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Abstract— The paper addresses the problem of evaluating
AGVs with different degrees of autonomy by defining bench-
mark tools to grade the performance of each approach. Based
on the proposed benchmark, different experiments have been
performed from manual driving to autonomous navigation,
at different velocities and a scenario containing wide and
narrow corridors, small and large isles, rooms, slalom-like parts
requiring zig-zag maneuvering and static objects. However,
this benchmark is also applicable to dynamic environments,
including moving objects and other vehicles. In particular,
experiments have been used for evaluating the performance
of AGVs, in terms of robustness, efficiency, safety and com-
fortability. The underlying objective is to evaluate the potential
advantages of manual-assisted driving as well as autonomous
navigation against standard manual driving. To obtain valid
and significant results, more than 180 experiments have been
carried out on each approach.

I. INTRODUCTION

Commercial AGVs are typical based on magnets, wires
or laser guidance, which require a specific infrastructure.
Another type of guidance for AGVs is the inertial navigation,
using accelerometers and gyroscopes aided with esterocep-
tive transponders embedded in the floor. As advantages,
fully autonomous solution with capacity to react, obstacles
avoidance and path computation are included in the vehicle
by using the most advanced techniques. As drawbacks,
high implantation cost and general lack of flexibility make
unfordable comercial AGVs, especially for SME (Small-
Medium Enterprises).

On the other hand, traditional manually maneuvering with
forklifts has the advantage in providing human intelligence to
adapt to unstructured and cluttered environments. However,
human behavior is occasionally risky and dangerous because
they may underestimate a particular situation.

Auto-Guided Vehicles (AGVs) involved in industrial appli-
cations constitute interesting Intelligent Transportation Sys-
tems (ITS) for researchers and engineers.

It seems appropriate to investigate on new ITS that com-
bine both, human intelligence in traditional maneuvering and
computational capabilities of AGVs, to improve security and
reduce the risk of having accidents. This kind of ITS have
become increasingly common in automobile, see section I-A
for details, but rarely used in industrial environments.

This work was supported by PISALA Project funded by Vicerectorado de
Investigacion Desarrollo e Innovacion, Universidad Politecnica de Valencia
and PROMETEO Program funded by Conselleria Educacio, Generalitat
Valenciana,

Hector Yuste, Leopoldo Armesto and Josep Tornero are with Institute
of Design and Manufacture in Automation (IDF-Automation), Universidad
Politecnica de Valencia, Camino de Vera s/n, Spain. Corresponding author:
Leopoldo Armesto {leoaran@isa.upv.es}

Many industrial companies are very concerned in reducing
accidents when using transpontation vehicles. Accidents have
negative consequences such as: delays in scheduled tasks
affecting to the manufacturing process, damages on the ve-
hicles which require expensive reparations and maintenance,
worker casualties and economical looses. Accidents can be
caused by human driving errors, but also by unexpected
obstacles, machine failures or incorrect signaling of restricted
areas, among other causes.

It is possible to combine traditional driving with some kind
of ITS technologies in order to provide a new approach for
manual-assisted driving.

This paper proposes a benchmarking of different driving
modes from traditional manual driving to AGVs, including
a hybrid solution based on ITS technologies for assisted-
driving, where human operator and intelligent system play
cooperative roles. The benchmarking provides quantitative
data about robustness, efficiency, safety and comfortability
for each approach and allow us to compare one solution
against the other.

