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Abstract— In this paper, we propose a microphone array
structure for a spoken-oriented robot dialog system that is
designed to discriminate the direction of arrival (DOA) of the
target speech and that of the robot internal noise. First, we
investigate the performance of the noise estimation conducted
by semi-blind source separation (SBSS) in presence of both
the diffuse background noise and the robot internal noise. The
result indicates that the noise estimation of the SBSS is not
good. Next, we analyze the DOA of the robot internal noise in
order to determine the reason of the above result; we find out
that the internal noise is always in-phase at the microphone
array and overlap spacial with the target speech. Based on
this fact, we propose to change the microphone array structure
from the broadside array to the end-fire array in order to
discriminate the DOAs of the target speech and the internal
noise. Finally, we evaluate the word accuracy in a dictation task
in presence of both diffuse background noise and robot internal
noise to confirm the advantage of the proposed structure.
Simulation results shows that the proposed microphone array
structure results in approximately 10% improvement of the
speech recognition performance.

I. Introduction

In a hands-free dialog system, the user’s voice is picked
at a distance with a microphone array resulting in a more
natural and stress-free interface for humans. In this system,
however, it is difficult to achieve a high recognition accuracy
because the noise generated by surrounding sound sources
and the room reverberation always contaminate the target
speech. For hands-free dialog systems mounted on a robot,
the situation is even more difficult as the robot itself has
several internal noise sources: fans, servo motors, and several
mechanical parts. Moreover these internal noise sources
are relatively close to microphone array and thus highly
contaminate the acquired user’s speech. But contrary to
the noise created by the sources that are outside of the
robot (referred to as background environmental noise), it
is possible to install some sensors (referred to as internal
noise sensors) ,e.g., a acceleration sensor and a Non-Audible
Murmur (NAM) microphone, inside of the robot that collect
additional information on the noise from inside on the
robot (referred to as internal noise).

One approach using such internal noise sensors to address
this problem is a combination of semi-blind source separation
(SBSS) [1] and Wiener filter (WF) [2] (see Fig. 1). First, both
background environmental and internal noises are estimated
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Fig. 1. Block diagram of the speech extraction method.
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Fig. 2. Layout of the reverberant room used in our simulation.

by SBSS (which is based on independent component analysis
(ICA) [3]). Next, the target speech extraction is achieved by
applying the WF on each of the microphone array signals.
Finally, the outputs of these WF are merged together with a
delay-and-sum (DS) [4] beamformer to obtain the enhanced
speech fed to the speech recognizer. However, when the
user stands in front of the robot and the microphone array
installed outside of the robot is a broadside array, the absolute
speech recognition score is not efficient due to the insufficient
noise estimation performance in SBSS (this situation is
depicted by Fig. 2 when θm = 0).

In this paper, we focus our attention on the performance
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of the SBSS based noise estimation and relate it to the
direction of arrival (DOA) of the internal noise. An important
finding is that the reason why the performance of the noise
estimation is not good with a broadside array is because the
internal noise is always in-phase at the microphone array and
thus it’s DOA is approximately the same as that of the target
speech. Consequently, in order to improve the performance
of SBSS for noise estimation, we modify the microphone
array structure to discriminate DOAs of the target speech
and the internal noise. In particular, we vary the angle of the
microphone array to change the DOA of the internal noise
(see angle θm in Fig. 2). We determine the optimal angle
θm that results in the best estimation of the internal noise
via a computer simulation. To illustrate the effectiveness of
the proposed approach, we evaluate the word accuracy in a
dictation task in presence of both diffuse background noise
and robot internal noise, and show the improvement of the
speech recognition performance.

II. Target speech extraction using Semi-blind source
separation

A. Acoustic mixing model

We consider an acoustic mixing model where the number
of microphones is J, and the number of internal noise
sensors is L (see Fig. 3). Let f denotes the frequency
bin number, and τ denotes the time-frame index number.
The observed signal at the microphone array x( f , τ) =
[x1( f , τ), . . . , xJ( f , τ)]T is a mixture of one target speech
signal s( f , τ), the background environmental noise signal
ne( f , τ) = [n(e)

1 ( f , τ), . . . , n(e)
J ( f , τ)]T, and the internal noise

signal ni( f , τ) = [n(i)
1 ( f , τ), . . . , n(i)

