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Abstract— We propose a scheme to deal simultaneously with
local motion planning and dynamic control of redundant
cooperative robots subject to holonomic, posture and loop-
closure constraints. In contrast to previous contributions, an
iterative method, that glue together the problem of kinematic
motion planning with dynamic control, generates the sequence
of feasible collision-free motions by combining in a single
strategy the task-priority redundancy formalism with a joint
model-free smooth force-motion control scheme based on a well-
posed projection, which allows motions of the system only in the
tangent subspace of the contact constrained manifold. Overall
the new algorithm is able to compute fast and accurately local
solutions involving severely constrained robotic motions. We
have successfully verified in simulations the effectiveness of
the proposed iterative method in the context of cooperative
manipulation tasks.

I. INTRODUCTION

Planning and control manipulation tasks by a set of coop-
erative robots constitutes a classical and complex problem in
robotics.

In motion planning, there exist a wide variety of particular
instances of the problem that have been solved. Manipulation
planning algorithms are mainly focused on the computation
of global solutions. They need a precise geometric descrip-
tion of the problem and assume a discrete or continuous
set of stable grasps and placements [1]. Although these
methods are global, they do not consider the task-constrained
dynamics arising when at least two bodies are in contact.

A. Problem statement

In this work we will be concerned with the problem of
generating the sequence of dynamically feasible motions of a
set of constrained redundant robots for object-carrying tasks.
The inputs of the problem are the initial configuration of the
whole system, the final configuration of the object and the
desired magnitude of the contact force exerted by each robot.
We assume that the end-effectors have already established
a stable grasp and the arms are holding the object. The
solution of the manipulation task should consider several
contact force and kinematic closed-loop constraints while
transporting the object from one place to another. In the
case of redundant robots, additional bilateral and unilateral
posture constraints can be satisfied (see Fig. 1).

B. Related work

There exist partial solutions obtained by some motion
planners reported in the literature (e.g. [2]). Most of them
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Fig. 1. A set of redundant robots have to transport an object from
one place to another by applying the corresponding contact forces on the
object surface. The residual redundancy is used to accomplish the goal
while avoiding obstacles and joint limits. Left frame shows the initial
configuration. A possible solution is depicted on the right.

are based on a two-stage strategy. At the first stage, a global
path linking the initial and final configurations is constructed
using a simplified kinematic model of the system. Then, the
motion is generated for the whole system. The redundancy is
exploited by applying either a task functional decomposition
approach (e.g. [3]) or differential kinematics with priorities
(e.g. [4]). These planners do not consider in a single strategy
the interaction between motion and force at contact points
while satisfying postural constraints through residual redun-
dancy.

Most of the control approaches for constrained manipu-
lation tasks use hybrid force-motion control schemes. This
framework was originally introduced in [5]. The operational
space approach incorporates explicitly the end-effector dy-
namics in the controller [6]. Based on a well-defined decou-
pling of the dynamics of constrained mechanical systems,
several force-motion control schemes have been proposed
[7], [8], [9]. Liu and Li [9] provided a detailed geometric
interpretation of the projection method introduced in [10].

Among the previously mentioned motion planners and
force-motion controllers, only the task-priority redundancy
formalism based on the operational space has been used to
handle force and motion constraints simultaneously while
residual redundancy is used to satisfy additional constraints.
This strategy has been integrated as a local method embedded
in a global motion planner [11].

C. Contribution

The main contribution of this work is an iterative local
method based on a joint space formulation to generate
dynamical cooperative manipulation tasks that efficiently
exploits the residual redundancy of the whole system while
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preserving the compliant behavior. This is possible by pro-
jecting the feasible motions of the system into the tangent
space of the contact constrained manifold. The controller
compensates explicitly joint constrained dynamics to enforce
exponential convergence of position, velocity and contact
force errors for tracking regime, without relying on inertial
nor Coriolis matrices nor gravitational torques, contrary to
the popular but computationally expensive hybrid computed
torque controller [5], let alone operational space control
strategies [6].

