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Abstract— This paper introduces a new statistical method for
combining vision and robot dynamics to generate trajectories to
intercept a moving object. Previous methods only use informa-
tion from the kinematics without considering the forces needed
to move along the trajectory. Using robot dynamics allows extra
measures, such as energy efficiency, to be optimised alongside
maximising the likelihood of intercepting the target. We derive
a statistical model for a vision system and a Lagrangian
dynamical model of a robotic arm, showing how to relate joint
torques to the vision. The method is tested by applying it to
the problem of catching a simulated moving object.

I. INTRODUCTION

Hand-eye coordination is an important problem in
robotics, enabling a robot equipped with a vision system
to manipulate visually sensed objects. This is particularly
important for robots operating in dynamic environments,
where the robot must reach a certain pose without a map
of its workspace, in potentially noisy conditions.

The problem can be broken down into two distinct areas
static and timed hand-eye coordination. In the static case,
the robot must be able to move towards a point which is
static in the scene, for example the picking and placing of
fixed objects within the task space. A robot equipped with
timed hand-eye coordination can move to match a trajectory
of points through time.

A significant amount of research has been done in the
area of static hand-eye coordination; the image Jacobian can
be estimated, relating velocities in the joints of the robot
to points in the image [Chaumette and Hutchinson, 2006],
[Chaumette and Hutchinson, 2007]. In a partitioned ap-
proach [Corke and Hutchinson, 2001] several points are
tracked on the end-effector, ensuring the manipulator reaches
the correct pose, taking care of the redundant degrees of
freedom in the kinematics.

Timed hand-eye coordination, introduced in
[Allen et al. 1993], presents a much more difficult
problem, since the target object needs to be tracked
using a reliable motion model. Progress has been
made towards a solution using the image Jacobian,
extending it to match the velocity of a visual trajectory
[Chaumette and Hutchinson, 2007]. Dynamical systems can
also be used to generate timed trajectories which make an
interception [Santos and Ferreira, 2009], while allowing the
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robot to learn natural grasping movements. The area of
active vision [Hong and Slotine, 1997] introduces moving
cameras to track and catch an object in real-time, reducing
the need for complex vision algorithms and wide field-of-
view cameras. This is extended into the field of mobile
robotics, to intercept a moving ball. Methods in this area
use statistics to find a distribution of possible ball positions
[Guerrero et al. 2008], [Santos and Lima, 2009]; and then
use controllers to intercept it [Capparella et al. 2005].

Both static and timed coordination have been solved using
kinematics, giving positions, velocities and accelerations for
the robot to move to. It is also important for the robot to
be given the torques needed to make the movement. Force
and vision have been combined in this way to better estimate
the control the robots position [Beaten and Schutter, 2004],
[Lippiello et al. 2007], and allow the robot to apply a
force to an object while maintaining a particular pose
[Nelson et al. 1995]. This gives the robot the ability to use
vision to position the arm and force sensors to undertake
tasks which require more precision.

In this paper a method is explored for timed hand-eye
coordination that can generate trajectories which are optimal
in terms of the vision and dynamics of the robot. The paper
contributes to the current literature with,
• A novel statistical model for hand-eye coordination,

which allows priors based on robot dynamics to be
considered for intercepting a moving object, where
previously only kinematics can be used.

This applies particularly to robots which are force con-
trolled and designed to be compliant, trajectories can be
chosen which minimise energy or are robust to external
disturbances. Current methods generate trajectories which are
based entirely on the kinematics of the arm and target object,
negating the use of criteria based on joint torques.

We test our method to show that it is robust to noise in
the vision system, and flexible to a range of different criteria
in generating trajectories.

II. VISUAL MODEL

In this section a statistical model of the robots vision
system is built. This allows us to find points that are most
accurate, giving a basis to infer which are the best places to
perform an action.