K ( f , τ)]T (the number of
internal noise signals is K). The observed signal vector at
the internal noise sensors r( f , τ) = [r1( f , τ), . . . , rL( f , τ)]T

depends only of the internal noise signal.
Then the observed signals at the microphone array and the

internal noise sensors are given by,

x( f , τ) = h1( f )s( f , τ) + ne( f , τ) + H2( f )ni( f , τ), (1)

r( f , τ) = H3( f )ni( f , τ), (2)

where h1( f ) = [h(1)
1 ( f ), . . . , h(1)

J ( f )]T is the column vector
containing the transfer functions from the target signal com-
ponent to each microphone, H2( f ) (J × K) is the matrix
containing the transfer functions from the internal noise
components to each microphone, and H3( f ) (L × K) is the
matrix containing the transfer functions from the internal
noise components to each internal noise sensor.

The observed signal vector at the internal noise sensors
depends only of the internal noise signal because the aerial
vibration of the target speech is not recorded by the internal
noise sensors. Thus, we can also assume that the internal
noise sensors observe only the internal noise as vibrations
transmitted through the chassis of the robot and not through
the air. Figure 4 shows spectrograms of the observed signal
at the internal noise sensors and the true internal noise
signal at the microphone array. As showed in Fig. 4, the
frequency characteristics of these signals differ (different
types of sensors and propagation paths). Therefore, directly
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Fig. 3. Block structure of the mixing and the unmixing at the f th frequency
bin.

Fig. 4. Spectrograms of (a) the observed signal at internal noise sensors
and (b) the true internal noise signal at the microphone array.

using the signal from the internal noise sensors to suppress
the contribution of the internal noise at the microphone array
results in a deep deterioration of the estimated target speech
quality. Thus, we need to estimate the internal noise signal at
the microphone array from the observed signals (microphone
array and internal noise sensors).

B. Target speech extraction

In ICA, the source separation is performed by applying the
unmixing matrices Wi( f ) (i = 1, 2, 3) (of size J × J, J × K,
and K × K) to the observed signals

y( f , τ) =W1( f )x( f , τ) +W2( f )r( f , τ), (3)

q( f , τ) =W3( f )r( f , τ), (4)

and update these matrices such that the components
of y( f , τ) = [ys( f , τ), yn( f , τ)]T and q( f , τ) =

[q1( f , τ), . . . , qK( f , τ)]T become mutually independent.
In this paper, we use an iterative update of the unmixing

matrices. Using the superscript ·[k] to denotes a value at the
kth iteration, we have the following update rules

W[k+1]
i ( f ) =W[k]

i ( f ) − µ∆W[k]
i ( f ), (5)
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∆W[k+1]
1 ( f ) = (I − 〈Φ(y( f , τ)[k])yH( f , τ)[k]〉τ)W

[k]
1 ( f ), (6)

∆W[k+1]
2 ( f ) = (I − 〈Φ(y( f , τ)[k])yH( f , τ)[k]〉τ)W

[k]
2 ( f )

− (〈Φ(y( f , τ)[k])qH( f , τ)[k]〉τ)W
[k]
3 ( f ), (7)

∆W[k+1]
3 ( f ) = (I − 〈Φ(q( f , τ)[k])qH( f , τ)[k]〉τ)W

[k]
3 ( f ), (8)

where µ is the step size parameter, I is an identity matrix, 〈·〉τ
denotes a time-averaging operator, and MH denotes hermitian
transpose of matrix M. The appropriate nonlinear vector
function Φ(·) is estimated from the data using a kernel-
based estimate of the score function [5]. After convergence,
the permutation problem is resolved using the method com-
bining DOA estimate and probability density distribution
estimate [6].

When separating a point-source target speech and a non-
point source noise, ICA estimates efficiently the noise by
steering a directional null in the direction of the target,
whereas the speech estimate is of poor quality [7]. Thus
we utilize ICA as an estimator for both external and internal
noises but not for the speech. These noise estimates are given
by

x̂e( f , τ) =W+
1 ( f )[0, yn( f , τ)]T, (9)

x̂i( f , τ) = −W+
1 ( f )W2( f )W+

3 ( f )q( f , τ), (10)

where x̂e( f , τ) = [x̂(e)
1 ( f , τ), . . . , x̂(e)

J ( f , τ)]T is the estimated
background environmental noise signal vector, and x̂i( f , τ) =
[x̂(i)