The remaining of this paper is structured as follows.
In Section II we recall the classical prioritized inverse-
kinematics and the general form of a constrained mechanical
system. In Section III we describe the force-motion con-
troller. Then, Section IV introduces the proposed iterative
method. Section V illustrates the effectiveness of the method
by a series of simulation experiments. Finally, we provide in
Section VII some concluding remarks.

II. MODELING CONSTRAINED REDUNDANT ROBOTS

There exist several constraints to be satisfied for trans-
porting a bulky object by a set of redundant robotic arms.
First, we introduce the set of bilateral and unilateral posture
constraints. Then, we define the holonomic constraints that
appear when the robots are in contact with the environment.
Because we assume frictionless point contacts, the forces
exerted by the arms and the object only occur in the normal
direction. Note that closed kinematic loops are formed when
at least two robotic arms are holding the same object.

A. Posture constraints

Let q ∈ Rn be the configuration of the robot in the n-
dimensional joint space where n represents the number of
degrees of freedom (d.o.f). The location of any body of
the robot can be represented by x(q) where x ∈ Rm is a
coordinate vector and m ≤ n. Thus, a typical task consists
in finding q for a desired location xd such that

e(q) = 0 (1)

where e(q) = x(q)−xd. These nonlinear equations are in
terms of q and can be seen as equality posture constraints.
Differentiating e(q) w.r.t. time we obtain the following linear
differential system

ė(q) = Jeq̇ (2)

where Je = ∂e
∂q ∈ Rm×n is the Jacobian of the task.

If m < n, it means that the robot is redundant w.r.t. the
task and Je is not invertible. The robotics literature on
numerical methods for solving Eq. (2) is wide. Newton-
Raphson algorithm and Levenberg-Marquardt method are
among the best techniques to solve this kind of problems
[12]. The general solution is written as

q̇ = J+
e ė+ Pez (3)

where q̇ ∈ Rn is the time derivative of q, J+
e denotes

the pseudoinverse of Je, Pe = I − J+
e Je is the projection

operator spanning the n −m null space of Je and z is any
vector in Rn. The recursive method proposed in [13], and
improved in [14], for simultaneously solving a stack of k
prioritized tasks is sketched in Algorithm 1.

Algorithm 1. Given k tasks with priorities, find q̇ ∈ Rn
where n is the number of d.o.f. of the robot

1: Set Pe0 ← In×n
2: Set q̇ ← 0

for i = 1, 2, ..., k
3: Compute Jei and ėi
4: Set Ĵei ← JeiPei−1

5: Compute Ĵe
+

i

6: Set q̇i ← Ĵe
+

i (ėi − Jeiq̇i−1)
7: Set q̇ ← q̇ + q̇i
8: Set Pei ← Pei − Ĵe

+

i Ĵei
end

Inequalities of the form

e(q) ≤ 0 (4)

are more difficult to handle. They can be treated by an
active set method (i.e. the subset of inequalities that become
equalities define the active set). The computational experi-
ence reported in [15] indicates that quadratic programming
methods are strong competitors for mixed systems. The
inherent discontinuities arising in Eq. (4) has been solved
in [16]. Examples of these constraints are joint limits and
collision avoidance.

B. Contact constraints

We consider r ≤ n frictionless point contact constraints
as nonlinear equalities of the form

Φ(q) = (φ1(q), . . . , φr(q))T = 0 (5)

Differentiation of (5) w.r.t. time leads to

JΦq̇ = 0 (6)

where JΦ = ∂Φ
∂q ∈ Rr×n is the Jacobian of the constraint

w.r.t. q. Eq. (6) specifies that any q̇ must belong to the null
space of JΦ. It implies that the following operator

PΦ = I − J+
Φ JΦ (7)

allows to project the joint velocity vector q̇ into the tangent
plane at the contact point. If r < n and using Algorithm 1
together with Eq. (7), the joint velocity can be defined as

q̇ = PΦq̇e (8)

where q̇e is the output of Algorithm 1 that satisfies all
posture constraints.
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C. Constrained dynamic model

