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Abstract— Thanks to recent advances in machine vision
technology, vibration control of flexible manipulators using
cameras have recently led to very promising results. However, in
methods such as on-line sinusoidal regression [1], synchroniza-
tion between the measured signal and the physical vibrational
phenomenon is critical to properly damp vibrations. This paper
comes back on the capture delay estimation as done in previous
works and highlights the limitations of such a method. Then
a new method using a synchronization sensor is proposed.
Based on a cross-correlation technique, a novel algorithm
for effective time delay estimation is derived. Experimental
validation demonstrates that this method yields improved delay
estimation which could be beneficial to the vibration damping.

I. INTRODUCTION

In an attempt to push the limits of human knowledge,
physicists sometimes give birth to devices or environments
that are harmful for human beings. In search for new energy
sources, the development of fusion energy is no exception.
Indeed, whether in JET or in the upcoming ITER, neutron
irradiation does not allow direct human access inside these
experimental reactors. Therefore the in-vessel plasma facing
components have to be inspected and maintained remotely.

But harsh conditions for humans are hard for the equip-
ment as well. Especially radiations. Many mechanical sen-
sors, particularly accelerometers, are very sensitive to radia-
tion [2]. Their signal level and the noise level are affected.
On the one hand, it is well known that the performance
of integrated circuits degrades when exposed to low doses
of ionizing radiation. On the other hand, exposing just the
mechanical part of MEMS sensors to protons and heavy
ions causes large changes in the outputs, attributed to charge
generated by the ions and trapped in dielectric layers below
the moveable mass in the case of accelerometers [3].

Short of costly developments in shielding, these con-
straints limit the use of dedicated electronics to deal with
advanced control issues. However, in such applications, rad-
hardened vision devices are inevitably used to provide real-
time visual feedback to the operators. Thus the main idea
behind our works [1, 4] is to consider these vision processes
as full sensors and not only as plain visual feedbacks.

Moreover, on top of being a radioactive environment, a
reactor like ITER is a huge and complex structure. Due to the
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size and the arduous accessibility of the reactor, the robotic
arms designed for its maintenance will have to be long-reach
arms. The main difficulties when positioning such equipment
result from the vibrations due to its high flexibility.

Consequently they need the integration of appropriate
compensation schemes to complete the tasks within the
requirements whatever stimulates the structural modes: a
critical trajectory imposed by the operator, an interaction
with the environment, or internal unmodelled dynamics
from carried processes. Input shaping techniques [5, 6] are
very efficient to avoid critical trajectories by adjusting the
actuators input in such a way that the natural modes are
not stimulated. Considering the two other origins, the arm
vibrational behaviour cannot be foreseen and it needs to be
damped as soon as it occurs.

In previous works, vibrations estimation and control using
cameras led to very promising results [1, 4, 7–9]. The main
advantage of this approach is to sidestep problems related
to the use of noisy or biased signals from accelerometers
or strain gauges. On the flipside, vision devices have the
disadvantage of a long processing time, leading not only to
delayed measurements but also to low update rates [10].

The most common method to deal with delays in a control
system is to decrease the servo gains to increase the damping,
thus making the system more robust in the presence of time
delays. However, some approaches are not based on time-
delay robust controllers but on the accurate estimation of the
delay itself, to reconstruct the quantity to control.

In [7], the controller design is split into two separate prob-
lems by using a composite control technique: a fast feedback
stabilizes the oscillatory dynamics while a slow feedback en-
sures that the actual image asymptotically reaches the desired
one. However, to implement the fast feedback, a Kalman
filter is considered and fed by strain gauges measurements
without considering high dynamics data coming from the
camera. Obviously the problem of damping out the vibrations
does not suffer from either delay or low rate of visual data.

Going further, [8] takes into account camera data in order
to improve the capability of the system to damp vibrations. A
Kalman filter is used to fuse the measurements coming from
the different sensors, to improve the signal to noise ratio.
Experimental validation shows that considering both strain
gauges and camera yields smaller residual tip vibrations.
However the authors do not explain how these desynchro-
nized signals are fused together in the Kalman observer.

In [4, 9], only visual data are used to estimate both
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Fig. 1. Principle of the on-line sine regression

tip vibration and imposed movement. To that purpose, a
modified two-timescale Kalman filter takes into account the
delay due to the image processing time. A delay compensator
extrapolates the measured output to the present time using
past and present estimates. If in [9] the delay is assumed
constant, [4] considers a variable delay estimated on the basis
of timestamps.

