
Non-Parametric Learning for Natural Plan Generation

Ian Baldwin and Paul Newman
Oxford University Mobile Robotics Group

Email: {ib,pnewman}@robots.ox.ac.uk

Abstract— We present a novel way to learn sampling dis-
tributions for sampling-based motion planners by making use
of expert data. We learn an estimate (in a non-parametric
setting) of sample densities around semantic regions of interest,
and incorporate these learned distributions into a sampling-
based planner to produce natural plans. Our motivation is
that certain aspects of the workspace have a local influence on
planning strategies, which is dependent both on where, and
what, they are. In the event that learning the density estimate
of the training data is impractical in the original feature space,
we utilize a non-linear dimensionality-reduction technique and
perform density estimation on a lower-dimensional embedding.
Samples are then lifted from this embedded density into
the original feature space, producing samples that still well
approximate the original distribution.

A goal of this work is to learn how various features
in the environment influence the behavior of experts - for
example, how pedestrian crossings, traffic signals and so on
affect drivers. We show that learning sampling distributions
from expert trajectory data around these semantic regions
leads to more natural paths that are measurably closer to
those of an expert. We demonstrate the feasibility of the
technique in various scenarios for a virtual car-like robotic
vehicle and a simple manipulator, contrasting the differences
in planned trajectories of the semantically-biased distributions
with conventional techniques.

I. INTRODUCTION

Sampling-based motion planning is an established tech-
nique in robotics that enables planning in complex
workspaces, or for systems that have high-dimensional
configuration spaces (C-spaces). Rapidly-exploring Random
Trees (RRT’s [1]) and Probabilistic Road Maps (PRM’s
[2]) are both instantiations of stochastic planners, both of
which utilise a graphical representation of the workspace
which captures the relationship between free and occluded
space.

RRTs have been effective for a number of different
motion planning tasks, including manipulation and grasping
[3], kinodynamic planning[4] and for other non-holonomic
systems [5]. However, uniform sampling of the configuration
space suffers from the so-called “narrow passage problem”
- more samples are generated in the free space than in
the more complex regions, which is typically where more
information is required.

Some of the earliest strategies for biasing sampling dis-
tributions include the Narrow Passage Sampling strategy [6]
and the Gaussian Strategy for PRM’s [7], amongst others.
Both methods utilise a pre-determined criteria to determine
whether samples generated in the C-space or workspace
are considered for planning. C-space sampling strategies
include Approximated Medial Axis sampling [8](which has
a workspace counterpart), in addition to strategies which
explore the C-space boundaries[9]. Recent techniques have

utilized features in the environment to better determine how
to bias the sampling distribution - Adaptive Workspace
Biasing [10] generates an optimized weighting of feature
vectors defined over a voxelised workspace.

In this work, we consider the robot operator to be an
expert, and seek to adapt the behavior of the planning
algorithm so that the resultant solution paths are similar to
those generated by the operator, whilst still maintaining the
exploratory nature of the probabilistic approach. We show
that:

1) it is possible to learn representations of sampling
distributions and use these representations within a
probabilistic planner to generate more natural plans

2) we are able to produce density estimates even when
the training data have a distinct manifold structure

3) the plans obtained using a semantically-biased ap-
proach are measurably closer to those of an expert

II. VEHICLE PLANNING

Using RRTs for vehicle-planning has been explored by
numerous authors [11][12]. RRTs are appealing as their
computational cost and complexity, for vehicles in SE(2), is
relatively low. However, the paths generated by the RRT are
only constrained by the collision-checker - if a given config-
uration is returned as collision-free, the algorithm assumes
that it is a valid node. This may be undesirable (consider
a vehicle being oriented perpendicular to oncoming traffic
in an intersection), and we therefore seek a better informed
sampling distribution around pertinent features.

