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Abstract— Automated electric vehicles for public use consti-
tute a promising very efficient and environment-friendly “urban
transportation system”. An additional functionality that could
enhance this transportation service is vehicle platooning. In
order to avoid inter-distance oscillations within the platoon, a

global control strategy, supported by inter-vehicle communica-
tions, is investigated. Vehicle localization in an absolute frame
is needed and is derived here from monocular vision. The
vision data is however expressed in a virtual world, slightly
distorted with respect to the actual metric one. It is shown
that such a distortion can accurately be corrected by designing
a nonlinear observer that relies on odometric data. A global
decentralized control strategy, relying on nonlinear control
techniques, can then be designed to achieve accurate vehicle
platooning. Simulations and full-scale experiments demonstrate
the performance of the proposed approach.

Index Terms— automatic guided vehicles, platooning, nonlin-
ear control, observer, monocular vision, urban vehicles

I. INTRODUCTION

Traffic congestion in urban areas is currently a serious

concern, since it prevents efficient movement and increases

air pollution. Automated electric vehicles available on a short

term rental basis from distributed stations within some given

zone, appear as an attractive alternative concept. The large

flexibility that can be obtained (commuting at any time and

along any route) is a desirable feature which should meet user

expectations. An additional functionality of special interest

is vehicle platooning, i.e. several automated vehicles moving

in a single line. Such a functionality allows to easily match

transportation supply to the need (via platoon length), and

can also ease maintenance operations, since a single person

can then move several vehicles at a time (e.g. to bring them

back to some station). Moreover, enhanced safety and a more

efficient traffic can be expected from such a cooperative

navigation. Platooning is therefore considered in this paper.

Different approaches have been proposed. They can be

classified into two categories, according to the information

used for vehicle control. The most common approaches rely

on local strategies, i.e. each vehicle is controlled exclusively

from the information it can acquire, relative only to the

neighboring vehicles. The well-known leader-follower ap-

proach considers only the preceding vehicle. For instance,
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visual tracking has been proposed in [2] and generic control

laws have been designed in [12] and [5]. Alternatively,

virtual structure approaches rely on mechanical analogies

and allow to take into account all neighboring vehicles. For

instance, an analogy to a serial chain of spring-mass-damper

models is considered in [13] and a control law is then derived

from the combined front and rear virtual forces.

However, a drawback inherent to any local strategy is

error accumulation: the servoing errors, introduced by sensor

noises and/or actuator delays, grow from the lead vehicle to

the final one in the chain, leading to unacceptable oscillations

when the chain is long. Such problems can be overcome

by considering global strategies, i.e. each vehicle is now

controlled from data shared between all the vehicles. In

opposition to [13], most of the virtual structure approaches

belong to this category: in [4], vehicles are regarded as

unconstrained mass particles impacted by control forces, and

this analogy is used to design feedback controllers to achieve

straight line motion. In [6], a single virtual rigid structure

is considered relying on graph theory. Nevertheless, these

techniques aim at imposing some pre-specified geometric

pattern, and not that each vehicle accurately reproduces the

trajectory of the first one. Instead, in previous work [3],

a trajectory-based strategy has been proposed, relying on

nonlinear control techniques: lateral and longitudinal controls

are decoupled, so that lateral guidance of each vehicle with

respect to the same reference path can be achieved inde-

pendently from longitudinal control, designed to maintain a

pre-specified curvilinear vehicle inter-distance.

Fig. 1. Experimental vehicles: two Cycab leading a RobuCab

The previous control approach has been demonstrated with

the experimental vehicles shown in Fig.1 relying, as a first

step, on RTK-GPS receivers for vehicle localization [3].

However, these sensors are not reliable in urban applications,

since satellite signals are often masked by tall buildings.
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Relying on cameras for sensing is arguably more appropriate,

since the buildings offer a rich environment for image pro-

cessing and it is a cheaper sensor. Localization in an absolute

frame can be obtained from monocular vision, by processing

successive images acquired when the vehicle is moving

(structure from motion approach). Since a single camera is

used, localization data are supplied up to a scale factor w.r.t.

the real world. However, this scale factor is not perfectly

constant: it changes when the vehicle moves through the

environment. Consequently, the absolute localization derived

from monocular vision is expressed in a virtual vision world,

distorted w.r.t. the real one, denoted metric world in the

sequel. This affects the estimate of inter-vehicle distances,

and therefore impairs longitudinal control performances. In

previous work [1], the local distortions are estimated from the

actual distance between two vehicles, measured with a laser

rangefinder. This information is then shared with the whole

platoon and longitudinal control performance is improved.