The Euler Lagrange modeling formalism applied to con-
strained robots deliver a set of nonlinear ordinary differential
equations of motion coupled with a holonomic algebraic
constraint, built upon the constrained Lagrangian L = K −
P + ΦT (q)λ, for K,P the scalars kinetic and potential
energy, respectively, and λ ∈ Rr the Lagrange multipliers for
r independent contacts, that is the constraint Φ(q) is full row
rank. The resulting model is a differential algebraic equation
of index 2 (the constraint Φ(q) is required to be derived twice
to obtain the control input) as follows

M(q)q̈ + h(q, q̇) = τ + JTΦλ
Φ(q) = 0 (9)

where M(q) ∈ Rn×n denotes the symmetric positive def-
inite inertial matrix, h(q, q̇) ∈ Rn contains the Coriolis,
centrifugal and gravitational terms, τ ∈ Rn represents the
generalized input torques. For solving Eq. (6), notice that
the constraint Jacobian JΦ is not rank-deficient, due to
rank(Φ(q)) = r ∀q ∈ Rn, consequently differentiating Eq.
(6) w.r.t. time, we get

JΦq̈ + J̇Φq̇ = 0 (10)

It is preferable to replace (5) with (10) in (9) to obtain a
well-posed system representation of the state space system
as follows(

M(q) JTΦ
JΦ 0

)(
q̈
−λ

)
=
(
τ − h(q, q̇)
−J̇Φq̇

)
(11)

which can be solved implicitly for both q̈ and λ, by using an
implicit Runge Kutta solver. Notice that a high-gain numer-
ical constrained stabilizer u can be added to the right hand
side of Eq. (10), as it is customary in numerical simulations
of DAE-2 systems, say the Baumgarten u stabilizer [17],
then (12) becomes(

q̈
−λ

)
=
(
M(q) JTΦ
JΦ 0

)−1(
τ − h(q, q̇)
−J̇Φq̇ + u

)
(12)

This allows numerical stabilization of the solution by keeping
bounded, below physical resolution of encoders, the nonlin-
ear integration error, maintaining the structural integrity of
the DAE-2 system.

III. FORCE-MOTION CONTROL SCHEME

On one hand, motion planning techniques should produce
feasible smooth trajectories to the robot. On the other, control
schemes should guarantee that the robot is well behaved, in
a sense that real trajectories does not deviate from desired
ones. However, in the context of cooperative robots, there
is an unavoidable coupling of both, the planner and the
controller to maintain the dynamic feasibility of the assigned
task. In other words, they must account for the interaction
of all robotic arms through the rigid object while satisfying
the set of contact and posture constraints. As a consequence,
the design of the control system for the coupled problem of
simultaneous local motion planning and control of a complex

holonomic robotic system deserves further discussions before
presenting a convenient control design.

A. Preliminary discussion

There is a variety of cooperative robot control schemes to
choose from, nonetheless there are two issues to highlight for
redundant multirobot systems, one is the high dimension of
the composed regressor which turns to be a time-consuming
process. Then it is convenient to derive a smooth regressor-
free controller; the second issue is the model of the mechani-
cal robotic system, which yields differential equations tightly
constrained by an algebraic kinematic implicit function (see
Eq. (9)). A departing point is to design a controller for the
DAE-2 system, not for the classical ODE formulation of
robot dynamics. Finally, notice that the controller is required
to exhibit fast and robust convergence to desired trajectories
so as to the physical robots wholly comply too with all
contact and posture constraints for every sampling guided
by the planner.