A. Intelligent Transportation System Technologies

The Antilock Braking System (ABS) first brought to
market by Bosch in 1978 prevents wheel lock during full
braking. This ensures that the vehicle can still be steered
and moved out of the way of unexpected obstacles. Adaptive
Cruise Control (ACC) technology improves the function of
standard cruise control by automatically adjusting the vehicle
speed and distance to the vehicle ahead. Adaptive Headlights
(AH) can direct the beams by moving each headlamp left,
right, up or down in reaction to steering wheel angle, speed
and movement of the vehicle. The Lane Change Assistant
[1] or the Blind Spot Detection systems [2] continuously
monitor the rear blind spots on both sides of the vehicle.
Driver Drowsiness Monitoring and Warning systems [3] can
detect the driver’s drowsiness in several ways: by tracking
the driver’s facial features, movements of hands and feet,
by analyzing eye-closures and head pose or even changes
in heartbeat. The Electronic Brake assist System (EBS) is
a very efficient aid in emergency braking situations when
the driver wants the vehicle to stop as quickly as possible
which can be found in Mercedes-Benz (S-Class, SL-Class).
The Electronic Stability Control [4] detects the deviation
between the vehicle’s trajectory and the intended direction.
Without any action on the part of the driver, small amounts
of braking are applied separately to each wheel and this
can bring the vehicle back to the intended course. Lane
Departure Warning Systems (LDWS) are electronic systems,
found initially in Nissan, Toyota and Citroen that monitor
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the position of the vehicle within its lane and warn the
driver if the vehicle deviates or is about to deviate from the
lane. Obstacle Collision Warning Systems help the driver to
prevent or mitigate accidents by detecting vehicles or other
obstacles on the road ahead and by warning the driver if a
collision becomes imminent. Current solutions with limited
performance are an additional function of Adaptive Cruise
Control, using information obtained from radar sensors to
give visual and acoustic warnings [5] and [6]. Intelligent
Speed Adaptation (ISA), also known as Intelligent Speed
Assistance, is any system that constantly monitors vehicle
speed and the local speed limit on a road and implements
an action when the vehicle is detected to be exceeding the
speed limit, see [7] for a complete review. Other assistance
systems are gear shift indicator, night vision, adaptive light
control, automatic parking, traffic sign recognition and hill
descent control, among others.

B. Motion planning and obstacle avoidance techniques

Literature on motion planning and reactive obstacle avoid-
ance of mobile robots considers the problem of how to
reach a goal pose without colliding with the environment.
Potential Field (PF) methods [8] and [9] addressed the first
sensor-based motions, where a large set of different potential
functions have been proposed [10], [11], [12] among others.
The Vector Field Histogram (VFH) [13], [14], [15] considers
sensor uncertainty to avoid obstacles using occupancy grids.
Generalized Perception Vector (GPV) [16] is comparable
to the VFH but linked to sensors instead of occupancy
grids. In [17], an extension of the GPV was developed by
considering an orientable eccentric ellipsoid based on the
movement direction for non-holonomic mobile robots. The
Elastic Bands (EB) [18] was the first technique combining
planning and reaction schema in a unified framework. The
Dynamic Window Approach (DWA) was the first technique
to address kinematics and dynamics to carry out motion at
high speeds [19] and similarly [20]. More recently, the Near-
ness Diagram (ND) navigation [21] was the first technique
to address motion in troublesome scenarios, where several
variations of the algorithm can be found [22], [23], [24],
[25].

II. AGV DESCRIPTION

Within the context of several research projects (Auto
Trans, GATA and LITRONA), we have developed different
approaches for automating industrial vehicles such as tele-
operation of industrial vehicles [26] and vision-based line
tracking [27], [28]. More recently, we have proposed an
unified and general approach for automating vehicles in a
range from manual driving [29] and manual-assisted driving
in addition to teleoperation, vision-based line tracking [30],
etc.

A. Vehicle Automation

The Nichiyu FBT15 industrial forklift has been automated
to perform as an AGV. The forklift has three wheels in
tricycle configuration (an orientable rear wheel and two fixed
wheels at the front). It also has a power-assisted steering

Fig. 1. Autonomous navigation forklift on a cluttered environment.

wheel that minimizes the torque through a mechanical link
and a DC motor attached to the rear wheel. In addition, two
DC motors are also attached to the front wheels, coordinated
through an electronic differential.

The original vehicle has been modified by including a
PLC for low-level vehicle control and an industrial PC at
high level, implementing the intelligence of the AGV. The
PLC is connected to the most critical signals regarding
with emergency stops and main sensor/actuator interface
(analog and digital inputs and outputs), while range sensors
are connected to the PC. Two lasers rangers from SICK
provide 180o range scans with 0.5o angular precision at
a maximum rate of 75Hz located at the rear and front
of the vehicle. They also provide warning and protection
zones that activate a digital signal directly connected to the
PLC. Two incremental encoders that measure speed of fixed
wheels are also connected to PLC counter boards, while
an absolute encoder measures the angle of the rear steering
wheel. Analog inputs are used for sensing the throttle pedal
and the torque applied to the steering wheel; and analog
outputs for controlling the vehicle drive velocity. That analog
output replaces de original throttle pedal signal corrected by
the control algorithm.

