
  

  

 Abstract—We investigate the existence of computationally 
inexpensive first and second order statistics that uniquely 
describe grass for application in an autonomous lawnmower.  
We then segment images based on these statistics to determine 
locations of driveable terrain in an image.  Tight statistical 
clustering of illuminated grass versus artificial texture suggests 
that this method is sufficient for identifying driveable terrain 
for an autonomous lawnmower. 

I. INTRODUCTION 
WRU Cutter is an autonomous lawnmower developed 
at Case Western Reserve University for entry in the 

“Institute of Navigation (ION): Autonomous Lawnmower 
Competition.”  The robot serves as a proof-of-concept 
prototype that demonstrates it is possible to autonomously 
mow lawn and achieve the same quality of cut as a human 
operator.  In previous years, CWRU Cutter placed 3rd and 1st 
in the ION competition by relying on LIDAR to sense 
obstacles.  Though LIDAR is a robust sensor for 
autonomous robot applications, its price makes its inclusion 
in consumer versions of the robot prohibitively expensive.  
Computer vision, on the other hand, is able to extract similar 
useful information for a fraction of the cost of a LIDAR.   

Mobile robots frequently rely on computer vision to 
differentiate between traversable terrain and obstacle 
locations [2][3].  This information is often based on the 
observed color of an object defined in the RGB model [1].  
While RGB color can be a robust indicator of surfaces in 
scenes where light level is fairly constant and observed 
surface color is fairly uniform, its effectiveness drastically 
declines if an observed surface has significant color 
variation or is observed at multiple illumination levels as the 
mobile robot passes through areas occluded by shadows 
[11]. 

Hue has been shown to be a robust indicator of an objects’ 
color in an applied environment [4][5][11][12].  This makes 
it a functional method of identifying an object’s color in 
shaded areas.  However, this method also fails to identify all 
of the traversable terrain in an image if a significant amount 
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of color variation exists in the observed surface, as is the 
case with typical suburban lawns [15][16]. 

 With increases in processing speed, visual texture is 
becoming an option for real-time identification of 
traversable terrain in incoming images.  Since texture is a 
measure of underlying surface characteristics, it performs 
well in areas that have non-uniform lighting conditions 
[10][16].  However, there is no universal description of what 
constitutes a “texture”.  Texture identifiers are often based 
on computationally intensive, higher-order statistical 
calculations to classify an object’s texture properties [7].  
While these methods have been successfully and 
consistently used to quantify visual texture in images, their 
computation requirements limits their application for real-
time operation in commercially available mobile robots that 
possess limited computational resources [8][9][5]. 

In this paper, we propose a small set of texture identifiers 
based on computationally inexpensive first and second order 
statistics to consistently identify grass-containing regions in 
an image and quantify the image statistics for our camera 
setup (described below).  Previously, texture statistics of this 
order have been used to successfully differentiate between 
weeds and grass in robotic agricultural applications [16].  
Four statistical measures were analyzed in horizontally 
oriented, vertically oriented, and directionally ambiguous 
grayscale and binary textures. These measures are mean 
grayscale neighborhood intensity, binary neighborhood 
variance, binary edge response area, and binary 
neighborhood centroid location (defined in Sect. III).  Based 
upon clustering of the resulting texture statistics for 
illuminated grass and artificial obstacles, driveable terrain 
identification via surface texture seems to be a suitable 
method for application in an autonomous lawnmower.  The 
clustering behavior of individual statistical measurements 
suggests that each statistic has a specific utility, which, when 
combined with other statistical measurements could provide 
improved performance for identifying grass in an image.   

II. DATA COLLECTION 
Image data were collected on a test plot containing a 

common grass mixture for typical North American suburban 
lawns at a local lawnmower manufacturer’s testing facility.  
Test data were acquired using a camera elevated 0.75 meters 
at an angle of –45º to the horizontal. The camera was on a 
fixed mount on a collapsible dolly cart and mirrored the 
geometry of the CWRU Cutter autonomous lawnmower.  
The camera was an ImagingSource DFK21AF04 FireWire 
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camera with a Kowa LM4PBR 4.0mm F1.2 CS-Mount lens.  
Images were collected during a two-hour period in the mid-
morning, to correspond to typical lighting conditions an 
autonomous lawnmower may experience in the field.  
Logged images included the following objects and 
conditions: 640x480 images of fully illuminated grass, as 
well as 50x50 image regions taken at 640x480 resolution of 
each of the following surfaces: shaded grass, flowerbed 
edging, flowers, blue jeans, fence, and a soccer ball.  
Statistical measurements were collected for a mixture of 
both illuminated and shaded obstacles to simulate common 
conditions an autonomous lawnmower may encounter [6]. 