However, synchronizing telemetry and visual data is intricate,

and corrections are only approximated ones, since the scale

factor at some point in the vision world is inferred from the

comparison of several meters long inter-vehicle distances.

In this paper, a nonlinear observer, relying solely on

standard odometric data, is designed to correct in an easier

and more accurate way, the distortions of the virtual vision

world. The paper is organized as follows: platooning control

strategy is first sketched in Section II. Then, absolute local-

ization from monocular vision is discussed in Section III.

Next, the local correction to the visual world is presented

in Section IV. Finally, experiments reported in Section V

demonstrate the capabilities of the proposed approach.

II. GLOBAL DECENTRALIZED CONTROL STRATEGY

A. Modeling assumptions

Urban vehicles involved in platooning applications are

supposed to move at quite low speed (less than 5m.s−1)

on asphalted roads. Dynamic effects can therefore be ne-

glected and a kinematic model can satisfactorily describe

their behavior, as verified by extensive tests performed with

our experimental vehicles shown in Fig. 1, see [11]. In this

paper, the kinematic tricycle model is considered: the two

actual front wheels are replaced by a single virtual wheel

located at the mid-distance between the actual wheels. The

notation is illustrated in Fig. 2.

Fig. 2. Tricycle model description

• Γ is the common reference path for any vehicle, defined

in an absolute frame [A, XA, YA].
• Oi is the center of the ith vehicle rear axle.

• Mi is the closest point to Oi on Γ.

• si is the arc-length coordinate of Mi along Γ.

• c(si) is the curvature of path Γ at Mi, and θΓ(si) is the

orientation of the tangent to Γ at Mi w.r.t. [A, XA, YA].
• θi is the heading of ith vehicle w.r.t. [A, XA, YA].
• θ̃i = θi − θΓ(si) is the angular deviation of the ith

vehicle w.r.t. Γ.

• yi is the lateral deviation of the ith vehicle w.r.t. Γ.

• δi is the ith vehicle front wheel steering angle.

• L is the vehicle wheelbase.

• vi is the ith vehicle linear velocity at point Oi.

B. Vehicle state space model

The configuration of the ith vehicle can be described

without ambiguity by the state vector (si, yi, θ̃i). The current

values of these variables can be inferred on-line by compar-

ing vehicle absolute localization to the reference path. It can

then be shown (see [10]) that tricycle state space model is:















ṡi = vi
cos θ̃i

1− yi c(si)

ẏi = vi sin θ̃i

˙̃
θi = vi

(

tan δi

L
− c(si) cos θ̃i

1− yi c(si)

)

(1)

Platooning objectives can then be described as ensuring

the convergence of yi and θ̃i to zero, by means of δi,

and maintaining the gap between two successive vehicles

to a fixed value d⋆, by means of vi. It is considered that

yi 6= 1
c(si)

(i.e. vehicles are never on the reference path

curvature center). In practical situations, if the vehicles are

well initialized, this singularity is never encountered.

C. Control law design

In previous work [3], it has been shown that exact lin-

earization techniques offer a relevant framework to address

platoon control: equations (1), as most of kinematic models

of mobile robots, can be converted in an exact way into a so-

called chained form, see [10]. Such a conversion is attractive,

since the structure of chained form equations allows to

address independently lateral and longitudinal control.

Steering control laws δi can first be designed to achieve

the lateral guidance of each vehicle within the platoon w.r.t.

the common reference path Γ. In these control laws, vi just

appears as a free parameter. Since conversion of equations (1)

into chained form is exact, all nonlinearities are explicitly

taken into account. High tracking performances (accurate to

within ±5cm when relying on an RTK GPS sensor) can then

be ensured, whatever initial errors or reference path curvature

are. Details can be found in [11].

Control variables vi can then be designed to achieve

longitudinal control. In nominal situation, the objective for

the ith vehicle is to regulate e1
i = s1 − si − (i − 1) d⋆,

i.e. the arc-length longitudinal error w.r.t. the leader. This

control objective is attractive, since the location s1 of the

leader represents a common index for all the vehicles into the

platoon, so that error accumulation and inherent oscillations

can be avoided. In addition, since it is an arc-length error, this

control objective remains consistent whatever the reference
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path curvature is (in contrast with euclidian inter-distances).