B. Autonomous Navigation

In orther to transform a comercial AGV into an ITS, we
have defined a software architecture as shown in Figure
2(c) are using Adaptive Monte-Carlo Localization (AMCL)
to estimate the vehicle pose [31] and wavefront planner
[32] to globally provide way points. In addition, we can
select between ND [23] and VFH+ [15] as real-time obstacle
avoidance technique. In simulation implemented algorithms
and drivers including SICK laser driver have been taken from
Player [33].

Fig. 1 shows an example of the autonomous navigation
application using ND, where the vehicle moved on a cluttered
unstructured environment ([34]).

C. Manual-Assisted Driving

In manual-assisted driving, the driver normally operates
the vehicle, receiving feedback from different kind of visual,
audio and haptic devices. The main idea is to investigate
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on feasible ready-to-market solutions that improve driving
security aspects with industrial forklifts, aimed to reduce
the risk of collisions. Our particular approach focuses on
haptic feedback devices, so the driver can feel the danger
of selecting an inappropriate steering wheel direction by
applying a torque on the steering wheel opposite to that di-
rection. In addition to this, the vehicle speed is automatically
regulated as in Adaptive Cruise Control (ACC) systems. Our
implementation is based on the GPV technique [17], where
the main ideas can be summarized as follows: Only obstacles
inside an influence ellipsoid area surrounding the vehicle are
taken into account to compute repulsive forces. These forces
are used to cancel the throttle pedal commands introduced
by the driver and even to generate a negative acceleration if
required. These forces are also used to generate a propor-
tional reactive torque on the rear motor that is feedback on
the steering wheel so the driver feels higher stiffness while
trying to move towards an inappropriate direction. See [35]
for more details on the algorithm implementation and [36]
for a video showing the manual-assisted driving preventing
from collisions.

III. BENCHMARKING METHODOLOGY

The purpose of this section is to provide general tools for
benchmarking the performance of vehicle driving modes in
an industrial environment, although the methodology can be
used to other vehicles and environments. Our goal is to grade
the benefits of using manual-assisted driving performed by
a skillful driver.

The benchmark methodology includes the following steps:
• Define different types of scenarios where vehicles may

move. Possible scenarios include wide and narrow corri-
dors, small and large isles, rooms, slalom-like parts requir-
ing zig-zag maneuvering, moving objects (other vehicles
or people), separately or combining several of them.
• For each scenario a set G of pairs start or goal positions

are defined (in our case, we have defined 9 different
positions, see Figure ?? for details).
• Define a set V of maximum speeds that the ve-

hicle can move when the driver fully accelerates
(in our case, we have defined 5 different velocities
1m/s, 2m/s, 3m/s, 4m/s, 5m/s). Most of well know
path planning algorithm take this kinematic constrains into
account. For manual and manual-assisted driving, the set
of maximum velocities is sensed by the driver as a change
in the sensitivity of the throttle pedal.
• Generate random tests with combinations of start, goal

positions and maximum speeds. Perform at least N =
n!m

2!(n−2)! test for each algorithm to evaluate, where n =

dim(G) and m = dim(V). In our case, we have performed
180 experiments per approach for each driving mode.
During the experiment, all data is logged for computing

some metrics. True Positive (TP) experiments imply that the
vehicle reaches the goal without collisions. False Positive
(FP) experiments imply that the vehicle reaches the goal
with collisions or reaches an incorrect goal (localization
failures in autonomous driving modes may cause the vehicle

to belief that it has reached the goal). Finally, Negative (N)
experiments are those where the vehicle gets blocked. That
is: doesn’t know how to escape from a collision, or doesn’t
reach the goal within a maximum limit-time T (T = 500s.
in our case).