III. TEXTURE EXTRACTION AND DESCRIPTORS 
In this paper, we define “visual texture” as a collection of 

edges within an image region or “neighborhood.”  Within 
these neighborhoods, we examined four statistical measures 
of observed objects and texture image combinations: 1.) 
variance of horizontally and vertically oriented binary 
texture images, 2.) mean binary texture edge response area 
of horizontally and vertically oriented binary texture images, 
3.) mean intensity of horizontally and vertically oriented 
grayscale texture images, and 4.) centroid location of 
directionally ambiguous binary texture images created by 
combining corresponding binary horizontal and vertical 
texture images within a neighborhood.  A binary 
representation of grass-containing regions in the image, or 
“freespace,” is generated from each statistic.  This yields 
seven binary freespace representations. 

Horizontal and vertical edge responses were extracted by 
convolving an unblurred, grayscale image (Fig. 1a) with a 
horizontal (Gx) and vertical (Gy) Prewitt convolution kernel, 
respectively, given by 
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and 
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The convolution operation computes the edge strength 
based on grayscale intensity values of a pixel and its eight 
adjacent neighbors and plots the magnitude of the edge 
strength in the center pixel.  The 2D spatial convolution 
operation is given by 
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where E(x,y) is the computed edge strength of a pixel located 
in the center of a 3x3 neighborhood located at (x,y) in the 
image, j  J-1 and k  K-1 are the indices of the 
convolution kernel G, and I(a,b) is the intensity value of a 
pixel located at the input coordinate pair (a,b).  Convolving 
the image with Gx and Gy generates two new images that 
indicate edge response for the given filter.  We refer to the 

resulting images as “horizontal-” and “vertical texture 
images,” respectively (Fig. 1b).   
 From the resulting oriented grayscale texture images, 
horizontal and vertical binary texture images were created 
by discarding edge strengths below an empirically 
determined threshold of 21 and setting corresponding pixel 
locations of edge strength above the threshold in a binary 
image equal to 1.  Pixel groupings with an area of 1 in the 
binary images were removed (Fig. 1c). 
 Summing corresponding horizontal and vertical binary 
texture images yielded the directionally ambiguous binary 
texture image corresponding to the input image (Fig. 1d). 

We examined statistics for four square neighborhoods 
ranging from 11x11 to 41x41 pixels in increments of 10 
pixels. 

The variance for each neighborhood, Var(R), of the 
horizontal and vertical binary texture images was computed 
by  
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where X is the binary value of the current pixel, X is the 
mean value of the pixels within the square neighborhood, 
and n is the area of the neighborhood, given by the total 
number of pixels within the neighborhood.  Since we are 
computing the variance of a binary neighborhood, this 
reduces to a polynomial in one dimension 
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where w is the number of pixels in the neighborhood above 
the binary threshold.   
 The mean grayscale intensity value of a neighborhood 
was computed by summing all pixel values of the generated 
grayscale texture images and dividing by the total number of 
pixels within the neighborhood.   
 The binary area and centroid locations of the pixel 
neighborhoods were calculated as 

 
 

Fig. 1.  Clock-wise from top-left: a. Grayscale image of grass, b. 
Grayscale horizontal texture image of Fig. 1 a., c. Binary horizontal 
texture image of Fig. 1 a., d. Directionally ambiguous binary texture 

image of Fig. 1 a. 
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TABLE I 
NEIGHBORHOOD STATISTICS FOR NEIGHBORHOOD SIZE OF 31 

 
 

Illuminated Grass Shaded Grass Flowerbed Edging Flowers Jeans Soccer Ball 
Measurement       

I (hTx,,vTx) (-0.922, -10.169) (-.027, -4.685) (1.408, -5.644) (-4.334, -13.333) (0.251, -7.427) (-4.739, -17.794) 

σ ( I ) (hTx, vTx) (5.053, 3.288) (1.637, 1.225) (5.749, 6.764) (17.224, 12.480) (8.535, 4.655) (15.448, 12.688) 

( )Var R (hTx, vTx) (0.231, 0.225) (0.164, 0.144) (0.088, 0.124) (0.172, 0.191) (0.090, 0.065) (0.068, 0.098) 

σ ( ( )Var R ) (hTx, vTx) (0.010, 0.014) (0.039, 0.045) (0.075, 0.066) (0.0519, 0.0419) (0.053, 0.067) (0.056, 0.062) 

