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Abstract— We present an extension of a neuro-dynamic ob-
ject recognition system that combines bottom-up recognition of
matching patterns and top-down estimation of pose parameters
in a recurrent loop. It is extended by an active foveal vision
system. Adding the active vision component is easily integrated
within the architecture and improves the recognition rate on
previous experiments on the COIL-100 database and for scenes
where segmentation of objects is not trivial. Furthermore the ac-
tive component allows to substantially increase the spatial area
where objects can be tracked. When objects move faster than
visual servoing can track, catch-up saccades are autonomously
generated.

I. INTRODUCTION

Object recognition with autonomous robots differs sub-

stantially from the general object recognition problem in

computer vision. The latter is still largely unsolved, espe-

cially when objects are embedded in natural environments

[1]. The differences are rooted in the initial goal of recogni-

tion. Object recognition with an autonomous robot aims at

enabling a robot to act autonomously, while in the general

case of recognition in, for example, large image databases

the aim is often to categorize in order to match a search

pattern. In concrete robotic scenarios it is possible to define

constraints on the problem of recognition that allow to

simplify the problem compared to general object recognition

and still fulfill the aim of enabling autonomous action. Here

we consider a human-machine interaction scenario with our

service robot CoRA [2]. CoRA is a stationary robot equipped

with a seven degree of freedom arm and a pan-tilt stereo

camera head. (see Figure 1). Objects relevant for interaction

are those objects placed within the shared workspace and

those which the robot can handle with its own gripper. The

table itself being a homogeneous background, clutter is only

introduced by other objects on the table. Occlusions may be

induced by other objects, or the robot’s own arm movement.

Variations in scale between different objects are limited in so

far as all objects have to fit into the gripper and have to be big

enough to be graspable at all. Scale effects due to different

distances to the imaging device are also limited because

of the limited size of the interaction workspace. Objects

have a typical standing axis, they can be rotated around

this axis but full three-dimensional depth rotation will not
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Fig. 1. The Cooperative Robotic Assistant, CoRA, with the shared
workspace and items relevant for object recognition in front of it.

occur. We have developed a neuro-dynamic architecture for

one-shot learning of objects for such an interaction scenario.

The system combines object recognition and object pose

estimation in a recurrent loop of top-down prediction and

bottom-up recognition [3].

A major difference to feed-forward models [4], [5], [6]

but also SIFT based approaches [7] to object recognition is

the higher degree of autonomy of our system. For example

recognition in feed-forward models requires a classifier at

the output of the feed-forward feature processing. How such

classifiers behave when being linked to the real-time output

for example in the case of being connected to a continuous

stream of video data from cameras is usually not discussed.

Here we make use of the higher degree of autonomy

of our system and extend it by foveal vision and a gaze

control mechanism. We can plug such a mechanism to the

pose estimation module of our system without the need for

any modification on the recognition and estimation system

itself, because the object recognition system is endowed

with stabilized representation and tracking capability [3].

Generally this is a non-trivial operation especially because a

moving gaze adds a lot of variance to the camera images.

The initial motivation to switch to foveal vision was to

speed up recognition by reducing input image size without

loss of precision at the center. It turns out that not only

the input image size was reduced by 20 per cent but also

recognition performance improved compared to our previous

effort on the COIL-100 database and on images where

segmentation is non-trivial. In robotics a number of foveal

vision systems exist. Foveal vision can be used to enhance

segmentation [8], [9], in both papers the segmentation hap-

pens in the log-polar space and independent of recognition

which is not addressed. Foveal vision has also been used

in object recognition systems [10], [11]. While in the first
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paper the number of objects is limited to five, but real-time

performance is demonstrated, in the second paper the number

of objects is increased to hundred objects and recognition is

demonstrated with eight learning views per object, but the

real-time behavior of the system is not discussed.

When using foveal images a gaze control mechanism is

needed, because in the extra-foveal areas the image is so

distorted, that object recognition is severely affected. We use

the estimate from the shift estimation module, which can also

be interpreted as an attentional mechanism, to provide the

control signal for gaze control. This is in analogy to findings

in human and primate gaze control [12]. Our gaze control im-

plementation combines saccadic eye movements and visual

servoing by simulating foveal movement within the complete

camera image combined with real head movement of CoRA’s

pan and tilt stereo head. The gaze control mechanism is

largely based on a model of saccadic eye movement [13],

[14], [15]. Most robotic systems that make use of active

vision mechanisms rely on saliency-based attention models

[16]. A recent example for such a system is presented by

Dankers and colleagues [17]. In their paper the authors do

not focus on object recognition but on generating human-like

scan paths with the robotic eyes for tracking objects.