We assume that the trajectories generated by a human
operator incorporate an underlying probability distribution
that is implicitly better to sample from regularly. As a moti-
vating example, consider Figure 1 which shows a common
scenario in the driving domain 1- a traffic circle.

Trajectory data D = {D1, . . . ,Dn} was recorded from
the manual operation of a virtual vehicle around the traffic
circle, depicted in Figure 1, where each trajectory Di
consists of positional, directional, and speed data:

Di = {x,y,Θ, |v|} (1)

where x = {x1, . . . , x|Di|}, and similarly for y,Θ and
|v|. The overhead view of a sub-sampled set of this data
is depicted in Figure 2(a), which also shows the 〈x,y,Θ〉
components of the data (b).

It is apparent from the data that the presence of the traffic
circle influences driving behavior around it, and we seek to
learn about this influence. Ideally we would like to generate
samples for our probabilistic planner by sampling from:

1Note: This example assumes a left-handed driving convention

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4311

(a) (b)

Fig. 1: A typically encountered scenario in the driving domain -
a traffic-circle (a). Also depicted is a set of trajectories around
the circle obtained from recording data of a virtual vehicle under
expert control (b).

(a) (b)

Fig. 2: The overhead view of a sample dataset, (a) drawn from the
set of training data, D, around the traffic-circle shown in Figure 1.
[0, 0] represents the traffic circle centre. (b) represents a 3D view
of the same data

p(x,y,Θ, |v| | D) (2)

However, as can be seen from Figure 2, the distribution
we seek to learn is complex. Estimating the density with a
conventional technique such as the Gaussian Mixture Model
(GMM) requires estimating the number of mixtures, k, and
performing model-averaging to compare the fits for different
values of k. Using a non-parametric density estimation
technique, the Infinite Gaussian Mixture Model (IGMM)
allows us to learn the value for k in a Bayesian setting.

By learning this Mixture Model, we can generate samples
during planning that are more representative of what we
have seen during training, leading to solutions more like
those of the “expert”. The advantage of employing this
method is that learning is done off-line - once we have a set
of n Gaussians G ∼ {G1, . . . ,Gn} with appropriate weights
π = {π1, . . . , πn};

∑n
i=1 πi = 1 which approximate our

distribution, generating N representative samples is a simple
procedure described in Algorithm 1.

We now turn to the inference of the weightings and
parameters of the Gaussians in the mixing model.

III. LEARNING THE SAMPLING DISTRIBUTION

There are numerous approaches to non-parametric den-
sity estimation, including Parzen windows, Dirichlet Diffu-
sion Trees[13] and the Gaussian Process Density Sampler
(GPDS)[14]. More conventional methods such as Parzen
windows require estimation of a fundamental parameter
of the distribution known as the bandwidth, whilst other

Algorithm 1 Sampling from a mixture model

1: procedure SAMPLEFROMMM(N)
2: πs = buildCumulativeDensity(π)
3: for i = 1 : N do
4: r ← Random(0, 1)
5: i← arg min|π|j=1

(∑j
i=1 πs(i) ≥ r

)
6: si ← sampleGaussian(Gi)
7: end for
8: end procedure

estimation methods (such as the GPDS) are intended for
estimation of very high-dimensional data. Non-parametric
density estimation methods based on the Dirichlet Process
allow for models of infinite complexity, whilst still being
Bayesian and avoiding over-fitting - one example of which
is the IGMM. We use the IGMM as implemented by
Rasmussen [15] in order to learn the joint density. The
IGMM allows for modeling highly-complex distributions,
whilst still offering certain analytical advantages by utilising
Gaussian distributions. A conventional Gaussian mixture
model is defined as:

p(D | µ1, . . . , µk, s1, . . . , sk, π1, . . . , πk) =
k∑
i=1

πiN (µi, s−1
i)