A. Geometric Uncertainty

It is conceptually clear that accuracy in depth perception
is dependent on the configuration of any visual sensors, and
also the point being viewed. This is demonstrated by deriving
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Fig. 1: On the left, the maximum-likelihood surface in triangulating a matching point across the whole workspace is shown.
The red lines denote the camera positions and the corresponding likelihood is quantified by the saturation. This is the
maximum value of distribution 1, for each point x. The diagram on the right shows the probability distributions given a
selection of triangulated points (marked by crosses), this is a direct calculation of equation (4).

a Bayesian model of the sensors, and observing the resulting
error distribution.

The 3D location of a point is represented as x ∈ RP3

and cameras modeled by two projection matrices P1, P2

[Zisserman, 2000]. The corresponding points in each camera
are given by x1, x2 where,

xi = Pix + εi, (1)

with εi ∼ N(0,Σi) and i ∈ {1, 2}.
Letting Si := (Pi,Σi) be the parameters of each camera

we have p(xi|x, Si) = N(xi|Pix,Σi), the likelihood of the
three dimensional point given the camera parameters.

It remains to find the probability distribution of points
in three dimensions. Each camera reading is assumed to
be statistically independent, and so with an application of
Bayes theorem and the assumption that p(x|Si) is uniformly
distributed, the following holds,

p(x|C) =p(x|x1, x2, S1, S2) (2)

∝
∏

i∈{1,2}

p(x|xi, Si) (3)

∝
∏

i∈{1,2}

p(xi|x, Si). (4)

This gives the likelihood that the triangulated point is
correct, given the measurements from both cameras. Figure
1 shows how the accuracy in calculating the position of a
world point changes depending on where it is with respect
to each of the cameras.

B. Predictive Uncertainty

When tracking a moving object we would like to be able
to predict how it will move in the future. Doing this will
allow enough time to make a decision and perform an action,
before the object reaches a particular state.

In making this kind of prediction, the uncertainty grows
with every time step taken without new data. Assuming
that the object follows linear dynamics, the movement is
modelled using a Kalman filter. This gives an estimated

position and velocity for the object, and allows us to predict
its state arbitrarily into the future.

A covariance matrix representing the corresponding mea-
sure of uncertainty in estimating the state is also calculated,
complementary to the probabilistic model used so far.

For each measured state st =
(
zt
vt

)
at discrete time

t ∈ N, where zt is the position and vt is the velocity, the
following relation holds,

st = Ast−1 + εt, (5)

where A is the state-transition matrix and εt ∼ N(0, Q) is
zero mean Gaussian noise. Letting H(i,j) = [si, si+1, ..., sj ],
the following matrix equation is solved finding a least-
squares solution for A.

AH(1,N−1) = H(2,N) (6)
A = H(2,N)(H(1,N−1))∗. (7)

Where (H(1,N−1))∗ is the Moore-Penrose pseudo inverse
of the matrix H(1,N−1). This requires that N states are
measured before any prediction can take place.

For known states the position and variance is estimated
using the predict-update equations of a Kalman filter, for
future time intervals the position is predicted using equation
5, and covariance predicted as follows,

Mt = AMt−1A
T +Q. (8)

This ensures that the covariance increases appropriately
with the amount of prediction.

To incorporate this information in to the final optimisation
a probability distribution p(x|t,K) is required where t ∈
N is the time and K := H(1,N) denotes the set of past
measurements.

The probability distribution is given as follows,

p(x|t,K) =p(x|t,H(1,N)). (9)
=N(x|st,Mt) (10)
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Fig. 2: The position, velocity and acceleration are shown for a 2-dimensional Bezier curve, that has been modified by shaping
the time input. The graphs demonstrate that in each dimension the trajectory has zero velocity and acceleration at the end
points.

Here x denotes the true position of the target and st
the measured state at time t. This distribution incorporates
knowledge about the most accurate places in the vision
system to catch the object, and also the best point in time.

C. Combining geometric and predictive uncertainty

We now have a probabilistic model governing the geo-
metric relationship of the camera system, showing how the
error in measuring a point is distributed in three dimensions
(equation (4)). A Kalman filter allows us to measure the
position of an object and predict its future position and error
distribution (equation (9)). It remains to show how these two
distributions can be combined, to predict the position of a
moving object while triangulating its position using multiple
cameras.

