
Using a string to map the world

Hui Wang, Michael Jenkin and Patrick Dymond

Abstract— Literature and folklore is rife with a range of
oracles that have been used by explorers to explore unknown
environments. But how effective are these various oracles? This
paper considers the power of string and string-like oracles
to map an unknown embedded topological environment. We
demonstrate that for undirected graphs, even very short strings
can be used to explore an unknown environment but that
significant performance improvements can be found when
longer strings are available.

I. INTRODUCTION

Robotic exploration and mapping is commonly referred to
as SLAM or Simultaneous Localization and Mapping [8],
[9], [5], and is considered to be a fundamental problem
in robotics. While SLAM approaches can be classfied in
various ways, one partitioning of the approaches is into those
that use a topological representation and those which use a
metric one. While metric representations capture the metric
properties (e.g., Cartesian coordinates) of the environment,
topological (graph-like) representations describe the connec-
tivity of different places. Within a topological formalism, the
goal of a SLAM algorithm is to construct a graph-like map
representation that is isomorphic to the underlying world
being explored.

The problem that lies at the core of SLAM algorithms
is answering the question ‘have I been here before?’ This
is also known as the ‘loop closing’ problem. (See [5] for
different loop-closing approaches for metric representations.)
One common approach to solving this problem in a graph-
like world is to resort to the use of an additional device
(an oracle) that can help the robot answer the question.
Here ‘oracle’ refers to an aid or device that the robot can
use to disambiguate locations during exploration. Different
forms of oracles or aids have been employed in folk tales
and literature, including pebbles, breadcrumbs, strings, and
the like. (See [10] for a recent survey of the literature.)
With an appropriate aid, the SLAM problem can be solved
deterministically for embedded graph-like worlds. But how
powerful must an oracle be in order to solve the SLAM
problem and are there efficiencies to be found in using
more powerful oracles? Motivated by work such as [7] that
considers theoretical limits to particular classes of robots,
this paper examines the power of various forms of string-
like oracles in exploring topological environments1. We
demonstrate that a very short string is sufficient to solve
the SLAM problem for embedded topological worlds, and

The authors are with the Department of Computer Science and En-
gineering, York University, 4700 Keele Street, Toronto, Ontario, Canada
{huiwang,jenkin,dymond}@cse.yorku.ca

1For an early solution to partial mapping using a string-based aid see [1].

that sufficiently long strings can be used to solve the SLAM
problem in time proportional to the size of the environment
being mapped.

II. WORLD AND ROBOT MODEL

Environments in topological (graph-like) maps are typ-
ically represented as a set of significant places (vertices)
connected via arcs (edges). Here we review a world model
that has been adopted by a number of research efforts.

The world model Following [4] and [2] the world is
modeled as an embedding of an undirected graph G = (V,E)
with a set of vertices V (G) = {v1, ..., vn} and a set of edges
E(G) = {(vi, vj)}. (In the following we denote the number
of edges and vertices in G by m = |E(G)| and n = |V (G)|
respectively.) The labels (if any) on vertices and edges of
G are invisible to the robots, so that vertices and edges are
not uniquely distinguishable to the robot. (In the literature
this is referred to as an unlabeled or anonymous graph [6].)
The graph is embedded within some space in order to permit
relative directions to be defined on the edges incident upon
a vertex. More formally, the definition of an edge within a
graph is extended to allow for the explicit specification of
the order of edges incident upon each vertex of the graph
embedding. An edge e = (vi, vj) incident upon vertices vi
and vj is assigned two labels, one for each of vi and vj ,
representing the ordering of e with respect to the consistent
local enumeration of edges at vi and vj , respectively. Note
that as an unlabeled graph, the absolute edge ordering defined
by the embedding is not accessible to the robot.

Robot motion and perception It is assumed that a robot
can move from one vertex to another by traversing an
edge. The robot can identify when it arrives at a vertex.
The sensory information that the robot acquires at a ver-
tex consists of edge-related perception and string-related
perception. With edge-related perception, a robot can, by
following the pre-defined ordering convention, determine the
relative ordering of edges incident on the current vertex vi
in a consistent manner (e.g., by clockwise enumeration for a
planar embedding). The robot can identify the edge through
which it entered a vertex and assign a label to each edge in
the vertex representing the current local edge ordering. Note
that this local edge ordering is not, in general, equal to the
absolute ordering specified by the embedding (which is not
accessible to the robot), but rather is a permutation of it.