(3)
where k is the number of mixture components in the

model, µ1, . . . , µk represent the means of the Gaussian
distributions used in the mixture, s1, . . . , sk represent the
precisions, and π1, . . . , πk are the mixing coefficients. This
model requires k to be known a-priori (or estimated from
the data via Maximum Likelihood or Expectation Maximiza-
tion), and this can limit the flexibility of the approach. The
goal of the infinite mixture model is to place a prior allowing
infinitely many mixtures over the classes, and then infer
the correct number from the observed data. The assumption
under the IGMM is that the observed data D (the trajectory
data in Figure 2) are generated by the following process:

Di,j | cj ∼ N (µcj
, s−1
cj

) (4)

where Di,j indexes into the training data to give
〈x, y, θ, |v|〉 data at position j in trajectory i. cj is an
indicator variable denoting membership of tuple Di,j to
mixing component j. Taking a Bayesian approach to the
problem, the IMM places priors over the various elements
of the Mixture Model and infers the number of mixture com-
ponents (along with their associated means and precisions).
The joint conditional distribution we seek to learn is:

p(µ, s, π | D) ∝ p(D | µ, s, π)p(µ, s, π) (5)

where µ are the component means, s are the precisions
and π are the mixing components. The means are given a
multivariate Gaussian prior:

µi ∼ N (λ, r−1) (6)

The hyperparameters λ and r−1 are common to all
components, and are initialised with vague Normal and

4312

Gamma priors:

p(λ) ∼ N (µy, σ2
D) (7)

p(r) ∼ G(1, σ−2
D) (8)

where µD and σ2
D are the mean and variance of the tra-

jectory data we have observed. The conditional distribution
of the hyperparameters (taking Equation 3 as the likelihood
term) can be shown to be:

p(λ | µ, r) ∼ N

(
µDσ

−2
D + r

∑k
i=1 µi

σ−2
D + kr

,
1

σ−2
D + kr

)
(9)

p(r | µ, λ) ∼Wishart

b,[b−1(σ2
D +

k∑
i=1

(µi − λ)2

]−1


(10)

The precisions are given Wishart priors:

p(si | β,w) ∼Wishart(β,w−1) (11)

where again β and w are common hyperparameters, de-
scribed by the following Gamma and Wishart distributions:

p((β − d + 1)−1) ∼ G
(

1
d
, 1
)

(12)

p(w) ∼Wishart(1, σ2
D) (13)

Where d is the dimensionality of the data, which in
the case of the training data in Figure 2 is 4. Using
Equation 11 as the likelihood term, the posterior conditional
distribution for w, using the conjugate properties of the
Wishart, are again distributed Wishart. Unfortunately, the
posterior conditional for β is not a standard distribution,
however Rasmussen shows that as the distribution p(log(β) |
s1, . . . , sk, w) is log-concave, samples can be generated
for p(log(β)) using Adaptive Rejective Sampling and then
inverted to obtain samples for β. The conditional posterior
precisions are given by:

p(si | c,D, µi, β, w) ∼ Wishart(φ, ψ) where (14)
φ = β + nj

ψ =
1
φ

(wβ +
∑
i

(Di − µj)2)−1

For a conventional mixture model, the mixing coefficients
are assigned a Dirichlet prior:

p(π1, . . . , πk | α) ∼ Dirichlet
(α
k
, . . . ,

α

k

)
(15)

with a “concentration” parameter α
k . In the infinite case,

only a certain proportion of components will have training
data associated with them, and these are termed the “rep-
resented” components. In order to avoid working with an
infinite number of mixing weights, the joint conditional over
the latent indicator variable c is introduced, defined by:

p(c1, . . . , cN | π1, . . . , πk) =
k∏
i=1

πni
i (16)

where ni is the number of tuples associated with compo-
nent i. It is then possible to integrate out the mixing weights,
so that the indicators are only dependent on α:

p(c1, . . . , cn | α) =
Γ(α)

Γ(N + α)

k∏
i=1

Γ(ni + α
k)