Using the independence of the camera C and the Kalman
filter with time (K, t), the likelihood of the position x, given
data from the tracked target β := (C,K) is calculated.

p(x|β, t) =p(x|C,K, t) (11)
∝p(x|C)p(x|K, t) (12)

This probability distribution gives a complete likelihood
of the estimated position of a moving object, also allowing
for future positions to be predicted. The formulation is
general enough for alternative tools to be used if needed.
For example, where the assumption of linear dynamics in the
Kalman filter may be too limiting in some circumstances,
it is possible to be easily exchanged with another particle
filter which also gives information about the uncertainty in
prediction.

III. ARM DYNAMICS

There are an infinite number of movements a robot can
make in order to achieve a particular task. In this section
we analyse a set of trajectories by considering the inverse
dynamics of the robot, i.e. the torques needed to make the
movement. This is then used as a basis to decide on which
trajectory is the best.

To determine the inverse dynamics, a Katana robot is
modeled in the program DySim [Sahinkaya, 2004]. Katana
is a 6DOF small sized robotic manipulator, with a reach of
517mm and weighing 5.2kg.

DySim uses the Lagrange equation, considering the dif-
ference between kinetic and potential energy in the system
to find the torque in each joint needed to make a given
movement.

A. The Set of Trajectories

A small set of trajectories are selected to analyse on the
robot. Bezier curves are used to make the movement, but with
the additional constraint that the beginning and end of the
trajectory have zero velocity and acceleration. This prevents
the controllers from putting too much force on to the motors,
making them stall or break.

A Bezier curve is defined by the following equation,

b(t) =(1− t)2p0 + 2(1− t)tp1 + t2p2 t ∈ [0, 1] (13)

Then b(t) passes through the points p0 and p2 with
curvature controlled by the point p1. To ensure that the
trajectory terminates with zero velocity and acceleration a
shaping function f : R+ → [0, 1] is used [Sahinkaya, 2001],
defined by the following equations,

f(t) =1− e−(αt)3 (14)

ḟ(t) =3(αt)2e−(αt)3 (15)

f̈(t) =(6αt− 9(αt)4)e−(αt)3 (16)

The parameter α controls the magnitude of acceleration.
Setting α := 1.66 ensures that the movement stops near
t = 1.

The Bezier curve is then modified by shaping the variable
t, to give a new function Φ : R → Rn, defined by the
following,

Φ(t) =b(f(t)) (17)

Φ̇(t) =ḃ(f(t))ḟ(t) (18)

Φ̈(t) =f̈(t)ḃ(f(t)) + b̈(f(t))ḟ2(t) (19)
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Substituting (14) - (16) in to (17) - (19) gives a smooth
function with the correct boundary conditions.

A set of trajectories is then defined as ψ ∈ Ψ with
ψ = (θ, l, γ)T , relating to the Bezier curve defined
by p0 = (0, 0.7, 0)T the robots initial position, p2 =
l(sin(θ), cos(θ), 0)T and p1 = 1

2p2 + γp⊥2 , where p⊥2 is the
vector perpendicular to p2. This constrains the manipulator
to move in the plane, to simplify degrees of freedom in the
model. With the parameter γ, giving the degree of freedom
termed curvature. Figure (2) shows a Bezier curve along with
the corresponding velocity and acceleration, demonstrating
the zero terminal boundary conditions.

B. Energy Efficiency

We take the set of trajectories as defined in section III-A
and calculate the energy required for each one. This gives a
good measure to determine one trajectory from another.

The average energy in the kth joint is defined as follows,

Ek(ψ) =
∫ υ

t=0

|fk(t)|dt (20)

This is the integral of the absolute sample mean torques
over time, where fk(t) denotes the torque in joint k at time
t ∈ [0, υ). The total energy consumption for the action is
taken to be the the sum of energy over each of the joints.