String-related operation and perception The robot is
equipped with a string. The robot can manipulate the string in
various ways. For example, it can ‘tie’ one end of the string
at a vertex and play that string out as it moves through the
graph, and perceive the string when encountering the string

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 561

at a given vertex. The complete set of the robot’s potential
operations and perception on the string are discussed later.

Memory The robot remembers all sensory information it
has acquired and all of its actions. By “memorizing” a motion
sequence and taking advantage of the local edge ordering, the
robot can retrace any previously performed motion within the
graph. Assume that the amount of local memory available
within a robot is sufficient to store such information.

III. MAPPING WITH STRINGS

Can a robot explore and map an arbitrary anonymous
graph-like world without any aid (oracle)? As shown in
[4], given the minimal world model as described above, a
robot lacking any additional aid (e.g., breadcrumbs, pebbles,
strings, and the like) is not able to map its environments
deterministically. Consider (embedded) single cycles graphs
of any size n ≥ 3. In each of the graphs all vertices
have the same degree. Moreover, the degree information of
vertices connected to any vertex are all the same. All of the
vertices thus appear identical to the robot even if the degree
information of arbitrarily large neighborhoods are taken into
consideration. Thus even if the robot were to explore single
cycles of size 3 and 4, it would not be able to tell them apart.
Actually the robot would not tell apart any sized single cycles
– in exploring both the graphs, the robot always observes a
non-terminating sequence of ‘2-door rooms’.

Assuming that we have some aid that is sufficiently
powerful, how expensive is it to explore an unknown en-
vironment deterministically? We begin by observing that the
cost of physically moving a robot is likely to be several
orders of magnitude more expensive (in terms of time,
power expended, etc.) than is the cost associated with the
computational effort. Thus in the following we consider
physical steps moved in exploring the unknown environment
(i.e., number of edge traversals) as the cost of the exploration
algorithm. Clearly the robot must traverse every edge in the
environment in the process of exploring (otherwise it would
not know where all the edges go), and thus a trivial lower
bound of the exploration cost is O(m).

Assume the embedded graph representation described in
Section II. Given the underlying graph G, the oracle-based
algorithms developed in this paper proceed by building
incrementally a known map out of an explored subgraph S
of G. As new vertices are encountered, they are added to
S and their incident edges are added to U which is the set
of unexplored edges that lead to unknown places (and thus
must be explored). Initially S = {v0} where v0 corresponds
to the initial location of the robot. Incident edges at v0 are
the initial elements of U . One step of the algorithms consist
of selecting and removing an unexplored edge e = (vk, vu)
from U , (the robot) traversing to the known end vk and
then following e to the unknown end vu (Fig. 1(a)). Upon
arrival at vu, the robot needs to answer ‘have I been here
before?’ Specifically, it must answer: 1) Does vu correspond
to some known vertex in S (‘where am I entering’)? 2) If vu
corresponds to a known vertex vk′ , then which incident edge
on vk′ does e correspond to (‘by which edge did I enter’)? In

(a) Robot explores e (b) No loop is formed (c) A loop is formed

Fig. 1. Basic exploration step. The robot must determine if e = (vk, vu)
corresponds to a loop or if vu is an unvisited vertex.

the following discussions, inferring (1) and (2) are referred to
as ‘place validation’ and ‘back-link validation’ respectively.
Using different string oracles the algorithms discussed below
conduct validations in different ways. If the validations show
that unknown location vu is not in S (i.e., no loop is formed),
then both vu and e can be added to S, augmenting S by
one edge and one vertex as shown in Fig. 1(b) (non-loop
augmentation). Other (unexplored) edges incident on vu are
added to U . If vu is shown to correspond to the known vertex
vk′ (place validation) and e corresponds to the incident edge
e′ at vk′ (back-link validation), then a loop is formed. In this
case S is augmented by the edge e/e′ = (vk, vk′) as shown in
Fig. 1(c) (loop augmentation). Exploration terminates when
the unexplored edge set U is empty.