To reconstruct the vibration from visual data regardless its
origin, [1] considers on-line sinusoidal regression instead of
Kalman filtering. Here again, the current deflection is pre-
dicted from delayed visual data using timestamps exchange.

In methods such as in [1, 4], ensuring robustness of
the controller towards time delays is not sufficient. An
accurate on-line estimation of the delay between physical
phenomenon and measured signal is needed to properly reject
the vibration. Hitherto the image delay was estimated by
exchanging timestamps between real-time high sampling rate
controller and the non real-time supervisor whose sampling
rate is aligned to the camera frame rate. But, if this method
yields quite satisfying results, it does not take into account
the uncertainty on the camera exposure time. By doing so,
it is not unexpected to improve the vibration reconstruction.

Consequently the alternative method described in this
paper consists in using a secondary synchronous - but poten-
tially affected by radiations - sensor to estimate properly the
delay and then to enable the correct re-synchronization of
the vibration measurement with the physical phenomenon.

In other words this paper proposes, on the one hand, to
use clean but delayed visual data to properly estimate the
tip displacement and, on the other hand, to use noisy but
synchronous inertial data to readjust these visual data in time.

The primary contribution of this work is to propose an on-
line delay estimator. It is based on a cross-correlation tech-
nique that explicitly computes the time-delay between the
two above-cited signals. Since our cross-correlation function
can partially be computed recursively, the computational load

E: Estimation of the sine A: Acquisition of the image
P: Deflection prediction PP: Post-processing
C: Control D: Data transfer

Fig. 2. Time diagram of communication between the real-time manipulator
controller and the non real-time supervisor running the camera driver

of the proposed algorithm is limited.
The outline of this paper, which intentionally puts the

emphasis on implementation considerations, is organised as
follows. Section II comes back on the delay estimation as
it is performed in [1] and highlights its main limitation, in
the light of a short reminder on visual sensors basics. Then
section III describes the proposed method to on-line estimate
the capture delay. (It is based on the use of Farrow structures
well known to signal processing engineers.) At last, section
IV validates the ability of this alternative algorithm to
estimate a time-varying capture delay with good accuracy.

II. LIMITATION OF THE DELAY ESTIMATION BASED ON
TIMESTAMPS EXCHANGE

An accurate delay compensation is required between the
physical vibrational phenomenon and the measured signal.
Indeed signal synchronization is critical to proper vibration
suppression. In this section, a description of the delay
estimation as done in [1] is given. Then, in the light of a
short reminder on visual sensors basics, the main limitation
of this method is highlighted.

A. Delay estimation based on timestamps exchange

In [1] an all-in-one method has been proposed to solve
the problem of vibration suppression by using visual fea-
tures without any markers nor a-priori knowledge on the
environment. Thanks to the camera mounted in an eye-in-
hand configuration [11], the tip displacement induced by
the oscillations is estimated with respect to the static en-
vironment. To that purpose the Lucas-Kanade-Tomasi (KLT)
feature tracking algorithm [12] is used to extract and track
features from the camera images. Then a Tukey M-estimator
rejects outliers possibly resulting from the extraction noise
and gives a robust estimation of the environment overall
displacement seen by the camera. Then one can deduce the
speed of the camera in the static environment basis. Figure 1
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reminds the principle of the vibration estimator implemented
in [1] to obtain a robust prediction of the vibration to be
rejected. In this algorithm, an on-line sinusoidal regression
is performed over a sliding window to analytically identify
the measured vibration. Then, on the basis of the identified
function and the estimated capture delay, a prediction step
estimates the vibration to reject at the present time.

As most of visual servo control algorithms, this method is
implemented astride two systems:

• a controller running a real-time application as fast as
needed to perform a stable and quality control (constant
refresh rate τc in the order of 1 ms);

• a supervisor computer running a non-real-time OS and
managing the image acquisition (varying refresh rate τs
in the order of 14–16 ms)

The two computers can exchange data via UDP.
One simple method to estimate the capture delay relies on

timestamps. During operations, timestamps are exchanged
between the real-time high sampling rate controller and the
non real-time supervisor whose sampling rate is aligned to
the camera framerate. This principle is illustrated by Fig.2

Each controller cycle begins by the current timestamp nc
being sent to the supervisor. This one is stored in a buffer
and is used only if the application in the supervisor side asks
for it. Otherwise the buffer is overwritten at the next cycle.
Following this timestamp sending, a second buffer is read to
determine if new visual data is available. If it is, a regression
is performed. Otherwise the controller directly completes the
prediction and control steps.