A (hTx, vTx) (350.590, 332.810) (203.90, 172.80) (103.80, 150.70) (221.30, 261.20) (74.90, 112.40) 

σ ( A ) (hTx, vTx) (31.976, 39.559) (59.056, 57.965) (94.373, 92.161) (76.288, 83.751) 

( x , y ) (15.368, 15.015) (15.415, 14.570) (7.465, 13.008) (16.691, 15.120) (15.527, 13.126) (18.407, 14.952) 

σ ( x , y ) (0.606, 0.599) (0.951, 0.722) (2.564, 1.067) (2.469, 2.000) (2.473, 6.364) (6.152, 5.322) 
 

 ( , )i j
ij

x y

M x y I x y=∑∑  (5) 

where the calculated moment ijM  is given by the 
summation over the x and y dimensions of the pixel 
neighborhood, and i and j correspond to the index of the 
calculated moment.  The binary area is given by 00M , and 
the horizontal and vertical centroid locations within the 

neighborhood, x and y , respectively, of the directionally 
ambiguous texture image are given by 

 10

00

Mx M=  (6) 

and 

 01

00

My M= . (7) 

 After determining the statistical values for grass in the set 
of training images, non-overlapping binary segmentation 
was applied to neighborhoods of images based on these 
measurements.  Non-overlapping neighborhoods were used 
to decrease the runtime of the algorithm.  If the measured 
statistic of the neighborhood fell within three standard 
deviations of the observed statistical measurements from 
training, that neighborhood was marked as grass.  
Conversely, if the neighborhood measurements fell outside 
this range, the neighborhood was marked as containing an 
obstacle.  The binary representations of freespace in the 
camera frame can later be post-processed and combined 
across the images for corresponding neighborhoods to create 
an improved texture-based representation of traversable 
terrain in the image.   

IV. QUANTIFICATION OF TEXTURE DESCRIPTORS 
After calculating the statistics for the texture images, we 

computed the mean and standard deviation (σ ) of the 
statistics for each surface type at each neighborhood size to 
observe groupings in the measurements.  Table 1 displays 
calculated statistics of sample neighborhoods for a 
neighborhood size of 31.  We then plot like statistics of each 
surface type at different neighborhood sizes in the same 
graph to visually display groupings.  The following data was 

plotted for each neighborhood size: Mean neighborhood 
intensity of grayscale horizontal (hTx) vs. vertical (vTx) 
texture images for corresponding neighborhoods ( I ), 
variance of binary horizontal vs. vertical texture images for 
corresponding neighborhoods ( ( )Var R ), mean edge response 
area of binary horizontal vs. vertical texture images for 
corresponding neighborhoods ( A ), and local horizontal and 
vertical centroid location for corresponding neighborhoods 
of directionally ambiguous binary texture images ( ,x y ). 

V. RESULTS & DISCUSSION 
The goal of vision processing in the autonomous 

lawnmower is to identify driveable terrain around the robot 
by identifying grass.  Observed image regions that do not 
match the measured grass statistics are marked as “obstacle 
containing regions.”  This creates a binary freespace map 
around the robot for every camera frame, which is abstracted 
into range images via the method presented in [5].  Since we 
do not attempt to distinguish between different types of 
obstacles, we plot all non-grass data points in the following 
plots with the same color (with the exception of flowers) for 
visualization purposes (Figs. 2-7).  We will refer to the 
visual texture of fence, flowerbed edging, blue jeans, and 
soccer ball as “artificial texture,” as these objects are 
manmade.  Similarly, we will refer to these obstacles as 
“artificial.”  In all plots, surface textures correspond to the 
following point color: green – illuminated grass, yellow – 
shaded grass, magenta – flowers, red – artificial obstacles. 

For the binary statistics, we observed distinct, compact 
clustering of illuminated grass for all neighborhood sizes 
(Figs. 3-5).   Mean values of the clusters for oriented texture 
measurements are close to the diagonal of the plots, 
indicating no strong directionality for either the horizontal or 
vertical texture images.  This indicates that both horizontal 
and vertical texture images identify illuminated grass equally 
well, and that filter orientation is not a determining factor in 
being able to identify grass based on observed statistics.    