1 ( f , τ), . . . , x̂(i)
J ( f , τ)]T is the estimated internal noise signal

vector (both estimated at the microphone array). Next, noise
canceling is performed by applying a WF on each of the
microphone array signals. The noise estimates used in the
WF are obtained by adding the contributions of both external
and internal noises at the microphones

x̂n( f , τ) = x̂e( f , τ) + x̂i( f , τ), (11)

where x̂n( f , τ) = [x̂(n)
1 ( f , τ), . . . , x̂(n)

J ( f , τ)]T contains all the
components of the estimated noise signal vector. The WF
gain is designed as follows:

g j( f , τ) =
|x j( f , τ)|2

|x j( f , τ)|2 + β|x̂(n)
j ( f , τ)|2

, (12)

where g j( f , τ) is the WF gain at jth channel, and β is a
gain factor. The J enhanced speech signals obtained by the
Wiener filtering are

s(WF)
j ( f , τ) =

√
g j( f , τ)|x j( f , τ)|2

x j( f , τ)

|x j( f , τ)|
. (13)

Finally, the J Wiener-filtered speech estimates are merged
into a single-channel signal by applying a DS beamformer
as follows:

sDS( f , τ) = wDS( f , θU)T[s(WF)
1 ( f , τ), . . . , s(WF)

J ( f , τ)]T, (14)

wDS( f , θ) = [w(DS)
1 ( f , θ), . . . ,w(DS)

J ( f , θ)]T, (15)

where sDS( f , τ) is the estimated target speech signal, θU is the
look direction which is estimated from the unmixing matrix

optimized by ICA [8], and wDS( f , θ) is the coefficient vector
of the DS array which is defined by

w(DS)
j ( f , θ) =

1
J

exp (−i2π( f /N) fs jd sin θ/c), (16)

where fs is the sampling frequency, d is the microphone inter
spacing, N is the DFT size, and c is the sound velocity.

The internal noise frequency characteristics differ greatly
depending on the robot actions. In particular the periods
when the robot does not move that contain only fan noise
are very different from the periods when the robot moves as
mechanical and motor noises can be heard. It was experi-
mentally reported in [9] that changing the gain factor β of
the WF according to the type of the internal noise improves
the speech recognition performance (The type of the internal
noise being determined by using the control signals of the
robot). In this paper, we also consider fixed and non fixed
gain factor β.

C. Problem of semi-blind source separation

We conducted a preliminary experiment to confirm the
poor noise estimation performance of SBSS. Figure 2 (θm =
0) depicts the layout of the reverberation room used in
this experiment. We used a four-element microphone array
with an inter element spacing of 2.15 cm and three internal
noise sensors were installed inside of the robot. We used
10 utterances (female speakers, 16kHz-sampled signals) con-
voluted with the impulse response that were recorded in
this reverberant room to simulate a user standing in front
of the microphone array at a distance of one meter. The
background environmental noise signal is a noise recorded
in an exhibition hall. The internal noise is a recording of the
actual robot internal noise (fan noise, mechanical noise and
motor noise). The input signal-to-noise ratio (SNR) between
the target speech and the background environmental noise
is set to 10 dB, and the input SNR between the target
speech and the internal noise (referred to as internal SNR)
is 16.6 dB.

We evaluate the noise estimation performance in SBSS on
the basis of the spectral distortion (SD) e( f ) which is defined
as follows:

e( f ) = 10log10

⎛⎜⎜⎜⎜⎜⎜⎝
1
J

∑
j

∑
τ

|x(n)
j ( f , τ) − x̂(n)

j ( f , τ)|2
⎞⎟⎟⎟⎟⎟⎟⎠ , (17)

where x(n)
j denotes the true noise signal at the jth channel

(the sum of the internal and the background environmental
noises). The small SD indicates the high noise estimation
performance. Thus, if we achieve the perfect noise estima-
tion, the SD will be minus infinity.

Figure 5 shows the SD averaged on the ten target speaker
utterances. We can see that at low frequencies the noise
estimate given by SBSS is severely distorted.

III. Proposed method

A. Overview

In this section, we first analyze the DOA of the internal
noise to clarify the cause of the poor noise estimation perfor-
mance in SBSS. As a result of this analysis, we confirm that
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Fig. 5. Spectral distortion between the components of the true noise and
the estimated noise (averaged on channels and utterances).

the internal noise is always in-phase at the microphone array.
Based on this finding, we propose a solution to overcome the
problem of SBSS.