Because the fovea can move within the image and with

the additional head movement, the range in which foveated

objects may be tracked is enormously extended compared

to our previous effort. With these additional degrees of

freedom the system becomes a real visual tracking system

that is robust to distractors because it uses a high-level object

description that is also used to discriminate 30 objects. When

object-based tracking is demonstrated this is usually done for

a single object or objects of the same category such as people

trackers [18], but not for larger numbers of different objects,

see [19] for a survey.

II. THE RECURRENT ARCHITECTURE FOR ONE-SHOT

OBJECT LEARNING.

The architecture we build on achieves recognition based

on a small number of views [3]. Identifying an object from

a small sample of such views is an inherently ill-posed

problem, more so if the object’s pose is to be estimated at

the same time. Past efforts to address this problem have often

taken inspiration from how the human nervous system seems

to effortlessly solve the problem. Multiple feature histogram-

ming approaches [20], [21], [4] for example have generated

a degree of shift invariance through spatial pooling of feature

representations and by learning the feature contributions that

are most invariant for an object with respect to the possible

remaining transformations. In order to uncover the invariant

features, these approaches however require a larger number

of training examples. Feed-forward view-based approaches

also achieve shift invariance through a hierarchy of pooling

stages [5], [6]. Invariance to rotation is only achieved by

increasing the number of training views. An approach to

limit the number of different views is to actively estimate

the transformation an object has undergone relative to the

learned view and to thus place the current view into an

object-centered reference frame [22], [23]. The difficulty

of such correspondence-based approaches is, of course, to

uncover the transformation the object has undergone, which

is far from trivial. Both estimation and pattern match must be

computed in parallel. The recognition system is inspired by

a recurrent architecture proposed by Arathorn, which solves

this problem efficiently through pattern superposition and the

cascading of multiple transformations [24].

Similar to this approach in a recurrent loop bottom-up

information converges on a competitive dynamics that selects

the recognized object while top-down information converges

on a Dynamic Neural Field that estimates pose parameter

values. The bottom-up path is based on feature channels,

similar to multiple feature histogramming approaches [20],

[21], [4]. Features are computed through pooling, both by

summing over receptive fields to sample histograms [4] and

by max-pooling operations [25] to generate shape templates.

In parallel the top-down path computes estimates of the trans-

formations between the current and learned representations

of an object. Translational and rotational transformations are

cascaded as in Arathorn’s system [24].

At the core of the estimation process Dynamic Neural

Fields [26] are at work. Conceptually, Dynamic Neural Fields

are dynamical neuronal networks, in which the discrete

sampling of relevant perceptual or motor dimensions by

individual neurons is replaced by continuous distributions of

neuronal activation (for a conceptual introduction, see [27]).

Localized peaks of activation are units of representation.

When the activation level in the peaks exceeds a threshold

(conventionally chosen to be zero), such peaks represent

perceptual or motor decisions, both in the sense of detection

and in the sense of selection among competing inputs. The

location of such peaks along the feature or motor dimension

represents a metric estimate of the perceptual or motor

state. Here the Dynamic Neural Fields enable the object

recognition system to update its pose estimations online, so

that the system can be coupled to the video-stream of images

captured by the robot to track recognized objects. We use

discrete dynamical neurons for the competitive selection of

the winning memory pattern during matching. All modules

are set as two layers of Dynamic Neural Fields or discrete

neurons. The outputs of the estimation modules are used

to modulate the superposition of extracted features in the

bottom-up path.

The Shift Estimation Module

Because the shift estimation module is used to guide

the eye movement of the foveal vision system we shortly

review it here. For the details of the other rotation and

pattern matching module and the details of the recurrent

computation please refer to our previous work [3]. The shift

estimation module consists of two Dynamic Neural Fields

that are hierarchically organized. The field in the first layer

(see Figure 2) directly receives input ss(x, y, t) from spatial

feature correlation measures. The evolution of its activation

variable us,1 defined over retinal space (x, y) in time t is
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captured by the following dynamical equation:

τ1u̇s,1(x, y, t) = −us,1(x, y, t) + h1 + ss(x, y, t)

+

∫ ∫

ws,1(x − x′, y − y′)σ(us,1(x
′, y′, t))dx′dy′ (1)

Without input the field relaxes to its resting level defined by

h1, with input the field may locally pass threshold and build a

peak defined through the field interaction which is expressed

by the interaction kernel ws,1(x−x′, y−y′) and the threshold

function σ(us,1(x
′, y′, t)). It feeds its output to a second field

us,2 that evolves on a slightly slower timescale τ2 > τ1 and

is more interaction-dominated. Because it only receives input

from the first layer and because of its slower timescale peaks

only build after peaks have formed in the first layer. The first

layer has broader and weaker interaction, multiple peaks are

possible, whereas the second layer is strongly interaction-

dominated and produces only single peaks that are spatially

sharpened. Through the coupling of the two layers in the

beginning of the recurrent computation the broader estimates

are used to modulate the weighted sum of features in the

bottom-up pathway and only later when a peak has built up

in the second layer this spatially more precise estimate is

used for computing the weighted sum. This modulation can

be interpreted as an attentional mechanism that gates only

the attended part of the input image.

