

were determined as the average over seven different force-

displacement samples. Additionally, the mean over the six

different experiments is shown. The variance among the

different experiments is higher than the variance among

different force-deformation samples for the same location,

which suggests, that the assumption of homogeneous mate-

rial is not valid in this case. Finally, Figure 10 illustrates in

a comparison of the real and the simulated deformation that

the estimated parameters still lead to plausible deformations.

VIII. CONCLUSIONS

In this paper, we presented an approach for estimating the

elasticity parameters of homogeneous isotropic deformable

objects. These parameters are relevant for robots that need

to estimate deformations of objects in their environment

depending on the forces applied to them. Our approach uses

a mobile robot that is equipped with a manipulator, a force

sensor, and a depth camera. It applies a deformation force

to an object and records the resulting force-displacement

relation with the force sensor and the depth camera. Based

on a gradient descent-based error minimization approach

carried out within a realistic finite element-based simulation

system, the robot can determine the elasticity parameters that

best explain the real deformations. As we showed in our

experiments, we are able to estimate the parameters of real

objects in a robust manner.
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