Γ
(
α
k

) (17)

where N = |Di=1:|D|| is the total number of train-
ing tuples. This allows for the inference of finitely many
indicator variables as opposed to an infinite number of
mixing weights. Because exact inference of the posterior
distributions is infeasible, Gibbs sampling will be used to
generate samples. We have already generated the conditional
distributions for λ, r, s, w, β, and therefore it only remains
to obtain the conditional posterior of each indicator in turn,
keeping all other indicators fixed:

p(ci = j | c−i, α) =
n−i,j + α

k

n− 1 + α
(18)

where c−i indicates all indicator variables except i, and
n−i,j is the number of tuples that are associated with
component j apart from tuple i. As k →∞, the conditional
prior over cn will produce:

p(cn = j | c−n, α) =
α

n− 1 + α
(19)

for the represented components (those components with
data associated) and:

p(cn = j | c−n, α) =
n−n,j

n− 1 + α
(20)

for the unrepresented components where cn is the indi-
cator for mixture n. The entire Gibbs sampling strategy for
the IMM can be summarized by Algorithm 2[16].

We would like our samples from our Gibbs sampler to
be distributed i.i.d given the distribution, however because
of the Markovian property of the sampling chain, we have
to ensure that the chain has “mixed” well. A common
measure of estimating the mixing state of the chain is to
plot the autocovariance of various parameters of the model.
For the semantic distributions learned, mixing seemed to
occur within the first 1000 samples (spaced equally 10
samples apart) from the chain. We then use 100 samples
equally spaced throughout the posterior to approximate the
distribution - see Rasmussen for the full implementation and
[16] for an extended discussion on the IGMM.

Once we have obtained our 100 independent samples from
the posterior, we can form the probability distribution from
which we can generate samples for a probabilistic planner.
Running the IGMM on the circle dataset and extracting one
sample corresponding to a maximal modal estimate of krep,
we can render the 1-σ bounds of the mixture model and
compare it to the data. Figure 3 shows the mixture model
with krep = 23 components.

The IGMM is a robust way of estimating densities from

4313

Algorithm 2 Gibbs sampling for the IMM

1: procedure GIBBS(numSamples)
2: for sample in numSamples do
3: for n ∈ N do
4: Sample indicators cn according to 19 and 20.
5: end for
6: Update krep (# represented mixtures)
7: for k ∈ krep do
8: Update nj , the indicator count of mixture j
9: Update weights πj = nj

n+α
10: Update unrepresented weights π = α

n+α
11: end for
12: for k ∈ krep do
13: Sample µj ∼ p(µj | c,D, sj , λ, r)
14: Sample sj ∼ p(sj | c,D, µj , β, w)
15: end for
16: Update hyper-parameters:
17: Sample λ ∼ p(λ | µ, γ)
18: Sample γ ∼ p(γ | µ, λ)
19: Sample w ∼ p(w | s, β)
20: Sample β ∼ p(β | s, w)
21: end for
22: end procedure

(a)

Fig. 3: The circle dataset from Figure 2 as approximated by a
modal sample from the IGMM posterior of 23 guassians.

complex, high-dimensional data. However, in some cases,
the use of an underlying parametric distribution (the Gaus-
sian) causes the IGMM to fail at estimating densities that
have a strong manifold structure. For example, consider an
alternative dataset obtained from trajectories around (and
through) a 4-way intersection shown in Figure 4.

In this dataset, the data tends to populate manifolds of the
input-space, which is intuitive given the lack of variability in
behavior as cars transition through intersections. We need to
exploit the manifold structure so that the density estimation
of this data is still possible. As such, we seek some form
of dimensionality reduction in order to better analyze the
underlying probability distribution.