The spatial correlations that are used as input are computed

on a discrete grid by calculating the scalar product of the

weighted sum of memory patterns in the top-down pathway

and the feature distributions extracted around the points of

the grid. These spatial computations are done for each feature

channel and the resulting spatial maps are summed up with

weight factors that were heuristically determined.
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Fig. 2. The first layer spatial shift field. This plot shows the activation
of the shift estimation field for an object that is centered on the image. A
suprathreshold peak represents the spatial position of the object.

III. FOVEAL VISION AND GAZE CONTROL

A. Emulating Foveal Vision

To emulate foveal vision we first transform the input into

the log-polar representation and then transform it back into

the Cartesian representation as shown in Equation 2, but

with a greater magnification factor mb ≥ mf . Through

this operation we obtain a smaller downsampled image

that has its highest resolution at the pole (xc, yc) of the

transformation and a smaller resolution at its borders (see

Figure 3).

ρ = mf log(
√

(xc − x)2 + (yc − y)2) (2)

φ = atan(y/x)

x = xc + e
( ρ

m
b

)
cos(φ)

y = yc + e
( ρ

m
b

)
sin(φ)

Fig. 3. Emulated foveal vision. The left image shows the transformed input
image. As one can clearly see the resolution at the center is higher. In the
middle the representation in log-polar coordinates is displayed and on the
right the input image is shown , the red square shows the region of interest
that is transformed. The size of these images are 52 × 52 for the foveal
image, 164× 164 for the log-polar image and 219× 219 for the region of
interest.

This emulated foveal image has a smaller field of view

than the original image and an increased variance in ap-

pearance to shift operations as one can see in Figures 3, 4

and 5. Shifting the pole of the transformation (xc, yc) moves

around the foveated image and effectively simulates an eye

movement in the original image. We use the spatial shift

estimation to move the pole so that it is centered on the

objects, and refer to this motion as simulated eye movement.

B. Simulated Eye Movement

For planning the eye movement we use a Dynamic Neural

Field model of saccadic eye movement [14]. In this model

a two-dimensional Dynamic Neural Field um(x, y, t), the

motor planning field, represents a motor plan for executing a

saccadic eye movement. The motor planning field spans the

possible movement directions in retinal coordinates (within

the foveal image) and is thus defined over the same dimen-

sions as the spatial shift estimation field. A peak centered

around the foveal center specifies continued fixation, small

movements of the input in this area lead to visual servoing

behavior. A peak at extra-foveal locations represents a motor

decision for triggering a saccade and the position of the peak

encodes the corresponding distance to the target. Through

global inhibition the field is set up for single peaks only, it

will thus always perform a selection decision if presented

with competing inputs. The switch between visual servoing

mode and the saccade mode is realized by two competing

discrete neurons ufix, usac. One, ufix, receives input that is

integrated over the central-foveal area of the motor planning

field and represents the fixation mode. The second, usac,

receives input integrated over the extra-foveal area and rep-

resents the saccade mode. Both neurons are in competition

through mutual inhibition, so that only one may be active at

a time.
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1) Saccadic Eye Movement: A saccade is a ballistic

movement, the top velocity is proportional to the length

of the movement, the duration of the saccade is fixed. To

model the time course and the velocity profile we use a

Hopf oscillator. The oscillator runs a single cycle with a

duration that is determined by ω. It is switched on when

the neuron representing the decision to initiate a saccade

becomes supra-threshold (σ(usac) > 0). This mechanism is

represented by the first part in Equations 3 and 4. When

the system is fixating, the competing neuron ufix will be

supra-threshold. In this case the oscillator is reset to its

default state, which is Gx = 1 and Gy = 0. When the

oscillator starts a saccade the motor planning field is boosted

homogeneously. A working memory peak then self-stabilizes

at the location of the saccade target.