The key question is ‘how to do place and back-link
validations deterministically using a string’? A string can
be a powerful oracle when exploring a graph-like world in
that there are many ways of manipulating it, resulting in
validation aids of different powers. We examine different
string classes and for each identify their relative power in
doing validations, i.e., the required exploration cost.

A. Mapping with a very short string

We first present two algorithms for mapping determinis-
tically a graph-like world with the shortest possible string.
In its simplest form the string is unmarked (the surface of
the string provides no specific information), and is only long
enough to be tied at a particular location (vertex) and then
laid out in some direction. We call such a short string a l = ε
string where l denotes the length of the string.

A-1) Mapping by fixing a l = ε string
Probably the simplest way to manipulate such a short

string is to tie it at the starting location, and never pick it
up again. Suppose that the string is tied at vertex v0. Now
consider a path from a particular location (vertex or edge)
within the underlying world to v0. Given the embedding of
the world, the path can be represented as the sequence of
edge orderings at each vertex along the path, and it is true
that there always exist distinct shortest paths (edge ordering
sequences) from different locations of the world to v0. That
is, different locations cannot have the same shortest path to
v0. These paths can be exploited in the validation processes.

The robot can explore and map its environments using
a fixed string in a manner similar to the fixed pebble
exploration algorithm developed in [10]. Initially the robot
enumerates incident edges at v0 and sets edge labels (local

562

on S) based on the enumerated edge ordering. The robot
then ties one end of the string at v0, laying out the string
toward one of the doors (edges) and remembers the (local)
label of the door. The string-related sensory information that
the robot acquires at a vertex includes whether the string is
present at the vertex and the direction of the string if the
string is present. The key idea is that whenever the robot
re-enters v0, by enumerating the doors and identifying the
one that is pointed by the string’s free end, the robot is able
to infer the labels of all the incident edges at v0. That is, the
string not only identifies the unique vertex in which it is tied
but it also provides the unique edge ordering at that vertex.

Algorithm 1: Mapping by fixing a l = ε string
Input: the starting location v0 in G
Output: a map representation S isomorphic to world G
the robot ties the string at v0, laying out in a direction;1

S ← v0; U ← edges in v0; // initial S & U2

while U is not empty do3

remove an unexplored edge e = (vk, vu) from U ;4

the robot traverses S to vk and follows e to vu;5

for each edge (hypothesis) e′ = (v′k, v
′
u) in U do6

compute the shortest path {v′k, ..., v0};7

the robot traverses path {v′k, ..., v0};8

based on the sensory info during traversal do9

case (1) or (2)10

the robot retraces to vu;11

reject the hypothesis and continue;12

case (3)13

confirm the hypothesis and exit loop;14

if a hypothesis is confirmed then15

do ‘loop augmentation’ on S;16

else // all hypotheses are rejected17

do ‘non-loop augmentation’ on S and U ;18

return S;19

The algorithm is outlined in Algorithm 1. Each step
involves traversing an unexplored edge e to the unknown
end vu. Validations are conducted by disambiguating edge
e against (other) unexplored edges in U . Each (other) unex-
plored edge e′ = (vk′ , vu′) incident on a known vertex vk′

in S is considered a potential loop-closing hypothesis. That
is, it is hypothesized that e = (vk, vu) and e′ = (vk′ , vu′)
correspond to the same edge (thus the robot entered vk′ from
vk via e′), as shown in Fig. 2(a). Each hypothesis (edge) is
validated by exploiting its (distinct) path to the string-marked
v0. For each hypothesis the shortest path vk′ , ..., v0 (on S) is
computed. The path is represented as a sequence of (relative)
edge orderings at each vertex along the path, including the
ordering at vk′ (relative to the known ordering of e′ at vk′),
and the ordering at v0 (relative to the known ordering of
the string-pointed edge at v0). The robot then validates the
hypothesis by attempting to traverse this path. The key fact
is that if the hypothesis holds, the path would start from vk′

(a) A hypothesis (b) Hypothesis is confirmed

Fig. 2. Mapping with a fixed l = ε string. S is augmented in (b).

and lead the robot to the string-marked vertex v0 via the
expected entry edge. The robot obtains sensory information
during path execution, and distinguishes three possibilities:

1) The string is encountered at some point along the
execution of the path prior to completion.