B. DOA-based analysis

We first conduct an experiment to characterize the internal
noise DOA. The conditions are the same as the previous
experiment.

As showed in Fig. 2, the axis used for measuring the DOA
is such that the target speech for a user standing in front of
the broadside array (θm = 0) has a DOA of zero degree.

The robot actions and fan noise (internal noise) were
recorded in four situations (type 1 to 4) while performing
different movements that create additional mechanical and
motor noises for short periods. The internal noise of type 1
designs the shaking of the robot’s head and is a relatively
calm noise. But the other internal noise types (2-4) design
movements of the arms and these noises are loud to the point
of masking the target speech.

To estimate the DOA of the internal noise and the target
speech we use a minimum variance (MV) method. First, we
calculate the estimated power P( f , θ) given by

P( f , θ) =
1

aH( f , θ)R−1( f )a( f , θ)
, (18)

R( f ) = E[z( f , τ)zH( f , τ)], (19)

a( f , θ) = [a1( f , θ), . . . , aJ( f , θ)]T, (20)

a j( f , θ) = exp (i2π( f /N) fs jd sin θ/c), (21)

where a( f , θ) is the steering vector, R( f ) is the correlation
matrix, and z( f , τ) = [z1( f , τ), . . . , zJ( f , τ)]T is the input
signal vector (E[·] denotes an expectation operator). In this
experiment, input signal vector is the true target speech signal
or the internal noise signal at the microphone array. Next,
we vary the angle θ from -90 to 90 using a unit increment
and select the value giving the largest |P( f , θ)| as the DOA
of the input signal.

The estimated DOAs for all the internal noise types and
the target speech are plotted in Figs. 6(a), 6(b), 6(c) and
6(d). Since the wavelength in low frequencies is long, no
DOA estimate methods can calculate the correct DOA. Thus,
we do not consider the DOA result below 500 Hz. We
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Fig. 6. DOAs of the internal noise (a) type 1 and the target speech, (b)
type 2, (c) type 3, (d) type 4.

can see that the DOAs of all the internal noise types are
approximately zero degree. The four types of noises we
consider are generated from various locations of the robot
(e.g. neck, left arm, right arm) but all of these noises are in-
phase at the microphone array. Meaning that no matter the
location from which the noises are generated their apparent
DOA at the microphone array is zero degree.

The reason of the above result is that when the robot
makes a movement, the microphone array vibrates with the
chassis. Thus the observed internal noise contains vibrations
that propagate through the robot chassis. Generally speaking,
the sound velocity in the solid is faster than that in the
air. Therefore, the sound velocity of the internal noise is
fast, and the time-difference-of-arrival of each microphone
is smaller than that with propagation through the air. Since
the internal noise image is always in-phase at the microphone
array regardless of the moving part of the robot, when the
user stands in front of the robot with the broadside array, the
DOA of the internal noise and that of the target speech are
the same see Fig. 6(a).

C. Proposed structure

We consider that while using a speech-oriented human-
machine interface almost all users stand in front of the
microphone array. Consequently, when using the broadside
array, the target speech and the internal noise have approx-
imately the same DOA (see Fig. 7(a)). In such situation,
ICA cannot estimate properly the internal noise as steering
a directional null in the speech direction also suppress the
internal noise (ICA cannot separate the sources which are
spatially adjacent). To overcome this limitation, we modify
the microphone array structure to discriminate the DOAs of
the target speech and the internal noise. In particular, the
microphone array mounted outside of the robot varies from
the broadside array (θm � 0) to the end-fire array (θm �
90). As a result, the DOA of the internal noise is shifted
to a different direction of that of the target speech while
keeping the face-to-face relationship of the user and the
robot, see Fig.7(b). Therefore, the DOA of the target speech
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TABLE I

Experimental conditions for the speech recognition

test data JNAS test set
100 utterances

(female 23 speakers)
Speech recognition newspaper dictation

task (20 k word)
Acoustic model phonetic tied mixture [12]

based clean model with
super-imposed noise

(office noise 25 dB SNR)
Number of training 260 speakers

speakers for (150 utterances
acoustic model / 1speaker)

Decoder Julius ver. 3.5.1

and that of the internal noise are no longer approximately
the same. Consequently, it is expected that the quality of the
noise estimate given by ICA improves. In the following, we
determine the optimal angle of the microphone array for the
internal noise of the robot and confirm the improvement of
the speech recognition performance.