Ġx =
1

τhopf

[

σ(usac)(Gx − (G2
x

+ G2
y
)Gx − ωGy)

]

−
1

τlinear
[σ(ufix)(Gx − 1)] (3)

Ġy =
1

τhopf

[

σ(usac)(Gy − (G2
x

+ G2
y
)Gy + ωGx)

]

−
1

τlinear
[σ(ufix)Gy ] (4)

A saccade ends when the Hopf oscillator has gone through

a single cycle. This is detected by a single variable that

measures the distance of the Hopf variables Gx, Gy from

their final position sreset = σ(Gx − 0.7) · σ(Gy − 0.2). This

signal is used to shortly shut off all field activity through a

homogeneous negative boost. When the field recovers from

this boost, and if the saccadic eye movement has landed at

the right position a peak induced by the pre-saccade target

builds at the foveal center and the system switches back into

fixation mode. If the saccade does not land at the right spot

a peak will build in an extra-foveal area and a correction

saccade is triggered.

The velocity is determined by the position of the Hopf

oscillator in its cycle, maximum speed is reached at half of

the cycle. The distance to travel is specified by the peak

in the motor planning field. The two-dimensional motor

planning field projects its output onto two one-dimensional

fields uhor(x, t) and uver(y, t) at a higher spatial resolution

representing horizontal and vertical motion separately. The

peaks in these fields represent the length of the saccade to

execute in vertical and in horizontal direction. The peak po-

sitions can be approximated by treating the fields’ activation

as a probability distribution with means x̄ and ȳ at the peak

positions.

2) Visual Servoing: When the system fixates it is not static

but it is visually tracking the object through a visual servoing

mechanism with strength α. Small displacements of objects

lead to a peak that moves a little bit out of center but not into

the extra-foveal region. Again we use the projection to the

two one-dimensional fields uhor(x, t) and uver(y, t), compute

each mean, x̄ and ȳ, and use these as servoing signals. Both

the saccadic movement and the visual servoing are integrated

into one single equation that computes the rate of change

for each coordinate of the foveal transformation’s pole. This

equation is the same for both dimensions and here we only

show it for the horizontal component.

ẋ = σ(usaccade)x̄(1 − Gx)
ω

2π
+ σ(ufix)αhorx̄ (5)

C. Head Movement

The simulated saccadic eye movements are limited to the

field of view of the camera. In order to enable the system

to attend the whole workspace we couple head movement

that is performed with CoRA’s pan-tilt unit to the eye

movement. Based on the current position of the pole of the

foveal transformation we compute a servoing signal for head

movement that brings the pole to the center of the camera

image. We use two one-dimensional Dynamic Neural Fields

upan(φ) and utilt(θ) for representing these proprioceptive

signals, which are defined over the corresponding opening

angles of the field of view of the camera. Again from peaks

in these one-dimensional fields we compute the mean values

for φ̄ and θ̄. These are used to drive two identical simple

dynamical systems of the pan and tilt angle of the head.

Here we only show the equation for the pan angle.

φ̇ = βφ̄ (6)

Speed of the head movement is adjusted by β. Both dy-

namical systems evolve on a much slower time scale than

the simulated eye movement. The decoupling by timescales

avoids oscillations of the whole motion system.

IV. RESULTS

As a baseline test we first evaluate the recognition per-

formance and compare it to the previous implementation.

We use the same data-sets, our own data in which objects

are placed at varied positions and orientations in the shared

workspace of our robot CoRA and we test with thirty objects

of the COIL-100 database.

In addition to these baseline tests we demonstrate the

enhanced tracking capability of the new system in two ex-

periments. The first experiment shows that recognition works

on moving objects that move within the whole workspace

and how the recognition then stabilizes tracking even in the

presence of strong distractors namely other objects the sys-

tem has already learned before. In the second experiment we

show how the system autonomously switches from smooth

pursuit to catch-up saccades during tracking, when the speed

of the target object is gradually increased.

A. Recognition Performance

On our own data-set of thirty objects placed at nine

different positions and orientations on the table, the system

performs equally well and reaches a recognition rate of 90

per cent with only a single training view. Tested for two

objects in a scene where segmentation is difficult, the new

system reaches a recognition rate of 85 per cent on the first
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autonomously chosen object. This is an improvement of 10

per cent points compared to our previous effort.

On the first thirty objects of the COIL-100 database the

system achieves a recognition rate of 85 per cent with

a single training image and tested on the remaining 71

views for each object. The previous system achieved this

performance only with two training views. With two training

views per object the system achieves a recognition rate of 96

per cent, which is what the previous system achieved with

four training views.

B. Tracking

1) Tracking Performance and Distractor Robustness: In

two experiments we demonstrate the tracking capability of

the system and its robustness against distractors. To test

the tracking we use a small mobile robotic platform that

drives at a fixed velocity across the whole workspace. The

mobile robot carries one of the objects, the toothpaste, an

object the system has previously learned with a single shot.