2) Upon completion of path execution, the string is not
present at the vertex, or it is present but the entry edge
does not match the expected entry edge in v0.

3) Upon completion of path execution, the string is
present at the vertex and the entry edge matches the
expected entery edge in v0.

As vk′ , ..., v0 is the shortest possible path sequence, the robot
should not have encountered the string prior to v0, thus the
hypothesis can be rejected in case (1). The hypothesis is
also rejected in case (2). In this case the robot did not arrive
at v0 or did not arrive from the correct entry edge. Once
a hypothesis is rejected, the robot retraces its steps by the
reverse edge sequence (to vu), and tries the next hypothesis
of e (if any). In case (3) the hypothesis is confirmed and no
other hypotheses of e are tried. The validation process for e
terminates either when a hypothesis is confirmed, or, all the
hypotheses have been tested (rejected). If all the hypotheses
for e are rejected, the unknown location vu is not in S (no
loop is formed). Thus vu and e are added to S, augmenting
S by one vertex and one edge (non-loop augmentation). If a
hypothesis e′ is confirmed, then vu corresponds to the known
vertex vk′ (place validated) and e corresponds to the incident
edge e′ at vk′ (back-link validated). A loop is formed. Thus
S is augmented by edge e/e′ = (vk, vk′) as in Fig. 2(b) (loop
augmentation). The algorithm terminates when U is empty,
with S being isomorphic to underlying world G ([10]). The
algorithmic cost (edge-traversals) of mapping a graph-like
world G is O(m2n) ≤ O(n5).

A-2) Mapping by carrying a l = ε string
The high O(m2n) exploration cost of the above algorithm

can be reduced by increasing the power of the string being
used. One example is that the robot is not limited to only
tying the string once, but rather can also pick up and carry
the string, and tie the string again at different vertices as
desired. Assume that the robot can put down and tie the
string it carries at any vertex and that it can untie and pick
up the string if the string is tied at the same vertex as the
robot. Assume the same string-related perception as above.

With a movable string, after the robot traverses an unex-
plored edge e to the unknown end vu, validations are carried
out by tying the string at vu and laying it out toward the entry
edge (pointing toward vk), and then searching S for the tied

563

string. If the string is not found at one of the vertices of S,
then vu is not in S (i.e., no loop is formed). Thus both vu and
e can be added to S (non-loop augmentation). If the string is
found tied at some vertex vk′ of S then vu (where the string
was tied) corresponds to the known vertex vk′ (where the
string was found). Moreover, the edge at vk′ that the string
points to is edge e′ (that corresponds to edge e), whose label
can be inferred immediately based on the relative ordering
between e′ and the current entry edge. The robot can thus
add the edge e/e′ = (vk, vk′) to S, augmenting S by one
edge (loop augmentation). This is outlined in Algorithm 2.

Algorithm 2: Mapping by carrying a l = ε string

S ← v0; U ← edges in v0;1

while U is not empty do2

remove an unexplored edge e = (vk, vu) from U ;3

the robot traverses S to vk and follows e to vu; ties4

the string at vu laying toward e;
the robot traverses S searching for the string;5

if the string is found then6

do ‘loop augumentation’ on S;7

else8

do ‘non-loop augmentation’ on S and U ;9

the robot (goes to vu and) picks up the string;10

return S;11

This movable string algorithm is a simplified version of the
O(mn) undirectional movable marker algorithm of Dudek et
al. [4]. An undirectional marker can mark a particular vertex
but cannot provide edge ordering information. Thus when
v′k is identified the robot needs to do extra traversals for
‘back-link validation’. Since the string is ‘directional’, here
the extra traversals are avoided but the cost of the movable
l = ε string algorithm is still O(mn) ≤ O(n3).