B. Control design

Our previous cooperative regressor-free control scheme
[18] is extended to joint space with similar stability proper-
ties, that is exponential convergence of all position, velocity
and contact force tracking errors. This scheme exhbits low
computation cost since it does neither depend on knowledge
of parameters nor regressor, consequently meets the two
issues exposed above to comply adequately with all closed
kinematic constraints at each instant. To this end, consider a
decentralized model-free scheme which enforces exponential
convergence of position/velocity in the tangent subspace at
the contact point while guaranteeing contact force tracking
to comply with the holonomic constraint. This passivity-
based control system is independent of structural knowledge
of the dynamic robots, though it explicitly accounts for
dynamic compensation, rendering a smooth second order
sliding mode in both orthogonalized tangent position/velocity
PΦ and normal force JTΦ subspaces, at the contact point. The
joint extension of our previous proposed controller stands
for a nonlinear decentralized regressor-free position/velocity
controller is

τ = −Kp(q)∆q −Kv(q)∆q̇ −Ki(q)
∫ tf
t0

sgn(A)
−Kpf (q)(B)−Kif (q)

∫ tf
t0

sgn(B)
−JTΦ (λd − tanh(νB)− η(γpB + γi

∫ tf
t0

sgn(B))
−JTΦ Ξ̇f −Kpr(q)∆Ṗ −Kdr(q)∆P

(13)
where ∆q = q − qd stands for the tracking error, A =
∆q̇ − α∆q − Ξq , Ξq = (∆q̇(t0) − αq∆q(t0))e−βqt, B =
∆F − Ξf , ∆F =

∫ tf
t0

(λ − λd)dt, Ξf = ∆F (t0)e−βf t,
Kp(q) = KdPΦα, Kv(q) = KdPΦ, Ki(q) = KdPΦKi

stand for the configuration dependent feedback matrices
of a nonlinear PID-like position-velocity controller; while
Kpf (q) = KdγpJ

+
Φ and Kif (q) = KdγiJ

+
Φ build a nonlinear

PI-like force controller. The term Kpr(Ṗ − Ṗd), builds
a compensating term to enforce the constraint velocities,
which stand for the joint velocities deviates onto the force
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subspace, that is Ṗi =
∑l
j JΦj q̇j , for i 6= j, i = 1, ..., l,

where l represents the number of robots. Ṗdi =
∑l
j JΦj q̇dj

stands for the desired constraint velocity, built upon desired
joint velocity. Feedback gains Kpr(q) = KdJ

+
Φ , Kdr(q) =

KdJ
+
Φαr and the remaining Kd, Kp, Kv , Ki, Kpf , Kif , α,

αq , αr, ν, η, β, βq , βf , γi, γp are positive definite feedback
gains of appropriate dimensions. Ξp, Ξf are exponentially
vanishing terms useful to place the system on the sliding
surface at t0, then removing the reaching phase both in the
position/velocity and force subspaces, respectively; finally,
tanh and sgn are the nonlinear hyperbolic tangent and
signum functions, respectively.

The strict stability proof follows closely to [18], therefore
details are omitted. Notice that this proof relies on Lyapunov
and second order sliding mode stability arguments to guar-
antee exponential tracking towards desired position, velocity
and contact forces coming, at each sampling period from the
planner, without any overshoot. Once the control is applied
to each robot, afterwards sensors read the state of the whole
joints which are sent back to the planner to close the iterative
loop and build a simultaneous motion planning and control
system.

Finally, the apparent involved control structure is nothing
but an output state feedback controller easy to compute on
line (values and range of feedback gains are established in
the stability proof), without any dependence of the dynamic
model. The stability proof certainly is involved, the control
structure is not, with stability properties that meet all perfor-
mance requirements.

IV. THE ITERATIVE STRATEGY

The iterative algorithm we describe in this section can be
seen as a local motion planner that encapsulates an internal
force-motion control module. At each iteration, the nested
controller computes a feasible torque vector for each robotic
arm to ensure local convergence.

A. Prioritizing the tasks

We first define qc = (qr1, . . . , qrp)T as the composite
vector containing the configuration of all the specified robots
as well as the object to be manipulated. The number of
entities is p. This representation allows to define a global
inertial reference frame where qc is the configuration of
the whole system. Note that the object continues to be a
free-flying body and the robots are branches of the same
kinematic tree. Thus, all of them are attached to the same
inertial reference frame.