There are several crucial aspects that must be also eval-
uated: 1) Robustness. The higher the percentage of True
Positives, the higher the robustness of the approach. In
order to increase robustness wider and clearer areas must
be followed. 2) Efficiency or operability of the vehicle as
a measure of mean time, velocity or mean path length 3)
Safety is terms of average minimum distance to obstacles
and risk of collisions, minimum distance to any obstacle for
the whole experiment 4) Comfortability in terms of the type
of described trajectory (bending energy and smoothness) and
variations of the acceleration (jerk). All this concepts will be
formally defined thereinafter.

Figure 2 show the three different architectures compared
in this paper: a) descrived traditional manual driving; b)
manual-assisted diving and c) auto guided driving. Using
the setup described in Figure 2(a) command signals from
the driver affect directly to the vehicle. In Figure ?? several
ITS modules modify the user actions so some improvements
are introduced to the driving, such as collision avoidance
and speed surveillance. In adition, the driver is assisted by
vision feedback generated from a map which is already
constructed during the experiment. Finally, Figure 2(c) shows
the architecture of AGV where an AMCL module is used
for estimating the vehicle pose and wavefront planner for
globally provide way points. As previously commened it
is possible to select between ND and VFH+ as real-time
obstacle avoidance technique.

The great amount of experiments required to compute
the different metrics has forced us to use Player [33] as
simulation platform. By doing that the experiments can
be carried out staticly and environments can be generated
flexibily defined at a low cost. That is why Player is present
in the three set ups. In simulation implemented algorithms
and drivers including SICK laser driver have been taken from
Player. Manual and manual-assisted driving mode read real
data from the PLC and simulated data from Player/Stage
v2.0.1, where a factory layout is depicted for a more realistic
simulation, as shown in Figure 2(c) (red crosses are start-goal
positions). From the Player client point of view, no matter
whether the forklift is real or simulated.

Table I contains experimental results in the factory en-
vironment previously descrived. It can be appreciated that
in manual driving TP (robustness) decreases with increasing
velocities, while manual-assisted driving has shown very
good performance, at high velocities. In AGV driving, the
ND approach shows very high robustness, while VFH+
gives poor results due to the large percentage of Negative
experiments That indicates that the VFH+ requires too much
time to reach the goal (especially at low speeds) or is not
able to reach it (maybe because is blocked after hitting the
environment).

Following the ideas of [37], some metrics have been
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(a) Setup for static experiments in manual mode. (b) Setup for static experiments in manual-assisted mode.

(c) Setup for static experiments in autonomous (AGV) mode.

Fig. 2. Benchmark setup.

TABLE I
ROBUSTNESS OF DRIVING MODES AT DIFFERENT SPEEDS.

Speed Case Mode

[m/s] [%] Manual Assisted AGV
VFH+ ND

1
TP 97.87 100.00 76.47 89.29
FP 2.13 0.00 0.00 1.79
N 0.00 0.00 23.53 8.93

2
TP 94.12 100.00 86.96 100.00
FP 5.88 0.00 0.00 0.00
N 0.00 0.00 13.04 0.00

3
TP 96.55 100.00 72.22 100.00
FP 3.45 0.00 2.78 0.00
N 0.00 0.00 25.00 0.00

4
TP 82.05 100.00 73.53 100.00
FP 17.95 0.00 0.00 0.00
N 0.00 0.00 26.47 0.00

5
TP 54.84 94.12 77.36 80.39
FP 45.16 5.88 15.09 19.61
N 0.00 0.00 7.55 0.00

computed in addition to others such as risk and mean square
jerk. For the computation of the metrics, only True Positive
experiments have been considered, but the risk which takes
into account the number of hits on each experiment. The
mean time (MT) is MT = 1

N

∑N
i=1 Ti, where N is the

number of TP experiments for a given speed and approach
and Ti the total amount of time to reach the goal. The
mean path length (MPL) is MPL = 1

N

∑N
i=1 PLi, where

PLi =
∫ g
s

Φi(l)dl, being Φi(l) the trajectory of the i-th
experiment, s the start position and g the goal position.
Consequently the mean speed (MS) is MS = 1

N

∑N
i=1

PLi

Ti
.