B. Mapping with a longer string

Clearly a string of various (longer) lengths can be used as a
short string as described above, incurring O(m2n) or O(mn)
cost, but are there efficiencies to be found in using longer
strings? We examine below the power of strings of various
lengths relative to the size of the world being explored. We
start with the (simplest) case where the string is much longer
than the size (total number of edges) of the graph-like world,
i.e., l� |E(G)| (assuming a unit edge length).

B-1) Mapping with a l� |E(G)| string
If the robot is assured that the string is sufficiently long

(e.g., l � |E(G)|), then there are several ways to alleviate
the validation efforts in each step. One example is to allow
the robot to tie knots at each unknown place vu it is visiting.
Assume that the robot ties the string at the initial vertex
v0 and plays the string out as it explores, and that during
exploration the robot ties a distinct knot at each newly visited
(blank) vertex vu and ‘remembers’ the knot, and that when
entering a string-marked (i.e., visited) vu later the robot can
sense the unique knot associated with the vertex. Then such a

string answers not only ‘whether vu has been visited before’,
but also ‘exactly which vertex does vu refer to’, as all the
visited vertices are marked with their ‘own’ knots. Thus
‘place validation’ for vu is never needed. Without exploiting
other information, when entering a string-marked (visited)
vertex vu/vk′ via e the robot may still need to conduct ‘back-
link validation’ to infer the label of entry edge e′ at vk′ that
e corresponds to. Probably the simplest solution is for the
robot to traverse one of the explored edges e′′ at vk′ , which is
a stringed edge at vk′ . The knot at the other end of e′′ (which
must be there) ‘tells’ the robot which vertex it is visiting and
thus making the label of e′′ at vk′ inferable. Then based on
the relative ordering between e′′ and e′, the label of e′ can
be inferred. The exploration cost of the approach is O(m).

The extra traversal for back-link validation at each string-
marked place can be avoided in various ways. For example,
when entering a blank (unvisited) place for the first time, the
robot ties the distinct knot near the edge (door) by which it
enters the place, or, ties an extra knot on the string along
the entry edge. Such a string defines a global ordering on
each visited vertex thus marking all the visited vertices and
edges. Both place and back-link validation are avoided. The
above approach is thus simplified to search algorithms such
as Depth-first search (DFS) and GREEDY, which have O(m)
cost. As shown in [3], DFS is an optimal algorithm for
mapping an unknown undirected graph-like world.

B-2) Mapping with a l = c(G) string
The problem becomes more challenging if the robot is not

assured that the string is sufficiently long. We first consider
the case where the robot is assured that once the string is
tied, it can play the string out and traverse to any other vertex
without running out of string, provided that the string never
forms a complete loop (cycle) during traversals. We model
the problem as mapping with a string of l = c(G), where
c(G) denotes the circumference of the graph-like world G
(i.e., the length of a longest simple cycle in the world).

With such a string, the robot can tie one end of the string
at the initial vertex v0, and play the string out as it explores,
until it enters a string-marked place (i.e., the string forms a
loop), or, until it ‘saturates’ the current vertex, i.e., the current
vertex has no more unexplored edges. In these cases the robot
retraces its steps along the string by picking up and rewinding
the string, until it comes back a vertex (on the string) that
has unexplored edge(s), and explores there. By enforcing
that the robot rewinds the string when entering a string-
marked vertex, the string never forms a loop and thus the
robot never runs out of string during exploration. The robot
also rewinds the string after ‘saturating’ the current vertex.
Although the string might be rewound during exploration
thus leaving some visited vertices ‘blank’, such vertices have
all been saturated and thus are ‘inaccessible’ to the robot (in
each exploration step the robot always follows an unexplored
edge out of S). Thus if the robot enters a place that contains
no string, that place must have not been visited.