To test that the calculation of energy is correct, the same
trajectories are performed on the Katana robot and the
total current needed to make the movement is measured.
Figure 4 shows the results of this experiment for a range of
trajectories, the simulated results are similar to those from
the dynamic simulation, validating the model.

C. Precision

Another measure of quality between trajectories is preci-
sion. A trajectory is called precise if adding noise to any of
the motor torques affects the final position of the end-effector
the least. This is useful for robots which do not use a high
gain for position feedback, an example of this would be a
torque controlled robot which is designed to be compliant.

To calculate precision, random Gaussian noise is added to
the desired end position of the robot. The trajectory needed to
reach this point is then calculated. This process is repeated
500 times, giving a sample set of the torques required to
make the move in each joint. Counter intuitively, precise
trajectories are chosen to be ones which have the lowest
signal to noise ratio, ensuring that small perturbations in the
motor torques will affect the end-position the least.

Two examples of this are shown in 3, with each colour
representing a different motor. The bottom set of torque tra-
jectories have a lower signal to noise ratio and are therefore
more precise.

The signal to noise ratio for the kth joint is then given by,

ρk(ψ) =
∫ υ

t=0

µk(t)
σk(t)

dt (21)

Where µk(t) and σk(t) are the mean and variance of the
torques in the kth joint at time t. ψ denotes the parameters
of the trajectory.

Fig. 3: The resulting torques calculated from a distribution
of end-effector positions. The top graph shows a the torques
needed to generate a Bezier curve with parameters θ = 0,
l = 0.15 and γ = 0. In the bottom graph the trajectory has
parameters θ = −1.5, l = 0.07 and γ = −0.3

This can then be used to estimate how the covariance of
the end-effector position changes, given that there is noise
present in the torques.

Σψ ∝ (
4∑
k=1

ρk(ψ))−1I3. (22)

If a robot with high precision controllers are used, a small
constant covariance matrix can be used instead.

IV. COMBINING VISION AND DYNAMICS

In this section, the arm dynamics and probabilistic models
of the vision system are combined in order to perform hand-
eye coordination.

Given the statistics for the arm α and object β being
tracked, and the time passed t ∈ R+, a distribution over
the set of trajectories can be found,

p(ψ|α, β, t) ∝ p(α, β|ψ, t)p(ψ) (23)

∝
∫∫

xb,xa

p(α, β|ψ, xa, xb, t)p(xa, xb|t, ψ)p(ψ) (24)

∝
∫∫

xb,xa

p(α|ψ, xa, t)p(β|xb, t)p(xa, xb|t, ψ)p(ψ) (25)

Where xa and xb denote the positions of the arm and
object respectively, and ψ represents the parameters of the
trajectory.

The Dirac-delta distribution is then used, so that a touch
is only probable when the position of the object and position
of the hand coincide.

p(xa, xb|t, ψ) =δ(xa − xb) (26)
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Fig. 4: The total energy required to perform a particular trajectory. The top row shows the results from a dynamic simulation,
and the bottom row shows the results of measuring the total current used in the motors of the Katana.

Using Bayes theorem and equation (26) with equation (25)
then gives that,

p(ψ|α, β, t) ∝
∫

x
p(x|α, t, ψ)p(x|β, t)p(ψ) (27)

p(x|β, t) is the distribution of error in the visual estimate
of the moving object, given in equation (12), with β defined
at the end of section II-C; p(x|α, t, ψ) is the distribution of
error in the estimate of the arm position, taken to be normally
distributed, with covariance as in equation (22) and a mean
corresponding to the measured arm position at time t.

The distribution p(ψ) is known as the prior, and gives
the likelihood of a trajectory independent of any other
information. The prior is set to be proportional to the total
energy required to make the movement,

p(ψ) ∝ (
4∑
k=1

Ek(ψ))−1 (28)

To find an action ψ the negative log-likelihood of (27),
−ln(p(ψ|α, β, t) is optimised using the Gauss-Newton tech-
nique. The initial value is estimated by sampling the whole
domain sparsely, and then choosing the maximum.