IV. LEARNING IN AN APPROPRIATE DIMENSION

Many techniques exist for dimensionality reduction, in-
cluding linear methods (Principal Component Analysis,

(a) (b)

Fig. 4: Observed data D around/through an intersection, as viewed
over x and y . This dataset exhibits a distinctly manifold structure,
and as such the IGMM has difficulty estimating the density.

multi-dimensional scaling (MDS)) and non-linear tech-
niques (Kernel-based PCA, ISOMAP). We make use of a
non-linear technique - Locally Linear Embedding (LLE)
[17] - to perform the dimensionality reduction, a technique
which guarantees convergence on the global optimum and
in addition enables us to perform reprojection of low-
dimensional samples in feature-space back into input-space.

A. Locally-Linear Embedding

LLE attempts to compute a low-dimensional embedding
from a high-dimensional input space such that nearby points
in the input space remain co-located in the low-dimensional
embedding. We seek to map our training data D, consisting
of n = |Di=1:|D|| input points from R4 to some embedded
dimenson Rd. The procedure for LLE is as follows:

1) For each data tuple ti = 〈x, y, θ, |v|〉 (of n such
tuples), k nearest neighbors are selected, measured by
some metric ρ (typically Euclidean distance)

2) The reconstruction weights (the weights required to
reconstruct the datapoint from its neighbors) are cal-
culated as follows:

E(w) = arg min
w

n∑
i=1

(ti −
k∑
j=1

wijtj)2 (21)

This cost function is minimized for each datapoint in
the input space, subject to the constraints that only the
k-nearest neighbors of ti are used. Saul et al. note that
the weights for each point are invariant to translations,
rescalings and rotations relative to its neighbors.

3) The final step of the algorithm is to generate the
low-dimensional embedding. This is accomplished by
choosing the d-dimensional coordinates of each output
point yi to minimize the embedding cost function:

y =
∑
i

(yi −
∑
j

wijyj)2 (22)

This is analogous to Equation 21, except that now the
weights are held fixed, and the optimization proceeds
over the outputs y.

The only free parameters of the algorithm are the desired
embedding dimension, and the number of nearest neighbors
in Step 1 of the algorithm. The embedding dimension of
the data can be estimated by maximum-likelihood, and the

4314

parameter k by a simple discrete search. The advantage
of LLE is that the process can be readily reversed. We
follow the method proposed by Wang et al.[18] whereby the
weights for some newly-synthesized datapoint z in feature-
space are recalculated according to:

E(w) = arg min
w

N∑
i=1

(z−
k∑
j=1

wijyj(z))2 (23)

where y(z) are the closest neighbors (in the original
dataset) for the new point z in the embedding. This is
essentially is the reverse of Step 1 of the LLE algorithm.
The new tuple in input space t̂ is then generated by:

t̂ =
k∑
j=1

wjtj(z) (24)

where t(z) are the high-dimensional input tuples corre-
sponding to the k-neighbors in the embedding. This simple
procedure allows us to generate new data in the feature space
that is representative of the original training data, however it
does make various assumptions about the manifold in input
space - we assume that our newly synthesized data are well
approximated by their neighbors in input-space and that the
manifold varies smoothly. In practice the newly generated
data are a good approximation to the training data.

We now apply this dimensionality reduction and reprojec-
tion technique to the intersection dataset in Figure 4. The
ML estimate for the intrinsic dimension of this data was ≈2,
and the associated embedding - with 7 nearest neighbors -
is depicted in R2 by Figure 5 (henceforth known as the
Bolshoi embedding).

(a) (b)

Fig. 5: The resultant embedding produced in R2 after running
LLE on the intersection dataset (Figure 4) with k = 7 nearest
neighbors(a). (b) depicts a newly synthesized feature-space dataset
(shown in red) overlaid with the original embedding (shown in
(a)) after running the IMM in R2. As can be seen, the generated
samples are a good representation of the embedding.

We then implement the IGMM in this low dimensional
embedding to produce the density estimate. Figure 5(b)
shows 1000 samples generated from the posterior IGMM
estimate of the density in R2 overlaid on the original
embedding, with Figure 6 comparing the original dataset
(a) and the newly synthesized dataset in input space (b).