On its way the robot passes behind a distractor object, the

deodorant, which is also known to the system and very

similar in color. The system successfully tracks the moving

object in a smooth pursuit mode and even sticks to it when

it becomes partly occluded as can be seen in Figure 4. In a

second experiment we invert the situation after the system

has recognized the deodorant. The robot drives by with the

toothpaste as distractor object. Despite this moving attractor

the system sticks to the static object as is shown in Figure 5.

Fig. 4. Moving object, static distractor. In consecutive frames is shown
the moving robot. The top images show the complete camera image. The
current foveal area is marked with the square. Below is pictured the foveal
representation the object recognition works on. The bottom row shows the
field activation of the motor planning field.

2) Smooth Pursuit and Catch-up Saccades: To demon-

strate that the system autonomously switches from smooth

pursuit to catch-up saccades we gradually increased the

robot’s speed and let it run across the workspace. The system

switches at a velocity of about 60 mm/s. Figure 6 shows

snapshots from a smooth pursuit trial with the robot. When

the robot moves faster, the peak still follows the robot but

the servoing mechanism cannot catch up any more. The peak

thus leaves the central foveal area which in turn triggers

a saccade through the mechanism of the two competing

neurons ufix and usac. Because these saccades are triggered

immediately when the peak reaches the extra-foveal area the

Fig. 5. Static object, moving distractor. The consecutive frames show the
system fixating on the static object while the robot drives by. As can be
seen in the last row any influence from the distractor object is suppressed
in the motor planning field.

saccades are very short. For reasons of illustration (Figure 7)

we show thus a catch-up saccade where the object that is

being tracked is moved with much higher acceleration than

it is possible with the mobile robot.

Fig. 6. Smooth pursuit. The figures show snapshots from the smooth
pursuit experiment. The top images show the effect of the head movement
that follows the eye movement, different parts of the workspace come into
the field of view of the camera. The field activity plotted on the bottom row
shows that the peak is always centered on the robot.

V. DISCUSSION

We have enhanced an object recognition system by foveal

vision and a gaze control mechanism. Not only the recogni-

tion performance is substantially improved compared to our

previous effort, but also the system’s tracking performance is

greatly enhanced. Instead of the limited region of interest of

the previous system now tracking is possible over the whole

input image through the mechanism of virtual saccades. The

area which can be tracked is further enhanced through the

head movement so that effectively tracking is possible over

the whole workspace. Both functionalities, recognition and

tracking, interact smoothly in real-time as demonstrated in

the tracking experiments.

The foveal representation leads to an increase in recogni-

tion performance in situations where objects are difficult to

segment as in Figure 3 and on the COIL-100 database. The

former is due to the fact that transformation into the foveal

representations blows up the central part of the image and

1175



0

5

10

15

20

25

0
5

10
15

20
25

−10

−8

−6

−4

−2

0

2

0

5

10

15

20

25

0
5

10
15

20
25

−10

−8

−6

−4

−2

0

2

0

5

10

15

20

25

0
5

10
15

20
25

−10

−8

−6

−4

−2

0

2

0

5

10

15

20

25

0
5

10
15

20
25

−10

−8

−6

−4

−2

0

2

Fig. 7. Catch-up saccades. A human user moves the object so fast that
the peak is not able to track and a new peak emerges at the new object
location. This peak triggers a saccade. At the end of the saccade the field
is de-boosted, as can be seen in the third plot from the left. When the field
recovers a fixation peak builds up at the center of the fovea.

reduces the size of a distractor object as can be seen in Fig-

ure 3. The latter improvement on the COIL-100 database is

because the log-polar transformation induces a higher degree

of size or scale invariance. In the COIL-100 database objects

are rotated and then scaled to fill the image, which induces

a reasonable amount of size variance. When the images are

transformed into the foveal representation pixels at the center

are enhanced and extra-foveal pixels are diminished.

The seamless integration of a gaze control mechanism

that introduces a high amount of motion that enters the

feed-forward pathway of processing demonstrates the higher

degree of autonomy compared to purely feed-forward based

approaches to object recognition. The system is able to

function under dynamic conditions. It stabilizes decisions,

which then support the tracking behavior and all this happens

without the need to explicitly set it into a different mode of

functioning. Compared to most tracking approaches it can

robustly track a higher number of different objects that can

be learned with a single view.

The system is meant to provide object representation both

of object identity and of pose parameters to a scene rep-

resentation architecture that is currently under development

[28]. Such a scene representation would for example allow to

sequentially process objects that are in a scene, and a scene

representation can provide context information that can be

easily integrated into the dynamic architecture.
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