Across all statistics, we observed that the distribution of 
illuminated grass data points compacted as the neighborhood 
size increased (Fig. 2, 6).  This results from the fact that a 
larger neighborhood is less sensitive to variations in 
individual pixels, thereby decreasing the overall standard 

(64.547, 87.778) (65.829, 73.552) 

(101.40, 76.10) 
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deviation of plotted points.   
Variance measurements from oriented binary texture 

images exhibited distinct clustering behavior from artificial 
obstacles (Fig. 3).  The color uniformity of artificial 
obstacles resulted in data points near the plot origin, such as 
a fence post.  Images of an artificial obstacle border exhibit 
strong unidirectional texture response.  Artificial object 
texture was distributed uniformly between the origin and 
approximately (0.20, 0.20) for all resolutions.  Conversely, 
illuminated grass had significantly different, tightly clustered 
variation for both horizontal and vertical binary texture 
images.  Observed variance of illuminated grass was the 
same for horizontal and vertical binary texture and did not 
change as neighborhood size increased, being centered at 
approximately (0.25, 0.25).  Noticeable separation between 
illuminated grass and artificial obstacles again occurred at 
neighborhood sizes of 31x31 or greater. 

Mean binary edge response area exhibited separation at all 
neighborhood sizes.  As neighborhood size increased, the 

edge response area of illuminated grass increased as well, 
whereas areas of artificial obstacles remained constant due 
to low edge response.  Distinguishable separation of 
artificial obstacles and illuminated grass areas was again 
observed for neighborhood sizes greater than or equal to 
31x31 (Fig. 4). 

For all neighborhood sizes, tight clustering of 
neighborhood centroid location was observed for illuminated 
grass, whereas artificial obstacles did not exhibit tight 
clustering (Fig. 5). 

All statistics contained overlap between the flower 
obstacle and shaded grass.  Flower textures were generally 
distinct from artificial obstacle textures, being either located 
in a different region in the graph or exhibiting a tighter 
clustering than the artificial textures.  An overlap 
consistently existed for all statistical measurements between 
flowers and shaded grass.  Both of these behaviors are 
attributed to the same phenomenon.  While illuminated grass 
was the most “rough” texture in observed images, because it 

Fig. 2.  Horizontal vs. vertical grayscale texture intensity for observed 
surfaces at 31x31 neighborhood size. While illuminated (green) and 
shaded (yellow) grass clusters overlap, artificial obstacles (red) and 

flowers (magenta) are uniformly distributed at similar intensity values.   

Fig. 3.  Horizontal vs. vertical binary texture variances for observed 
surfaces at 31x31 neighborhood size with an edge threshold value of 21. 
Illuminated grass (green) clusters, whereas artificial obstacles (red) and 

flowers (magenta) are distributed at a lower variance value than 
illuminated grass.  Shaded grass (yellow) is not clustered.

  
Fig. 4.  Horizontal vs. vertical binary edge response area for observed 

surfaces at 31x31 neighborhood size with an edge threshold value of 21. 
Illuminated grass (green) clusters, whereas artificial obstacles (red) and 
flowers (magenta) are distributed at lower area values than illuminated 

grass.  Shaded grass (yellow) is not clustered. 

Fig. 5.  Horizontal vs. vertical binary texture neighborhood centroid 
location for observed surfaces at 31x31 neighborhood size with an edge 

threshold value of 21. Illuminated grass (green) clusters, whereas artificial 
obstacles (red) are distributed at a lower variance value.  Flowers 

(magenta) exhibit clustering and overlap somewhat with illuminated grass.  
Shaded grass (yellow) clusters in the same area as illuminated grass.
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TABLE II 
NUMBER OF CORRECTLY IDENTIFIED TEXTURE REGIONS 

 
Measurement ( )Var R hTx ( )Var R vTx AhTx AvTx ( x , y ) I hTx I vTx 

Grass 40 40 38 38 40 38 14 
Shadow 36 36 36 36 39 40 8 

Obstacles 37 31 35 35 28 10 33 

Flowers 11 5 9 9 21 14 27 

contained many edges per neighborhood, artificial obstacles 
were the “smoothest”, having little color variation, which 
caused a low edge response.  While flowers were less rough 
than illuminated grass, they were nearly equally as smooth 
as shaded grass in grayscale and binary textures.  
Performance of binary texture distinction and clustering of 
shaded grass did not change significantly as the edge 
threshold was lowered (Fig. 7).   

Based on these results, individual statistics have the 
following utility: Binary directional variance, directional 
binary edge response area, and directionally ambiguous 
centroid location are useful for determining areas of 
illuminated grass in an image due to their compact clustering 
compared to artificial obstacles.   Mean grayscale intensity 
did not exhibit useful behavior for the calculated statistics.   

The regional runtime of this method as implemented in 
MATLAB was approximately 15 kHz for 21x21 pixel 
neighborhoods.  Other general-purpose texture analysis 
methods can be more computationally expensive.  For 
example, the method proposed in [7] operated at 
approximately 30 Hz per region on similar hardware 
(Windows XP based PC with a 2.00 GHz Core 2 Duo 
processor and 2 GB of RAM). 