Nevertheless, for obvious safety reasons, the location of the

preceding vehicle cannot be ignored. Therefore, in previous

work [3], the longitudinal control law has been designed

to control a composite error, where the global error e1
i

dominates in the nominal case and the local error ei−1
i =

si−1 − si − d⋆ dominates if inter-vehicle distance is close

to the stopping distance at maximum deceleration. Once

more, exact linearization techniques have been used, so that

nonlinearities in equations (1) are still explicitly accounted,

ensuring high accurate regulation. More details, as well as

experiment results carried out with Cycab and RobuCab

vehicles (see Fig. 1), relying on RTK GPS sensors for

vehicle localization and WiFi technology for inter-vehicle

communications, can be found in [3].

III. LOCALIZATION WITH MONOCULAR VISION

The implementation of the platooning control laws pre-

sented in previous section requires that some sensors provide

each vehicle with its absolute localization, in a common ref-

erence frame (so that the composite errors can be evaluated).

RTK GPS receivers can supply such a localization, with a

very high accuracy (±2cm). They have successfully been

used in [3]. However, they are expensive sensors and are not

appropriate for urban environments, since satellite signals are

likely to be frequently blocked by tall buildings. In previous

work [8], absolute localization from monocular vision has

been alternatively proposed, and satisfactory accurate lateral

guidance of a sole vehicle along a given reference path has

been demonstrated. An overview of the localization approach

is given in Section III-A, and its limitations with respect to

platooning applications are discussed in Section III-B.

A. Localization overview

The localization algorithm relies on two steps:

First, the vehicle is driven manually along the desired tra-

jectory and a monocular video sequence is recorded with the

on-board camera. From this sequence, a 3D reconstruction of

the environment in the vicinity of the trajectory is computed

(structure from motion techniques). The computation of

the reconstruction is done off-line with a method relying

on bundle adjustment. The trajectory is thus defined in a

non-metric virtual vision world. However, the total covered

distance supplied by on-board odometers, when compared to

the same quantity evaluated from vision algorithms, allows

to propose a global scale factor such that this virtual vision

world is nevertheless close to the actual metric world.

The second step is the real time localization process.

Points of interest are detected in the current image with

Harris corner detector. These features are matched with the

features stored during the 3D reconstruction step, and the

complete pose (6 degrees of freedom) of the camera is

inferred. Then, the pose of the vehicle on the ground plane is

deduced, and finally the vehicle state vector (si, yi, θ̃i) and

the curvature c(si) required in control laws can be inferred.

Details and localization performances can be found in [9].

B. Distortion in the virtual vision world

Platoon control in urban environment requires vehicle

localization to be accurate to within some centimeters. The

global scale factor computed from odometric data cannot

guarantee such an accuracy: first, odometers cannot supply a

covered distance accurate to within some centimeters when

the reference trajectory length comes up to few hundred me-

ters. Secondly, the distortion between the two worlds is alas

varying along the trajectory. These limitations are illustrated

in Fig.3: when the vehicle was moving, its trajectory has

been recorded from an RTK-GPS sensor and from monocular

vision with an accurately calibrated camera. The distortion

between the virtual vision world and the actual metric one

appears clearly in the inserted plot in Fig.3 since the two

trajectories do not properly fit, despite the global scale factor

correction. In order to investigate further the discrepancy

between the two worlds, the error between the covered arc-

length distances computed from monocular vision and from

RTK-GPS data is reported as the main plot in Fig.3. It can be

noticed that, on one hand the drift in odometric measurement

does not allow a proper evaluation of the global scale factor,

so that the total arc-length distance is erroneous in the vision

world (the error is 1.72m, although the trajectory is only

115m-long), and on the other hand the distortion between

the two worlds is largely varying, since the error comes up

to 7.48m in the mid-part of the trajectory.
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Fig. 3. Error in arc-length distance estimation with vision

These distorsions in the virtual vision world are not a

concern as long as only lateral guidance is considered: since

the sign of the lateral and angular deviations yi and θ̃i

supplied by vision algorithms is always correct, these dis-

torsions act only as control gain modifications. Asymptotic

convergence of yi and θ̃i to 0 is therefore always guaranteed,

and very satisfactory path following results can be obtained,

as reported in [8].