The mean average minimum distance (MAMD), is defined
as SM2 in [37] MAMD = 1

N

∑N
i=0

∑Ni

j=1 min(di), where
Ni are the number of scans taken at the i-th experiment and
min(di) is the distance of the closest obstacle to the vehicle
taking into account its shape. The MAMD can be taken
as a measurement of how conservative the trajectories are

when navigating in the middle of obstacles. In addition, the
mean minimum distance (MMD), defined as SM3 in [37] is
MMD = 1

N

∑N
i min({d1,d2, ...dN}), considers the mean

of minimum distances of the overall experiment. The risk
as defined in [38] is the ratio of number of accidents and
the exposure. The exposure (the units or magnitude of the
activity in which the accidents occurred) can be defined in
multiple ways such as vehicle kilometers, trips, road user
hours, etc... For our particular case we have considered
MAMD value as exposure, therefore risk (R) is formally de-
fined as R =

∑N
i=0(#accidentsi)

MAMD . The bending energy can be
understood as the energy needed to bend a rod to the desired
shape. The mean total bending energy (MTBE) is defined as
MTBE = 1

N

∑N
i=0

∫ g
s
κ2i (l)dl, where κi(l) is the curvature

of the trajectory. The smoothness is defined by the square of
the change in the curvature, therefore the mean normalized
abruptness (MNA) is MNA = 1

N

∑N
i=0

∫ g
s
(κi(l)/dl)

2dl

PLi
. It

is interesting to remark that the term smoothness is indeed
related with the change of curvature, but we prefer to
use abruptness as the inverse of smoothness. Finally, we
consider the mean normalized total jerk (MNTJ) which
takes into account changes in acceleration or deceleration.
MNTJ is defined as MNTJ = 1

N

∑N
i=0 ji, where ji =∑Ni

j=1

√
x′′′2j + y′′′2j , being x′′′j and y′′′j the instantaneous

Cartesian accelerations of the trajectory.

In table II, we show numerical values for the metrics
previously defined. The most relevant metrics have been
depicted on figures for clearer comparison. In this sense,
Figure 3(a) compares efficiency related metrics: MT, MS;
Figure 3(b) compares safety related metrics: MMD, R; while
comfort related metrics are depicted in Figure 3(c), MNA,
MNTJ.

Figure 3(a) (MS) shows that in manual driving the vehicle
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TABLE II
METRICS OF DRIVING MODES AT DIFFERENT SPEEDS.

Speed Metrics Mode

[m/s] Manual Assisted AGV
[%] VFH+ ND

1

MT [s] 255.72 274.58 335.04 304.64
MPL [m] 146.99 154.96 135.09 147.68

MS [m/s] 0.57 0.56 0.41 0.48
MAMD [m] 3.38 3.19 3.12 3.38
MMD [m] 0.72 0.71 1.16 1.07

Risk 0.30 0.00 0.00 0.30

MTBE [m−1] 13.22 13.49 34.49 33.64

MNS [m−4] 28.51 31.63 111.48 86.98
MNTJ [1/s3] 12.70 12.86 9.56 10.96

2

MT [s] 138.96 134.17 341.88 182.96
MPL [m] 151.05 142.34 157.58 150.48

MS [m/s] 1.08 1.05 0.48 0.83
MAMD [m] 3.40 3.37 3.02 3.40
MMD [m] 0.76 0.64 0.99 0.97

Risk 0.59 0.00 0.00 0.00

MTBE [m−1] 13.54 14.67 37.08 23.20

MNS [m−4] 9.08 12.12 66.11 22.46
MNTJ [1/s3] 23.77 23.87 12.36 23.08

3

MT [s] 97.69 106.60 296.69 162.75
MPL [m] 142.12 160.58 143.67 176.47

MS [m/s] 1.45 1.49 0.50 1.08
MAMD [m] 3.64 3.43 3.24 3.38
MMD [m] 0.64 0.81 1.08 0.69

Risk 0.55 0.00 0.32 0.00

MTBE [m−1] 17.68 17.31 31.70 28.02

MNS [m−4] 7.13 7.03 62.85 11.96
MNTJ [1/s3] 31.90 33.48 13.74 30.31

4

MT [s] 88.77 91.06 361.20 134.84
MPL [m] 154.91 163.60 166.67 156.56

MS [m/s] 1.76 1.78 0.47 1.16
MAMD [m] 3.33 3.51 3.16 3.66
MMD [m] 0.66 0.73 1.03 0.71