On the other side, each supervisor cycle begins by reading
the timestamp buffer. Consequently one knows at what time
the image capture begins with an accuracy in the order of
1 ms. Let us call it initial timestamp ni. At the end of the
supervisor cycle, both visual data and this initial timestamp
feeds the data buffer. Therefore, when the controller reads
this buffer, both current timestamp nc and initial timestamp
ni are available. The capture delay is computed as the
difference of these two times:

∆ = (nc − ni) τc (1)

B. Basics on camera capture

To properly justify why the above method is not absolutely
satisfying, let’s first remind some basics on camera capture.

Let’s consider either a CDD or a CMOS sensor, that equip
most of digital cameras nowadays. An image is recorded in
this sensor in three phases: reset of the pixel rows to be
exposed, exposure of pixel rows and sensor readout. To do
so, several operational modes exist.

In triggered operation, the sensor is on stand-by and
exposes one image immediately after the occurrence of a
trigger event. Consequently exposure and image readout are
performed sequentially, and the achievable framerate directly
depends on the exposure time.

In freerun mode, the camera sensor internally exposes
one image after another at the set framerate. This time,
exposure and readout are performed simultaneously, enabling

Fig. 3. Schematic of the global & rolling shutter methods in freerun mode

the maximum camera framerate to be achieved.
However, the sensor cells must not be exposed during the

readout process. As a result camera sensors use mechanical
or electronic shutters. Depending on the sensor type, either
the rolling or the global shutter method is used.

On a global shutter sensor (left part of Fig.3), all pixel
rows are reset and then exposed simultaneously. At the end
of the exposure, all rows are synchronously moved to a
darkened area of the sensor. The pixels are then read out
row by row. Exposing all pixels at the same time has the
advantage that fast-moving objects can be captured without
geometric distortions.

With the rolling shutter method (see right part of Fig.3),
the pixel rows are reset and exposed one after the other. At
the end of the exposure, the lines are read out sequentially.
Unfortunately it results in a time delay between the exposure
of the first and the last rows, and captured images of
moving objects are partially distorted. Consequently the only
advantage of such sensors is their reduced price.

For the reader information, we chose for our application a
CMOS sensor with electronic global shutter and made it run
in freemode. This choice enabled framerates up to 60-70fps.

C. On the limitation of such a method

In freerun mode the exposure time is usually set to the
reciprocal value of the framerate. As mentioned above, let’s
consider that our camera achieves a framerate of 60-70fps.
The exposure time is close to 15 ms and there is no way of
knowing when, along these 15 ms, our image is taken. In
other words the capture instant is uncertain in the range of
±7 controller cycle and cannot be accurately computed on
the basis of the initial timestamp, according to ni × τc.

For most of visual servoing application, this is not a
problem as main time constants are far larger. In our case,
where the goal is to estimate an oscillation whose frequency
is in the order of 2-3Hz, a wrong estimation of this delay
in the order of 7 controller samples would induce an error
of 11.4% of the signal amplitude. In the worst situation, an
error in the delay estimation of 15 controller samples would
induce an error of 24.4% of the signal amplitude.

Still, what made the on-line vibration estimation proposed
in [1] efficient yet is the fact that the sinusoidal function
parameters were identified over a sliding window of size N
(3 ≤ N ≤ 20). In the light of what has just been written, it
is expected that the vibration damping could benefit from a
better estimation of the image capture delay. This could be
done using a synchronization sensor for example.
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III. DELAY ESTIMATION USING A SYNCHRONIZATION
SENSOR AND CROSS-CORRELATION

In this section, an alternative method for estimating the
capture delay is described. It consists in using a secondary
sensor, synchronous but prone to noise due to radiation,
to synchronize the delayed visual data with the physical
oscillation. The proposed approach to estimate the capture
delay is based on the concept of cross-correlation function.