The situation is different when longitudinal control is

addressed: the distortions in the virtual vision world lead

to inaccurate inter-vehicle distance evaluation, and therefore

poor longitudinal control performances with respect to the

metric world. However, the analysis of experimental results

reveals that the distorsions are reasonably repeatable: lateral

guidance along the 115m-long trajectory shown in the upper-

left part in Fig.4 has been carried out with several vehicles,

different cameras and light conditions. For each trial, the

set of local scale factors ensuring consistency, on successive

2m-long segments, between the arc-length distance obtained
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by monocular vision and the actual one supplied by an RTK-

GPS sensor, has been computed off-line. Two of these sets

are reported in Fig.4. It can be observed that they present a

very similar profile, and so do the other sets. More precisely,

it can be noticed that the local scale factors are roughly

constant in the straight line parts of the trajectory, and fast

varying in the curved parts (at the beginning and at the

end of the cyan segment). As a conclusion, since distortions

between the virtual vision world and the actual metric one are

reasonably repeatable, accurate longitudinal control relying

solely on monocular vision appears attainable, provided that

the set of local scale factor could be precisely estimated.

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

RTK−GPS based curvilinear abscissa s (in meters)

 

 

test 1

test 2

6.6017 6.6018 6.6019 6.602 6.6021 6.6022

x 10
5

8.4705

8.471

8.4715

8.472

8.4725

8.473

8.4735

8.474

8.4745

8.475

x 10
4

Fig. 4. Off-line local scale factor computation

IV. CURVILINEAR DISTANCE ESTIMATION

Local scale factor estimation requires that some distances

in the virtual vision world could also be accurately evaluated

in the actual metric world. Very precise measurements in

the metric world can be obtained from RTK-GPS receivers.

However, as mentioned in Section I, these sensors are not

appropriate to urban environments. In previous work [1],

it is proposed to rely on a laser rangefinder to obtain a

reference measurement in the metric world: the distance

between the leader and the first follower vehicles supplied

by this sensor is compared with the same inter-distance

derived from monocular vision. The major limitation is that

distortion corrections thus obtained are necessarily averaged

corrections, computed along segments whose lengths are the

distance between the two first vehicles, that is to say several

meters. The local distortions between the virtual vision world

and the metric one might then not be accurately represented,

especially in the curved parts of the trajectory, where the

local scale factors are supposed to change abruptly, see Fig.4.

To relax these limitations, an alternative approach, based on

observer theory, and relying solely on standard odometric

data, is proposed below.

A. Observer design

In the proposed approach, the reference measurement in

the metric world to be used to infer local scale factors is

the vehicle linear velocity vi supplied by the odometers. In

the sequel, let us denote (si, yi, θ̃i), (ṡi, ẏi,
˙̃
θi) and c(si) the

ith vehicle state vector, state vector derivative and reference

path curvature at si expressed in the actual metric world,

and (sv
i , yv

i , θ̃v
i ), (ṡv

i , ẏ
v
i ,

˙̃
θv

i ) and cv(sv
i ) the same quantities

expressed in the virtual vision world. Then, in view of the

reference measurement to be used, a relevant way to describe

the local scale factor at curvilinear abscissa sv
i is the function:

λ(sv
i ) = ṡi / ṡv

i (2)

The distortions in the virtual vision world can realistically be

assumed to be locally homogeneous, i.e. the two dimensions

in the plane of motion are similarly distorted. Therefore, the

following relations can also be written:

λ(sv
i ) = ẏi / ẏv

i (3)

θ̃v
i = θ̃i (4)

yv
i cv(sv

i ) = yi c(si) (5)

Then, injecting relations (2) to (5) into model (1), the vehicle

state space model expressed in the virtual vision world is:














ṡv
i =

vi. cos θ̃v

i

λ(sv

i
).(1− yv

i
cv(sv

i
))

ẏv
i =

vi. sin θ̃v

i

λ(sv

i
)

˙̃
θv

i =
˙̃
θi

(6)

Model (6) describes the vehicle motion from the variables

actually available, i.e. the vehicle localization in the vision

world and its linear velocity in the metric world. The

objective now is to design an observer to estimate λ(sv
i )

from model (6). Since distortions are the result of a complex

and unpredictible optimization process, the time derivative

of the variable λ(sv
i ) to be observed is completely unknown.

Consequently, λ(sv
i ) cannot be incorporated into the state

vector with the aim to design a standard Luenberger observer.

It is here proposed, just as in [7], to rely on the duality

between control and observation to design the observer. More

precisely, mimicking the first equation in (6), let us introduce

the following observation model:

˙̂sv
i =

vi. cos θ̃v
i

ui.(1 − yv
i cv(sv

i ))
(7)

with ŝv
i the observed curvilinear abscissa in the virtual vision

world, yv
i , θ̃v

i and cv(sv
i ) measured quantities in the vision

world, vi a measured quantity in the metric world, and ui a

control variable to be designed. Then, the observer principle

can be described as follows: if the control variable ui of

the observation model (7) could be designed such that the

observed state ŝv
i converges with the measured one sv

i , then

the control variable ui would be representative of the local

scale factor λ(sv
i ) (in view of equations (6) and (7)).