IV. Experiment and result

A. Experiment 1

1) Experimental setup: To confirm the effectiveness of
varying the angle of the microphone array, we conducted
a computer-simulation-based experiment. We conform the
conditions of the reverberant room to the experiment of
Sect. 2.3. However, the number of utterances is 100 (female
speakers), and we use four kinds of internal noises. The
internal SNR of type 1 internal noise is 16.6 dB, type 2 is
4.5 dB, type 3 is 0.4 dB, and type 4 is 5.4 dB. Also, the gain
factor β of the WF is fixed at 5 for all internal noise types.
The experiment is repeated with eleven different angle θm:
±90, ±60, ±45 ,±30, ±10, 0. The experimental conditions
for the speech recognition show the Table 1.

Angle of microphone array [deg]

Type 1 Type 2 Type 3 Type 4
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]

Fig. 8. Word accuracy for all the internal noise types with different angles
of the microphone array.

2) Experimental result: We compared the different angles
of the microphone array on the basis of word accuracy,
noise reduction rate (NRR) which is defined as the output
SNR in dB minus the input SNR in dB, cepstral distortion
(CD) which is a measure of the degree of spectral envelope
distortion in the cepstrum domain [10] and SD. Figure 8
shows the result of speech recognition test. We can see that
word accuracy can be improved by varying the angle of the
microphone array. In particular, word accuracy at θm = 60
degrees is obviously superior to that at θm = 0 degree for all
internal noise types. We can achieve 14% (type 1), 11% (type
2), 7% (type 3) and 13% (type 4) improvements of the
speech recognition result. NRR and CD (averaged on all
target speaker utterances) are given in Figs. 9. We also show
the result of SD in Fig.10. We can see that CD and SD at
θm = 60 degrees is smaller than that at θm = 0 degree for
all internal noise types, and that the NRRs for the cases of
θm = 60 degrees and θm = 0 degree are almost the same
except for the type 3 internal noise. This may be a clue to
explain why the improvement is the least for type 3 noise.
From these results, we can see that improving the SBSS
noise estimation performance results in an improvement of
the target speech extraction performance. This result also
indicates that the improvement of the speech recognition
performance is mainly due to the improvement of the CD.

B. Experiment 2

1) Experimental setup: We investigate the speech recog-
nition performance at the optimal angle of the microphone
array θm = 60 with optimized β. We conform the conditions
of the reverberant room and speech recognition to the exper-
iment 1 except parameter β. As mentioned in Sec.2.3, We
change the β according to the noise type while the robot
is moving. Values for stationary (β1) and non stationary (β2)
parts are given are Table 2. These values are optimized based
on word accuracy.

2) Experimental result: Figure 11 shows the result of the
speech recognition test. We can see that word accuracy at
θm = 60 and optimized β (Proposed 2) is superior to that
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Fig. 10. Spectral distortion of internal noise (a) type 1, (b) type 2, (c) type
3, (d) type 4 for the cases of θm = 0 degree and θm = 60 degrees.

at θm = 60 and β fixed at 5 for all internal noise types
(Proposed 1). Compared with the conventional microphone
structure (Conventional), we can achieve 15% (type 1),
15% (type 2), 8% (type 3) and 16% (type 4) improvements
of the speech recognition result at θm = 60 and optimized
β (Proposed 2).

V. Conclusion

In this paper, we showed that the internal noise is al-
ways in-phase at the microphone array because they are
transmitted through a solid (the robot chassis here). Then
we proposed to replace the broadside array by an end-
fire array for improving both noise estimation and speech
recognition performances. This proposed approach is not
limited to robot application and can be easily extended to car

TABLE II

gain factor β ofWF

internal noise type number { β1, β2}
1 { 20, 30}
2 { 30, 50}
3 { 10, 20}
4 { 10, 50}

 20
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W
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Unprocess Conventinal

Proposed 1 Proposed 2
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Fig. 11. Experimental results of word accuracy for the cases of the observed
signal, θm = 0 degree, θm = 60 degrees with fixed β = 5 and θm = 60 degrees
with optimized β.

applications [13] because the road noise in car application is
also transmitted through a solid (the car chassis).
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