The goal of the cooperative task is to transport an object
from a given location to a desired one. This task defines an
equality constraint in terms of the location of the object as
a function of qc. To achieve the goal, additional equality
and inequality constraints must be satisfied to maintain
contacts. Also, joint limits and collision avoidance should
be considered. The task-redundancy formalism is a natural
way to define all these constraints w.r.t qc. We propose the
following stack of tasks organized in decreasing priority:

1) contacts between the tip of each arm and the object,

2) joint limits,
3) collision avoidance and
4) move the object to a desired location.
Note that we handle the compromise between the achieve-

ment of the goal and the satisfaction of constraints by
assigning the lowest priority to the object-carrying task.
Clearly, it is preferable to maintain the contacts even if the
result is an approximate solution w.r.t. the desired location
of the object.

B. Algorithm outline

The iterative process starts by calling Algorithm 1 to
determine the next desired velocity vector q̇dc for the whole
system. Then, an appropriate generalized torque is computed
using Eq. (13) to track the joint velocity reference while
preserving the desired contact forces. After that, an efficient
constrained dynamics method solves Eq. (12) to get the
feasible joint acceleration vector and contact forces. By
integrating the joint acceleration we get the next input to Al-
gorithm 1. The general strategy is summarized in Algorithm
2. The process terminates whether the task errors converges
to a given threshold or a predefined number of iterates is
exceeded.

Algorithm 2. Choose a desired location of the object xd
such that ek(q) = 0; define the initial configuration of the
whole system qc; define the desired contact forces λd; choose
tol > 0; define k−1 additional tasks with priorities; construct
the stack E(q) = (e1(q), ..., ek(q)).

Begin
q̇c ← 0

1: Evaluate E(qc) by

ei(qc) for i = 1, 2, . . . , k

while E(qc) ≥ tol do
2: Compute q̇dc with (E(qc), qc) by means

of Algorithm 1.
3: Set qdc ← qc + q̇dc

for j = 1, 2, ..., p
4: Set qj , q̇j , qdj and q̇dj with the actual

and desired configurations and joint
velocities of robot j from qc, q̇c, q

d
c

and q̇dc respectively.
5: Solve (12) for λj
6: Compute τ with (λj , λdj , qj , q̇j ,

qdj , q̇
d
j ) by means of (13)

7: Solve (12) for q̈j
8: Update qc, q̇c at j

end for
9: q̇c ← q̇c + q̈c

10: qc ← qc + q̇c
11: Evaluate E(qc) by

ei(qc) for i = 1, 2, . . . , k

otherwise exit.
End
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Fig. 2. From top-left to right the joint position, velocity and input torque tracking profiles respectively. Bottom: a representative sequence of the solution.

C. Numerical considerations
Regarding Algorithm 1, we have replaced the Moore-

Penrose’s pseudoinverse by the well-known mixed minimiza-
tion formulation [19]:

min
q̇
{||ėi − Jei||2 + q̇Ti Wq̇i}

which corresponds to

q̇i = (JeTi Jei +W )−1Je
T
i ėi

where W is a diagonal matrix with damping factors. A
complete numerical sensitivity study on the selection of W
is reported in [12]. Thus, we have defined W = eiI + W
where W is a bias diagonal matrix and its elements are set
to 1.0× 10−3.

Algorithm 2 does not need to compute the costly second-
order differential kinematics. However, inside the algebraic
loop (see lines 5-7) the constrained dynamics in Eq. (12) has
to be solved. To overcome this difficulty, we have adopted
recursive algorithms with low computational cost described
in [20] to efficiently compute inverse and forward dynamics.
A straightforward method is
• Compute h(q, q̇) by applying the compact version of

the recursive Newton-Euler algorithm with spatial op-
erators.

• Compute the joint space inertia matrix M(q) by apply-
ing the composite-rigid-body algorithm.

With vector h(q, q̇) and matrix M(q), Eq. (12) can be
solved for λ and q̈.