Such a convergence can easily be imposed, by designing

ui straightforwardly as:

ui =
vi. cos θ̃v

i

(ṡv
i − K.ǫ)(1 − yv

i .cv(sv
i ))

(8)

with ǫ = (ŝv
i − sv

i ) and K a positive gain to be tuned, since

injecting (8) into (7) leads to :

ǫ̇ = −K · ǫ (9)

Equation (8) can then be regarded as an accurate estimation

of the local scale factor at the curvilinear abscissa sv
i . If the

observer state ŝv
i is properly initialized, then |K ·ǫ| is largely
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inferior than |ṡv
i | (directly related to the vehicle velocity), and

observer equation (8) proposes no singularity.

Finally, if Γ(τ) = (Γx(τ), Γy(τ) ) denotes the 2D-

parametric equations of the reference trajectory Γ in the

virtual vision frame, then the corrected curvilinear abscissa

at sv
i can be computed according to:

ŝi =

∫ τ(sv

i
)

0

λ(τ)

∣

∣

∣

∣

∣

∣

∣

∣

∂Γ

∂τ
(τ)

∣

∣

∣

∣

∣

∣

∣

∣

d τ (10)

where τ(sv
i ) is the parameter value of the 2D-curve Γ(τ)

(here, a B-Spline) associated with the curvilinear abscissa sv
i .

Longitudinal errors e1
i and ei−1

i can finally be inferred,

without any drift since they are inter-distances.

B. Simulations

Two simulations have been run with the following param-

eters, tuned in order to be representative of actual conditions:

• Local scale factors similar to those obtained in Fig. 4

have been generated via line segments, see Fig. 5.

• Visual data are provided with a 15Hz sampling fre-

quency and two standard deviations σv = 0m and

σv = 0.02m have been considered.

• Standard deviation of odometry is σodo = 0.015m.s−1.

• Observer gain is K = 2, to achieve a compromise

between a fast convergence and small oscillations. The

observed local scale factor is logically initialized at 1.
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Fig. 5. Simulated scale factor estimation (on-line process)

First, to investigate the performances of observer (8), a

single vehicle moving with a constant velocity v = 1m.s−1

in the metric world has been simulated. The top graph in

Fig. 5 shows that observer convergence is achieved within

3m (dotted black line). Without any noise on visual data (i.e.

σv = 0m), the convergence is very smooth and the average

value of the error ǫ is less than 2.4mm, excepted when the

local scale factor changes abruptly (cyan area): then, a very

limited 3cm overshoot can be noticed. When visual data are

corrupted by noise (i.e. σv = 0.02m), the observer error

remains inferior than 7cm, with an average value less than

17.6mm. Finally, it can noticed in the bottom graph in Fig. 5

that the observed local scale factor accurately reproduces the

simulated one, as desired.

Next, platooning with three vehicles has been simu-

lated. The vehicle initial curvilinear abscissas are s1 = 10m,

s2 = 5m and s3 = 0m. Since the desired inter-vehicle gap

is d⋆ = 5m, initial longitudinal errors are zero. Prior to

s = 30m, platoon control relies on raw vision data. It can

be observed in Fig. 6 that inter-vehicle distances in the

virtual vision world converge with zero, as expected, but

alas actual inter-distances are unsatisfactorily large: since the

local scale factor is roughly 0.87 in this part of the trajectory,

see Fig. 5, 0.65m and 1.3m steady errors (i.e. 0.13d⋆ and

2×0.13d⋆) are recorded in the actual metric world. Beyond

s = 30m, observer (8) is used within platoon control algo-

rithms. Since d⋆ = 5m, the distance between vehicles 1 and

2 (resp. between vehicles 1 and 3) is properly corrected when

s1 = 35m (resp. when s1 = 40m) (dashed lines in Fig. 6)

and platooning is then accurately achieved with respect to

the actual metric world, although raw vision inter-distances

are largely erroneous (e1
2 = 0.75m and e1

3 = 1.5m when

s1 = 110m) and even when local scale factors are abruptly

varying (when s1 ∈ [70, 80]m).