V. USING THE LEARNED DISTRIBUTIONS

Once we can generate samples, either directly from
the high-dimensional space of the distribution or via the

(a) (b)

Fig. 6: A comparison of the original data (a), against the newly
synthesized input-space dataset after performing the lifting from
feature space into the input space (b)

embedding-reprojection approach, we need to incorporate
the sampling strategy into the RRT algorithm. Planning
in SE(2) requires generating random samples in (x, y, θ),
which we can accomplish by marginalizing our learned
distribution over the speed variable. Algorithm 3 illustrates
the procedure for the semantically-biased RRT:

Algorithm 3 Semantic-field based RRT Algorithm

1: Run Algorithm 2 offline to obtain GMM estimate.
2: procedure GENERATE SF RRT(xinit,K,∆t)
3: T .init(xinit)
4: for k ← 1,K do
5: xrand ← SampleFromMM(1); . Alg. 1
6: xnear ← NEAREST NEIGHBOR(xrand, T)
7: u← SELECT INPUT (xrand, xnear)
8: xnew ← NEW STATE(xnear, u,∆t)
9: T .add vertex(xnew);

10: T .add edge(xnear, xnew, u);
11: end for
12: return(T)
13: end procedure

We do not have direct access to the weights π of the
mixture model, so instead we sample according to ni

N which
is the proportion of samples for each mixture as a fraction
of all the training samples. If we have learned the distribu-
tion exactly in the high-dimensional space, then generating
samples according to Line 5 in Algorithm 3 proceeds as in
Algorithm 1. If instead we have been required to learn the
density in some lower-dimensional embedding, we sample
from the set of Gaussian mixtures in the lower space
according to Algorithm 1, and then use the training data
to lift them into the input-space at run-time via Equations
23 and 24.

VI. RESULTS

The concept was tested on a standard planning task,
generating trajectories for a planar vehicle in SE(2) in
addition to a manipulator task. We show that in both cases,
the paths produced by the semantically-biased planner are
more similar to the expert paths than the conventional RRT
solutions.

4315

A. Speed profiling
As we have learned the distribution over 〈x,y,Θ, |v|〉

data for the SE2 task, we can easily obtain the speed profiles
of the resultant solution path. This is done by evaluating the
posterior distribution conditioned on the nodes in the tree:

p(|v| | x,y,Θ) (25)

for each (x, y, θ) tuple in the RRT. Once we have run the
IGMM, we can readily extract the velocity profiles from
the conditional distributions of each node. Figure 7 shows
the conditional distribution for one of the nodes in the final
path.

Fig. 7: Conditional distribution p(|v| | x,y, θ) for one of the
nodes in the resultant path. We calculate the expectation of this
distribution to give the resultant speed.

Visible from Figure 7 are the contributions from various
mixtures in the mixture model. To obtain the desired speed
s for a node parameterized by xi, yi, θi in the solution path,
we calculate the expectation of this conditional distribution:

s = E[p(|v| | xi, yi, θi)] (26)

An illustration of the speed profiles for one of the test
runs is shown in Figure 9.

B. Path generation
1) Vehicle planning: Using the semantically-biased plan-

ning technique, a number of 〈start, goal〉 queries were
solved for the circle dataset. Figure 8 contrasts the paths
obtained by conventional RRT methods (green) against those
obtained with a semantically-biased tree (blue) for a single
〈start, goal〉 instance:

Fig. 8: A comparison of standard RRT solutions to the traffic circle
problem (green) and the semantic-field based solutions (blue) with
ground-truth data (shown in red) transitioning from a start state at
[50, 0] to a goal state at [−50, 0].

We can again condition on the final path to obtain the
speed profile for the resultant solution path. Figure 9 shows
the resultant speed profile for one of the semantically-biased
solutions shown in Figure 8.