Grass identification via these statistics was tested on 40 
randomly selected samples of 31x31 neighborhoods 
containing: illuminated grass, shaded grass, artificial 
obstacles, and flowers.  These results are tabulated in Table 
2, which lists the number of correctly identified texture 
regions.  Illuminated grass was correctly identified with at 

least 95% accuracy for all texture measurements except 
mean vertical grayscale intensity.  Shaded grass was 
identified with at least 90% accuracy for all texture 
measurements except the mean vertical grayscale intensity.  
Binary horizontal variance and binary horizontal and vertical 
area identified obstacles correctly with at least 87.5% 
accuracy.  Flowers were poorly identified.  We believe that 
this may be due to texture similarity between the grass and 
flowers.  

Segmentation based on each measured statistic of 
illuminated grass for 31x31 neighborhoods was performed 
for 300 regions in 640x480 images.  These images emulated 
typical scenes that a lawnmower may encounter in a 
suburban environment.  Sample segmentation results of the 
horizontal binary variance and binary centroid locations are 
displayed in Figs. 9-10.  Each statistic successfully managed 
to differentiate between artificial obstacles and grass.  While 
segmentation successfully recognized areas with multiple 
flower buds, it failed to recognize flower areas with a high 
amount of stems and/or leaves.  Failure to identify all flower 
regions is again attributed to the roughness of the flower 
obstacle, unlike the flowerbed edging whose texture is 
significantly smoother than either the illuminated or shaded 
grass. 

The focus of future research will be to eliminate false 
positives in the resulting binary freespace representations.  
This could be done by post-processing outputs individually 
by removing freestanding neighborhoods or neighborhood 
groupings less than an area corresponding to the smallest 

 
 

 
Fig. 7.  Horizontal vs. vertical binary variance for observed surfaces at 

31x31 neighborhood size with an edge threshold value of 10.  
Compared to Fig. 3, location of clustering did not significantly change 

as the edge threshold value was lowered. 

Fig. 6.  Horizontal vs. vertical grayscale texture intensity for observed 
surfaces at 11x11 neighborhood size.  Distinct clustering between 

illuminated grass (green), shaded grass (yellow), artificial obstacles 
(red), and flowers (magenta) was not observed.  This phenomenon was 

consistent for binary variance measured statistics as well. 
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obstacle the lawnmower is likely to encounter.  Freespace 
representations could then be combined across generated 
outputs by comparing how many statistics agree that the 
current neighborhood is grass and creating a probability map 
of driveable terrain in the image. 

Additionally, abstracted binary freespace representations 
into range images via the method presented in [5] can be 
merged using existing methods such as those presented in 
[14] for a best estimate of freespace around the robot. 

VI. CONCLUSIONS 
 We investigated grayscale and binary texture extraction 
via image convolution and quantified the observed textures 
via first and second order statistics in an attempt to identify 
grass for navigational use by an autonomous lawnmower.  
We show that illuminated grass has a distinct texture 
compared to artificial obstacles based on these statistics.  To 
demonstrate this, we classified test images of illuminated 
grass, shaded grass, artificial obstacles, and flowers based on 
these statistics.  This created texture-based binary freespace 
representations of grass in an image.  Our results indicate 
that it is possible to identify grass from artificial obstacles, 
which future work will use for obstacle avoidance purposes 
in an autonomous lawnmower.  Since the analyzed images 
contained well-illuminated grass and heavy shadows, we 
believe that these descriptors are able to identify grass with a 
high degree of accuracy at intermediate lighting conditions 
as well.  While each statistic was not able to identify every 
neighborhood correctly by itself, we posit that recognition 
performance could be improved through a combination of 
these results by creating a probability map of driveable 
terrain or through sensor fusion techniques. 
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 Fig. 8.  Illuminated grass, shaded grass, 
artificial texture flowerbed edging, and 

natural texture flower obstacles. 
 

Fig. 9.  Segmentation results of Fig. 8 based 
on horizontal binary variance statistics for 

31x31 neighborhoods.  This statistic 
recognizes the majority of illuminated and 

shaded grass as driveable terrain (white 
regions), while marking the flowerbed 

edging and some flower buds at the top of 
the image as obstacle containing (black). 

Fig. 10.  Segmentation results of Fig. 8 
based on binary centroid location of 

illuminated grass for 31x31 neighborhoods. 
This statistic also recognizes grass as 

driveable terrain (white regions), while 
marking the flowerbed edging and many 

flower buds as obstacles (black). 
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