10 20 30 40 50 60 70 80 90 100 110
−1.5

−1

−0.5

0

0.5

1

1.5

 curvilinear abscissa of the first vehicle s1 (in meters)

 l
o

n
g

it
u

d
in

a
l 

e
rr

o
rs

 (
in

 m
e

te
rs

)

 

 

vehicle 1/2 :

vehicle 1/3 :

σ
vis

=0.02m  real

 vision

 corrected vision

 real

 vision

 corrected vision

Fig. 6. Performances of simulated platoon control

V. EXPERIMENTAL RESULTS

In order to investigate the capabilities of the proposed

approach, several experiments have been carried out in

Clermont-Ferrand at the “PAVIN Site”, an open platform

devoted to urban transportation system evaluation.

1) Experimental set-up: The experimental vehicles are

shown in Fig. 1. They are electric vehicles, powered by lead-

acid batteries providing 2 hours autonomy. Two (resp. four)

passengers can travel aboard the Cycab (resp. the RobuCab).

Their small dimensions (length 1.90m, width 1.20m) and

their maximum speed (5m.s−1) are appropriate for urban

environments. Vehicle localization algorithms and platoon

control laws are implemented in C++ language on Pentium

based computers using RTAI-Linux OS. The cameras supply

visual data at a sampling frequency between 8 and 15Hz,

according to the luminosity. The inter-vehicle communica-

tion is ensured via WiFi technology. Since the data of each

vehicle are transmitted as soon as the localization step is

completed, the communication frequency is similar to the

camera one. Finally, each vehicle is also equipped with

an RTK-GPS receiver, devoted exclusively to performance

analysis: its information are not used to control the vehicles.

2) Experimental results: The experiment reported below

consists of platoon control with three vehicles. The reference

supplied to any vehicle is the 115m-long trajectory shown in

Fig. 4. Alternatively, the reference could have been created

on-line by a manually driven lead vehicle, provided that it

moves in streets where preliminary 3D reconstruction had
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been achieved. The local scale factors computed on-line by

the lead vehicle (whose speed is 1m.s−1) are shown in green

in Fig. 7. In order to ease the comparison with the local scale

factors computed off-line in Section III-B (and reported in

blue in Fig. 7), the ones obtained on-line have also been

averaged on 2m-long segments and then shown in red in

Fig. 7. It can be noticed that local scale factors computed on-

line with observer (8) are as satisfactory as those computed

off-line and very close to the actual ones evaluated from

RTK-GPS measurements.
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Fig. 7. On-line scale factor estimation

Finally, platoon control performances with corrected vi-

sion data are evaluated in Fig. 8. The vehicle inter-distance

errors (obtained from RTK-GPS measurements) when lon-

gitudinal control relies solely on monocular vision data is

as accurate as previously when RTK-GPS data were used

(see [3]) to control the vehicles: the longitudinal errors

satisfactorily remain within ±10cm. Performances are just

slightly depreciated during the abrupt scale factor variation,

when s1 ∈ [70, 80]m. Nevertheless, the inter-distance errors

do not exceed resp. 14cm and 17cm. During this experiment,

the inter-distance errors deduced from raw localization vision

data, shown in Fig. 9, were largely erroneous and similar to

those obtained in simulation, see Fig. 6. These large errors

(resp. 1m and 1.7m) show clearly the significance and the

relevance of observer (8).
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Fig. 8. Vehicle inter-distance errors with corrected vision data
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Fig. 9. Vehicle inter-distance errors with raw vision data

VI. CONCLUSION

In this paper, vehicle platooning in urban environments has

been investigated. First, a global decentralized control strategy,

taking advantage of inter-vehicle communications, has been

proposed, in order to avoid error accumulation inherent

to local control approaches. Moreover, nonlinear control

techniques have been considered, in order to take explicitly

into account the nonlinearities in vehicle models, so that the

same high accuracy can be expected in any situation (for

instance, whatever the reference trajectory curvature).

Vehicle absolute localization has been derived from an

on-board camera, since it is a very appropriate sensor in

urban environments. However, it has been pointed out that

the localization thus obtained is expressed in a virtual vision

world slightly distorted with respect to the actual metric

one, and relying on raw vision data would impair platooning

performances. A nonlinear observer, only supported by odo-

metric data, has then been designed to estimate on-line local

scale factors, and enable accurate platooning relying solely

on monocular vision. Full scale experiments, carried out with

three vehicles, have finally demonstrated the efficiency of the

proposed approach. Further experiments, involving vehicles

led by a manually guided vehicle have to be conducted

to emphasize the benefits of on-line corrections when the

reference trajectory is being created.
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