Fig. 9: Speed profile for one of the semantic-field solutions to
the planning query as shown in Figure 8. This speed profile is
representative of how the model was trained: the entry into the
traffic circle was relatively high, with a low constant speed until
the exit.

2) Manipulator planning: The process was also validated
on a manipulator-planning problem for a standard platform,
the Puma 560. Using the Robotics Toolbox developed by
[19] an illustrative obstacle-avoidance problem was formu-
lated. Shown in Figure 10(a) below is the initial setup for
the task, with the goal being to move the end-effector from
the initial position to the goal position (marked in green)
over the top of the obstacle:

(a) (b)

Fig. 10: Problem setup for the manipulator task. The goal is to
move the end-effector from the start position (shown in (a)) to the
end-location (denoted by the green marker) over the top of the box
obstacle (shown in grey). An expert solution is shown in (b).

Figure 10(b) shows one of the training instances as
demonstrated by the “expert”. 10 such runs were obtained,
and a density estimate was obtained using the IGMM.
The performance of the semantically-biased planner was
compared against a standard RRT solution, as shown in
Figure 11, which depicts the semantically-biased solutions
(blue) against the standard RRT solutions (green). As can be
seen, the semantic solutions are more similar to the expert
paths than those of the standard RRT.

C. Analysis
In order to compare the solutions obtained with different

planning strategies, we require a metric that can meaning-
fully compare trajectories with differing scales and lengths.
Dynamic Time Warping (DTW)[20] is a signal-analysis
technique for comparing signals with differing offsets and

4316

Fig. 11: Solutions to the manipulator task of both the semantically-
biased planner (blue) and a standard RRT solution (green). As can
be seen, the semantic-planner produces paths more similar to those
of the expert - the semantic planner has learned to plan “over” the
box.

component shapes. Given two data series, x ∈ (x1, . . . , xN)
and y ∈ (y1, . . . , yN), the overall distortion between the two
signals D(x,y) is based on a sum of local distances between
elements d(xi, yi). Any alignment warping Φ aligns the two
sequences with a point-to-point mapping Φ = (Φx,Φy) with
length KΦ:

xΦx
(k)⇔ yΦy

(k) 1 ≤ k ≤ KΦ (27)

with the optimal alignment minimizing the distortion.
This is a minimization problem:

DΦ(x,y) = min
Φ

1
KΦ

KΦ∑
k=1

d(xΦt
(k),yΦr

(k)) (28)

that can be solved with a dynamic-programming ap-
proach, given end-point constraints and one for monotonic-
ity. We can therefore use DTW to calculate the minimum
distance between two signals, and use it as a criteria for
comparing planned paths with the ground-truth data (paths
observed from a human expert). Table I compares the
average distances (measured by DTW) of 10 RRT and
semantic-field solutions to a ground-truth trajectory for the
problem shown in Figure 8:

TABLE I: Path distances to ground-truth: SE2 problem

Planner Type Mean Distance to ground truth
Semantic Field 0.11

Conventional RRT 0.48

This confirms our intuition that we can use expert data to
teach an RRT to plan in a way akin to humans. Implicitly
in this paper we have produced a framework capable of
learning arbitrary sampling policies with no need for a-prior
parameterization.

VII. CONCLUSION

We have presented a novel approach to learn sampling
distributions for stochastic motion planners. By utilizing
a non-parametric approach to density estimation around
pertinent features, we can learn approximating distributions
and incorporate these distributions into an RRT to produce
natural paths. In the event that the input space is an

over-parameterization of the data, we use a dimensionality
reduction technique in order to perform density estimation
in the implicit dimension of the data. It is apparent that
incorporating semantic information leads to more natural
paths that are similar to those we have observed under expert
control, and we assume this technique will be effective in
other planning related scenarios.

VIII. ACKNOWLEDGEMENTS

This work was funded by the Office of Naval Research
(ONR) Grant N00140810337. The authors would like to
thank the reviewers for their comments.