It is important to remark that the main loop of Algorithm
2 is based on a numerical optimization strategy and con-
sequently it is sensitive to become trapped in local minima.
However, the iterative method can be coupled with sampling-
based planners such as RRT-like algorithms to compute
global solutions [21].

V. SIMULATION EXPERIMENTS

The algorithms were implemented in C++ and compiled
using GNU C++. The experiments have been performed on
a AMD Turion 64 X2 dual-core 3.0 GHz. We used Blas and
Lapack libraries for all the linear algebra operations. We have
implemented the Featherstone’s algorithms [20] to compute
inverse and forward dynamics. The final visualization was
with Matlab.

We compared our iterative method with a two-stage
strategy commonly used in local motion planning. One of
the main differences between them is that our algorithm
considers the constrained dynamics of the system at each
iteration of the task-priority loop. The two-stage strategy
consists in computing a kinematic trajectory with Algorithm
1. Then, at the second stage the trajectory is transformed
into a dynamically feasible one using forward and inverse
dynamics. It turns out that this transformation may break
some constraints that were satisfied in the previous stage at
kinematic level. Examples of that are the so-called residual
collisions. As a consequence, such a strategy should iterate
between both stages until a feasible motion satisfies the
constraints.

We used the same scenario for both two-stage strategy
and Algorithm 2 in order to illustrate the differences. In our
experiment we considered 3 PA10 robotic platforms and a
3D bulky object in a constrained environment. The main
constraint is represented by one static obstacle. We also
defined the initial configuration of a movable object near
the static obstacle as it is illustrated on the left frame of Fig.
1. Note that the robots are already in contact with the object
surface, generating forces at these contacts. There exist 2
kinematic closed-loops. The whole system has 27 d.o.f. and
15 d.o.f. after considering the closed-chains.

The robots have to cooperate in order to pull the object
out without loosing contacts while avoiding joint limits

4538



Fig. 3. The comparison between the two-stage strategy (left) and our
iterative method (right). The former consists in computing a kinematic
trajectory for the whole system. The resulting trajectory satisfies all posture
constraints computed with Algorithm 1. Then, the trajectory is transformed
into a dynamically executable trajectory through the controller. The right
frame shows the same example computed with Algorithm 2.

and obstacles. The desired location was slightly out of the
obstacle. Hence, a pure translation could cause collisions
(see Fig. 2). To automatically compute the whole motion it
was necessary to impose one via point, otherwise the system
get trapped in a local minimum. In Fig. 3 the left frame
shows a representative example of the two-stage strategy.
There exist some collisions between the end-effector and the
object. Moreover, at least one robot lost the contact with
the object. As a consequence, Algorithm 1 had to recompute
again a kinematic trajectory. The right frame shows the same
example but computed with Algorithm 2.

Simulation sequences presented in this work can be found
at: http://148.247.22.5/saltillo/robotica/garechav/cooperative/
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VII. CONCLUSION AND FUTURE WORK

Most of the planners only solve the problem from a
geometric and kinematic point of view providing eficient
motion trajectories for the robotic system, whilst ignoring the
dynamical behavior of the robot when it is constrained by a
rigid environment. For complex systems, such as cooperative
or humanoid robots, this approach may fail since the real
dynamical state may deviate from the ideal trajectories
computed unilateraly by the planner, typically off-line. This
fact motivates to coupling on-line the local planner with the
dynamical control for practical applications in robotics. In
this paper, we proposed an iterative algorithm to deal with
severely constrained cooperative robots within a task-priority
framework. Moreover, the method accounts for frictionless
contact problems in manipulation tasks to blend seemingly
our previous force-motion scheme [18] in joint space based
on constrained robot dynamics. Preliminary results show
that our method can be successfully applied in practice. We
conjecture that our proposal can be extended, in particular for
challenging problems arising in hyper-redundant constrained
robotic systems. For instance, the problem of whole-body
stable object motion planning and manipulation [4]. Our

current work is focusing on validating the use of our method
in such robotic problems.
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