The algorithm is outlined in Algorithm 3. Each step
involves traversing an unexplored edge e to the unknown

564

(a) The robot explores e (b) vu/v′k has string (c) Augments S by e/e′

Fig. 3. Mapping with a l = c(G) string. The robot rewinds the string
after augmenting S (b)–(c).

end vu (and laying the string along e). At vu the robot
leaves the string (free end) there (Fig. 3(a)–(b)). There
are two possibilities at vu: 1) vu only contains the new
string, 2) vu (and up to two of its edges) already contain
the string (Fig. 3(b)). In case (1), vu must have not been
visited before (as justified above). Thus both e and vu can
be added to S (non-loop augmentation) without any further
validation. If vu becomes saturated now, the robot rewinds
the string along e back to vk (if vk becomes saturated now,
the robot rewinds further). Otherwise the robot continues
on an unexplored edge at vu. In case (2), both place and
back-link validation are needed, as the string at vu might
not reveal which known (visited) vertex vk′ is, and which
entry edge e′ is. The newly laid string (along e) is exploited.
Validations are conducted by the robot (reversely) visiting
vertices along the string looking for the one that has one more
stringed edge than it should have (based on S). (Or looking
for the one that contains the string’s free end.) Once the
vertex vk′ (corresponding to vu) is identified, the edge e′ that
corresponds to e is also identified, which is the unexplored
edge in vk′ (shown on S) that now has the string laid along it
(also the edge by which the string’s free end comes in). This
‘new stringed edge’ e/e′ = (vk, vk′) is added to S (Fig. 3(c))
(loop augmentation). The robot then rewinds the string along
e/e′ back to vk, trying to explore there (Fig. 3(b)–(c)). If vk
becomes saturated now, the robot rewinds further.

Algorithm 3: Mapping with a l = c(G) string

robot ties the string at v0; S ← v0; U ← edges in v0;1

while U is not empty do2

remove a closest edge e = (vk, vu) from U ;3

the robot traverses S to vk and follows e to vu;4

unwinds the string along e to vu;
if vu only contains the new string then5

do ‘non-loop augmentation’ on S and U ;6

if vu becomes saturated now then7

robot rewinds string to an unsaturated node;8

else // vu contains the string already9

robot searchs back along the string looking for10

the vertex that has one more stringed edge;
do ‘loop augmentation’ on S;11

robot rewinds string to an unsaturated node;12

return S;13

While the approach has O(mn) exploration cost as the
robot may exhaust all vertices currently on the string
(bounded by n) for validating a single edge, it is expected to
produce a reduced cost over the short movable l = ε string
algorithms due to the reduced need for validation.

B-3) Exploring with a l < c(G) string
Now consider the more general case where the robot may

run out of string during exploration, even if the string never
forms a cycle. This may happen when string length l < c(G).
This may also occur when the robot does not know the length
of the string (relative to the environment size).

The proposed algorithm extends the above l = c(G)
algorithm. Initially the robot ties the string at the starting
vertex v0, and explores all the vertices that are within
distance l from v0. When string length l is reached, i.e., the
robot runs out of string, the robot rewinds the string from the
current vertex to try previously visited vertices on the string,
even if the current vertex has not yet been saturated. When
no exploration is possible without running out of the string,
the robot unties the string from v0 and chooses one of the
known vertices v′0 which is not yet saturated, tying the string
there and starting exploration again. The robot then explores
all vertices within a distance l from v′0. The process repeats
until the environment is fully explored. As above, each step
involves exploring an unexplored edge e to its unknown end
vu. If vu contains the string, as in the above algorithm the
robot searches back along the string looking for the known
vertex having one more stringed edges (or containing the
string’s free end), and then does ‘loop augmentation’. If vu
does not contain the string, then unlike the above algorithm,
the robot visits known vertices (which are not on the string)
looking for the one having a stringed edge (or containing
the string’s free end). This visit is needed as the string is
rewound whenever l is reached, leaving some visited places
not yet saturated and potentially accessible.

Algorithm 4: Mapping with a l < c(G) string

robot ties the string at v0; S ← v0; U ← edges in v0;1

while U is not empty do2

remove a closest edge e = (vk, vu) from U ;3

the robot traverses e to vu; unwinds the string to vu;4

if vu only contains the new string then5

robot searches non-string vertices on S looking6

for the vertex having a stringed edge;
do ‘non-loop augmentation’ on S and U ;7

else // vu contains the string already8

robot searches back along the string looking for9

the vertex having one more stringed edge;
do ‘loop augmentation’ on S;10

if string length l is reached then11

robot rewinds string to an unsaturated vertex;12

if all vertices within distance l are explored then13

robot unties string and reties it at a new node;14

return S;15

565

(a) Homogeneous lattices. (b) Lattices with 20% missing vertices.