REFERENCES

[1] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces,” in IEEE International Conference on Methods and
Models in Automation and Robotics, 2005. MorganKaufmann, 1997,
pp. 566–580.

[3] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann, “Planning
collision-free reaching motions for interactive object manipulation
and grasping,” Eurographics, vol. 22, pp. 313–322, 2003.

[4] J. Cortes and T. Simeon, “Sampling-based motion planning under
kinematic loop-closure constraints,” in In 6th International Workshop
on Algorithmic Foundations of Robotics. Springer-Verlag, 2004, pp.
59–74.

[5] J. Kim and J. Ostrowski, “Motion planning a aerial robot using
rapidly-exploring random trees with dynamic constraints,” in Robotics
and Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, vol. 2, Sept. 2003, pp. 2200–2205 vol.2.

[6] Z. Sun, I. Member, D. Hsu, T. Jiang, H. Kurniawati, J. H. Reif,
and I. Fellow, “Narrow passage sampling for probabilistic roadmap
planning,” 2005.

[7] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The gaussian
sampling strategy for probabilistic roadmap planners,” in Robotics
and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, vol. 2, 1999, pp. 1018–1023 vol.2. [Online].
Available: http://dx.doi.org/10.1109/ROBOT.1999.772447

[8] Y. Yang and O. Brock, “Adapting the sampling distribution in prm
planners based on an approximated medial axis,” 2004.

[9] N. M. Amato, O. B. Bayazit, and L. K. Dale, “Obprm: An obstacle-
based prm for 3d workspaces,” 1998.

[10] M. Zucker, J. Kuffner, and J. A. D. Bagnell, “Adaptive workspace
biasing for sampling based planners,” in Proc. IEEE Int’l Conf. on
Robotics and Automation, May 2008.

[11] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, and J. How, “Motion
planning for urban driving using rrt,” in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
Sept. 2008, pp. 1681–1686.

[12] K. Macek, M. Becked, and R. Siegwart, “Motion planning for car-
like vehicles in dynamic urban scenarios,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, Oct. 2006, pp.
4375–4380.

[13] R. Neal, “Density modeling and clustering using Dirichlet diffusion
trees,” Bayesian Statistics, vol. 7, pp. 619–629, 2003.

[14] R. Adams, I. Murray, and D. MacKay, “The Gaussian process den-
sity sampler,” Advances in Neural Information Processing Systems,
vol. 21, 2009.

[15] C. E. Rasmussen, “The infinite gaussian mixture model,” in In
Advances in Neural Information Processing Systems 12. MIT Press,
2000, pp. 554–560.

[16] T. Chen, J. Morris, and E. Martin, “Probability density estimation
via an infinite gaussian mixture model: application to statistical
process monitoring,” Journal Of The Royal Statistical Society Series
C, vol. 55, no. 5, pp. 699–715, 2006. [Online]. Available: http:
//econpapers.repec.org/RePEc:bla:jorssc:v:55:y:2006:i:5:p:699-715

[17] Roweis, T. Martinetz, K. Schulten, N. Netw, V. Kumar, A. Grama,
A. Gupta, and G. Karypis, “Nonlinear dimensionality reduction by
locally linear embedding,” 2000.

[18] J. Wang, M. Xu, H. Wang, and J. Zhang, “Classification of imbalanced
data by using the smote algorithm and locally linear embedding,” in
Signal Processing, 2006 8th International Conference on, vol. 3, 16-
20 2006, pp. –.

[19] P. Corke, “A robotics toolbox for MATLAB,” IEEE Robotics and
Automation Magazine, vol. 3, no. 1, pp. 24–32, Mar. 1996.

[20] H. Strik and L. Boves, “Averaging physiological signals with the use
of a DTW algorithm,” Proceedings SPEECH, vol. 88, no. 7, pp. 883–
890, 1988.

4317