Risk 3.30 0.00 0.00 0.00

MTBE [m−1] 18.55 19.30 36.42 25.38

MNS [m−4] 4.65 5.05 65.07 9.88
MNTJ [1/s3] 37.74 39.36 12.55 37.41

5

MT [s] 80.73 84.16 332.98 125.02
MPL [m] 149.44 156.67 161.77 153.70

MS [m/s] 1.85 1.84 0.50 1.26
MAMD [m] 3.35 3.41 3.16 3.51
MMD [m] 0.58 0.70 1.03 0.60

Risk 7.46 0.88 2.54 2.95

MTBE [m−1] 22.07 20.00 36.67 24.79

MNS [m−4] 5.73 5.51 55.24 6.96
MNTJ [1/s3] 39.48 38.19 14.32 42.01

(with or without assistance) is still much more faster than
with autonomous navigation algorithms. In order to avoid
obstacles, autonomous vehicles move at lower speeds, which
implies more mean time (Figure 3(a), MT). A vehicle
running the ND can move faster than VFH+ with very
high robustness. The path length is basically the same for
all algorithms and speeds which indicates that wavefront
planner uses the optimal path (the same path that has been
taken in manual driving). Therefore, the efficiency of manual
driven approaches is clearly higher. With respect to safety
metrics, the MAMD is quite similar in all cases and no
significant conclusions can be drawn. However, by taking
into account the MMD (Figure 3(b)) we can see that due to
the over confidentiality in manual driven approaches provide
lower values, which causes more accidents in manual driven
(without assistance) approach and therefore the driver takes
a higher risk (Figure 3(b), R). Autonomous driving with
VFH+ is very cautelous (thus inefficient) navigating not

(a) Efficiency metrics.

(b) Safety metrics.

(c) Comfort metrics.

Fig. 3. Metrics of manual driving (solid blue line), manual-assisted driving
(dashed red line), VFH+ autonomous driving (dotted green line) and ND
autonomous driving (dashed-dotted black line)

so close to obstacles (in those cases that there were the
experiment is a TP). The manual-assisted driving and ND
are not so cautelous, but the overall risk is much more lower
because they are very robust (containing very few number
of accidents or hits). Therefore they can move closer to
obstacles but without collisions, so the risk is low. Finally,
the comfort metrics indicate that VFH+ autonomous driving
approach performs frequent changes on the steering wheel so
that the path described by the vehicle is more abrupt (Figure
3(c), MNA). The abruptness of the ND is similar to manual
driving modes. On the opposite way, the jerk (Figure 3(c),
MNTJ) that the vehicle suffers is higher for ND and manual
driving modes than for the VFH+. This is because the VFH+
operates at very low speeds.

IV. CONCLUSIONS

The paper addresses the problem of providing a metho-
dology for benchmarking AGVs moving at industrial envi-
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ronments. For that purpose, the methodology establishes the
conditions of how the experiments have to be performed. In
order to grade the overall performance, we first define metrics
and procedures for quantifying the robustness, efficiency,
safety and comfortability, which are fundamental issues in
Intelligent Transportation Systems (ITS).

This paper validates the proposed methodology based on
four different driving modes (manual without assistance,
manual with assistance, ND-base autonomous driving and
VFH+ autonomous driving) with a single static simulated
scenario interacting with the real forklift in manually driven
modes. More than 180 experiments where performed on each
driving mode, including 5 different maximum speeds and 9
equally spaced start-goal positions.

As main conclusions, we can clearly see the higher per-
formance of manual-assisted driving with respect to manual
driving. Manual-assisted driving is more robust and more
safer (takes lower risk) with the same efficiency and com-
fortability. Another conclusion obtained through the bench-
marking methology is that ND performs much more better
than VFH+, again is more robust and safer with higher
efficiency and comfortability. The main difference between
manual driving modes and ND is that manual modes have
higher efficiency with similar robustness and comfortability
ratios.

In future work, we will extend our results to experimen-
tations, including dynamic scenarios. It will be interesting
to highlight the potential benefits of manual-assisted driving
against manual driving and also with respect to autonomous
AGVs. It is our purpose to grade also the benefits of com-
bining haptic, visual and audio devices in manual-assisted
driving.
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