For two periodic signals x(n) and y(n) having the same
period of N samples, the cross-correlation is defined as:

Cxy(m) =
1

N

N∑
n=1

x(n)y(n−m)

=
1

N

N∑
n=1

x(n+m)y(n)

(2)

This correlation function also has a period of N samples.
Let’s consider now a periodic signal z(n) and two derived

signals x(n) and y(n). x(n) consists of the signal z(n) plus
an additive white gaussian noise v(n), and y(n) corresponds
to the signal z(n) delayed by n0 samples:

x(n) = z(n) + v(n) (3)

y(n) = z(n− n0) (4)

Now let’s look at the cross-correlation between y(n) and
x(n) during M samples (M is much greater than N ):

Cyx(m) =
1

M

M∑
n=1

y(n)x(n−m) (5)

By replacing the expressions of x(n) and y(n) into (5), we
obtain:

Cyx(m) =
1

M

M∑
n=1

z(n− n0)[z(n−m) + v(n−m)] (6)

Developing this relation yields

Cyx(m) =
1

M

M∑
n=1

z(n− n0)z(n−m)

+
1

M

M∑
n=1

z(n− n0)v(n−m)

(7)

which can be re-written

Cyx(m) =
1

M

M∑
n=1

z(n− n0 +m)z(n)

+
1

M

M∑
n=1

z(n− n0 +m)v(n)

(8)

Finally, the cross-correlation can be expressed by:

Cyx(m) = Czz(m− n0) + Czv(m− n0) (9)

This result shows that the cross-correlation consists of
two terms: the auto-correlation Czz(m− n0) of the periodic
signal shifted in time, and the cross-correlation Czv(m−n0)

between the periodic signal z(n) and the corrupting noise
v(n), also shifted in time. On the one hand, due to the
random nature of noise and the independence of the signal
and noise, Czv(m−n0) is usually rather small. On the other
hand, Czz(m−n0) is larger. It is also periodic and has peaks
at m = n0, N+n0, 2N+n0.... Thus, by examining Cyx(m),
we can estimate very easily the delay n0.

Consequently, in order to estimate the capture delay, such a
cross-correlation computation can be employed over a fixed-
size sliding window on the signals coming from the noisy
inertial sensor and the delayed visual data. The size of the
window must be chosen large enough to include at least one
period of the cross-correlation.

Since no new information is received between two set
of visual data (i.e. for a duration of τs), the delay ∆ is
assumed to be constant during this period, and the same
value of ∆ can be used to predict the vibration until the
next data reception from the supervisor. However, one can
take advantage of this time to refine the estimation of ∆.

Nevertheless, a last difficulty must be overcome: the
capture delay changes for each set of visual data, but the
cross-correlation is computed over at least one period of the
sinusoidal signals. Consequently, one must take more into
consideration the P values received after the last supervisor
refreshment than the previous ones.

To do so, let’s re-write (5), explicitly considering the last
P measured values:

Cyx(m) =
1

M

M∑
n=1

y(n)x(n−m)

=
1

M

M−P∑
n=1

y(n)x(n−m)

+
1

M

M∑
n=M−P+1

y(n)x(n−m)

=
M − P
M

Coldyx (m) +
P

M
Cnewyx (m)

= Coldyx (m) +
P

M

(
Cnewyx (m)− Coldyx (m)

)

(10)

where Coldyx (m) represents the cross-correlation computed
from the values before the last reception of visual data,
and Cnewyx (m) represents the cross-correlation from the latest
values. From (10) the new estimate value of Cyx(m) can be
regarded as the old estimate Coldyx (m) plus a correction term.

All along (10), all measured values have the same weight.
In our case, as for any non-stationary system, recently mea-
sured values should be weighed more heavily. One method
to achieve this is to introduce a forgetting factor ρ:

Cyx(m) = Coldyx (m)

+
ρP

(1−ρ)(M−P )+ρP

(
Cnewyx (m)− Coldyx (m)

) (11)

ρ is such that 0 ≤ ρ ≤ 1. Note that, for ρ = 1
2 , the whole

data has the same weight and (11) is equivalent to (10).
At the end of the day, the capture delay ∆ is defined by

n0 × τc with n0 such as Cyx(n0) = max [Cyx(m)]0≤m≤N .

3768



IV. EXPERIMENTAL VALIDATION

The experimental validation is based on the data collected
during the previous works carried out on the experimental
mock-up which was accurately described in both [4] and
[13]. For the needs of this experimentation, it has been
equipped with a tip-mounted industrial camera IDS uEye UI-
122xLE (resolution: 640× 480) and a triple axis accelerom-
eter LIS3LV02DQ. The controller runs on the real-time OS
VxWorks at a sampling time of 1 ms. The overall vision-
based application is based on the ViSP software [14] and
runs at around 60-70Hz.