Fig. 4. Performance of mapping on lattices of varying sizes using different strings (log scale). Results for (b) are averaged over 30 graphs. Each graph
has randomly generated holes (deleted vertices). Error bars in (b) show standard errors.

Fig. 5. Performance of mapping on non-homogeneous lattice (20 × 20
vertices lattice with 20% missing vertices) using strings of different lengths.
Results are averaged over 30 graphs each has randomly generated holes.
Error bars show standard errors.

The l < c(G) string algorithm has O(mn) cost. Note that
the movable l = ε and l = c(G) algorithms discussed earlier
can be considered special cases of this general algorithm.

C. Empirical evaluations of the power of different strings
Here we present empirical comparisons of the performance

of mapping with the different string algorithms discussed
above. We first compare the relative power of a fixed short
(l = ε) string, a movable short (l = ε) string, a long
(l = c(G)) string, and a very long string (l � |E(G)|).
Experimental results are reported for both homogeneous
and non-homogeneous lattice graphs of varying sizes (see
Fig. 4). For these environments, exploring by carrying the
short (l = ε) string which has O(mn) cost, obtains a reduced
exploration cost over exploring with a fixed short string
which has O(m2n) cost. Exploring with l = c(G) string
also has O(mn) cost. Exploring with a very long string (with
knots) which has a (optimal) linear cost O(m), provides the
lowest cost over all the other strings considered.

The results for the l < c(G) algorithm with varying
length l are shown in Fig. 5. The algorithm demonstrates
exploration cost reduction as l increases. Note that when the
string is sufficiently long (l ≥ c(G)), fixed exploration cost
is produced (the algorithm acts as the l = c(G) algorithm).

IV. SUMMARY AND DISCUSSIONS

Given an embedded topological representation, it is not, in
general, possible to map the world deterministically without

TABLE I
SOLVABILITY AND COST BOUNDS OF DIFFERENT STRINGS.

String oracles Exploration cost

a short l = ε string fixed O(m2n)
movable O(mn)

a long string l < c(G) O(mn)

a longer string l = c(G) O(mn)

an infinite string l� |E(G)| O(m) optimal

resorting to the use of some type of oracle to solve the ‘have
I been here before?’ problem. Given the simplest form of
string, deterministic mapping is possible with cost O(m2n).
The minimum cost for mapping is O(m) and this can be
obtained with a sufficiently long string. Overall the longer the
string the lower the cost. Performance bounds of the various
strings reviewed in the paper are summarized in Table I.

ACKNOWLEDGMENT

The financial support of NSERC Canada is gratefully
acknowledged.

REFERENCES

[1] Theseus by Plutarch, Written 75 A.C.E. Translated by John Dryden.
[2] X. Deng and A. Mirzaian. Competitive robot mapping with homo-

geneous markers. IEEE Transactions on Robotics and Automation,
12(4):532–542, 1996.

[3] A. Dessmark and A. Pelc. Optimal graph exploration without good
maps. Theoretical Computer Science, 326(1-3):343–362, 2004.

[4] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration
as graph construction. Technical Report RBCV-TR-88-23, Department
of Computer Science, University of Toronto, 1988.

[5] H. Durrant-whyte and T. Bailey. Simultaneous Localization and
Mapping (SLAM): Part I. IEEE Robotics and Automation Magazine,
13(2):99–100, 2006.

[6] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph
exploration by a finite automaton. Theoretical Computer Science,
345(2-3):331–344, 2005.

[7] J. M. O’Kane and S. M. Lavalle. Comparing the power of robots.
International Journal of Robotics Research, 27(1):5–23, 2008.

[8] S. Thrun. Robotic mapping: a survey. In Exploring Artificial
Intelligence in the New Millennium, pages 1–35. 2003.

[9] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
USA, 2005.

[10] H. Wang. Exploring topological environments. Technical Report CSE-
2010-05, Department of Computer Science and Engineering, York
University, 2010.

566