As in [1], we only aspire to damp the fundamental which
is situated around 2.6Hz in the case of this representative
experimental setup. Figure 4 illustrates the vibration recon-
struction in the case when the capture delay is estimated
as described in section III. Figure 4(a) and Figure 4(b)
respectively depict the accelerometer signal and the visual
data. Several comments can be made on these graphs. First,
the accelerometer signal is clearly too noisy to perform a
quality vibration rejection. All the more that this signal
has been obtained from a non-irradiated sensor. Beside,
the signal resulting from the visual tracking is far cleaner.
However one can notice that an important delay (in the
order of 1/10 s) exists between these two graphs. Moreover
the fact this delay is variable mainly explains why the
sinusoidal oscillation seen by the camera is so distorted.
Figure 4(c) illustrates the ability of the proposed algorithm
to properly predict a clean vibration measurement which is
synchronized with the physical phenomenon. It is sampled at
the controller sampling rate; crosses only indicate the visual
data refreshment times.

The delay time variability is highlighted on Fig.5 and
Fig.6 which show how the cross-correlation function between
the accelerometer signal and visual data enables an accurate
estimation of the capture delay. One can note that, on the
selected period of time, the capture delay is comprised
between 70 ms and 76 ms over the considered time interval.
During the whole test, its mean value was ∆̄ = 74 ms
while its standard deviation was σ∆ = 6.4 ms. Such a result
might partially be explained by the uncertainty on the capture
instant as explained in section II-C. However one must keep
in mind that the supervisor runs a non-real-time OS and this
variability of the capture delay could be more probably due
to unpredictable changes in the computed load.

At last Fig. 7 compares the two methods described in
sections II-A and III respectively. On the one hand, there
is no big difference regarding the general shape of the
predicted oscillations obtained with these two methods. In
both cases, the sine regression algorithm does its job and the
classic Pearson correlation coefficient (PMCC), respectively
of 0.9981 and 0.99424, shows that the reconstructed signals
are both very close to decreasing sinusoids. On the other
hand, Fig.7(a) also highlights the fact that the deflection esti-
mation is roughly synchronous with the accelerometer signal,
i.e. the physical phenomenon, when the capture delay is
computed thanks to the correlation method, which is clearly

(a)

(b)

(c)

Fig. 4. Available measurements when the capture delay is estimated thanks
to a synchronization sensor: (a) accelerometer signal (normalized), (b) visual
data (normalized), (c) predicted oscillation (normalized)

not the case when it is measured thanks to timestamps. Figure
7(b) depicts the errors between the predicted oscillations
and the accelerometer signal which has been cleaned up
offline with a zero-phase filter. On the selected period of
time, which is quite reprentative of the whole measurements,
the mean errors are in the order of 15.1% and 2.2% of
the sine amplitude, with the timestamp method and the
correlation method respectively. Moreover, using timestamps,
the maximum error on the deflection estimation can add up
to one third of the deflexion maximal amplitude, while it is
around 5.7% with the correlation method. In other words,
by yielding a better estmation of the camera capture delay,
the proposed method enables an average reduction of the
sine regression error in the order of 70% to 80%, which is
clearly beneficial to the vibration rejection scheme.
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Fig. 5. Cross-correlation between the two signals at t = 13s

Fig. 6. Estimated capture delay

V. CONCLUSION

This paper suggests to use both clean but delayed visual
data and noisy but synchronous inertial data to properly
reconstruct the end-effector displacement of a flexible ma-
nipulator. Consequently an on-line algorithm to estimate
time varying image processing delays has been described.
It is based on a cross-correlation technique that explicitly
computes the time-delay between the visual data and the
output of a synchronization sensor. Because of its recursive
formulation, the computational load of this algorithm is
quite limited. Synchronization of the vibration measurement
with the physical phenomenon using the proposed method
is demonstrated through an experimental example. This al-
gorithm provides a robust delay estimate in the presence of
noise and is an improvement over the approach reported in
[1] and [4].

One limitation of these works lies in the experiment not
being performed in the field, where the accelerometer would
be seriously affected by the environment. This could be by-
passed by using an already irradiated accelerometer. However
such an experimental setup would require an authorization
from the competent nuclear regulatory authority which would
be far beyond the framework of this study.

Beside the control of flexible manipulators, this method
could be extended to the monitoring of any periodic phe-
nomenon by a vision device.
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