V. SIMULATIONS

The method is tested by dynamically simulating a Katana
robot, and a linearly moving object in DySim. To ensure
that the simulation environment is as accurate as possible,
the same set of movements are performed on the robot as
in simulation, and compare the total energy outputs using
equation (20). The trajectories are defined by Bezier curves,
as in section III-A, with the following defining parameters,
l ∈ [0.07, 0.21], θ ∈ [−1.5, 1.5], γ ∈ [−0.3, 3]. Sampled to
give a total of 252 trajectories.

In order to compute the total energy for the robot, the tra-
jectories were performed 10 times, and the current required
in each of the joints recorded and averaged, this gives a value

Fig. 5: Intercepting a moving target, the uncertainty in
prediction is represented proportionally to the marker size.

roughly proportional to the torque. This mean current is then
used as fk(t) in equation (20), to calculate the total energy
exerted by the robot throughout the movement. The results
of this experiment are given in figure 4, showing a strong
correlation between simulated and empirical results.

The validation of the dynamics of the robot allow us to
move on to use only simulation for experimentation. This
simplifies the amount of technology needed and allows us to
concentrate on the functionality of the method. We plan to
extend these results in the future, using real cameras and a
robot.

The ability of the robot to intercept the target is shown
in figure 5. The method starts predicting when the trajectory
becomes red, and the size of marker is proportional to the co-
variance as estimated by the Kalman filter. This demonstrates
how uncertainty in the objects position increases with the
amount of prediction. The robot is optimising for both energy
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Fig. 6: Different actions the robot takes under varying noise
and priors. In the final three graphs the trajectories for energy
efficiency and combined energy and precision coincide, this
shows a prior with a stronger preference for a trajectory
dominating the other.

reduction and precision in the trajectory, and as a result,
moves in a straight line towards the point of interception.

In order to show the effect of using different priors, the
method is run and optimised for both energy minimisation
and precision; energy minimisation alone with the end-
effector covariance taken as 0.01; and precision alone with
the prior p(ψ) set to be uniformly distributed.

The magnitude of the noise is increased, and as the
standard deviation increases the method tends to choose
interception points earlier (figure 6). Comparing this with
figure 5 it can be seen that as the variance increases, the robot
starts to choose interception points earlier along the objects
path, minimising the uncertainty in the Kalman Filter.

The response to noise was tested by adding Gaussian noise
to the position of the moving object with a standard deviation
between 0 and 3cm, this was done for 50 trajectories and
the average distance between the object and end-effector was
consistently below 3mm. This is just above the minimum
tolerance of 2.5mm, which is calculated as the average
distance when zero noise is added to the objects position.
As a result, if the target object has a diameter of 6cm,
then assuming that the tracker estimates its position within
the boundary, the standard deviation will be less than 3cm,
allowing the object to be intercepted with a high probability.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have introduced a new method for combining robot
dynamics and vision to perform hand-eye coordination, and
shown it to be successful at intercepting a moving object.

Because of the Bayesian approach to integrating the dif-
ferent distributions and modelling the vision, the method is
robust to noisy data when estimating the position of the
object. It also allows a degree of flexibility to change prior
information about the trajectories.

A restriction of the method is that it is open loop with
respect to the cameras, so changing the calibration would
affect the results. To remedy this, a visual feedback controller
(such as defined in [Chaumette and Hutchinson, 2007]) can
be used after a decision has been made on the correct
trajectory to use. This is beyond the scope of this paper and
will be integrated in future work.

B. Future Work

The experiments show that as the uncertainty increases
the robot tends to chose trajectories that intercept the object
early on. Determining the optimal time to start predicting is
something that can’t be calculated before making a decision.
We plan to solve this problem using machine learning,
enabling the robot to learn about the best prediction times
incrementally, through intercepting the object several times.

It would also be possible to extend the method so that a
variety of priors can be combined. Considering the torques
in the motors, the prior can be used selectively depending on
the application. For example, it may be important to avoid
certain areas of the scene that are blocked by objects, or
are out of reach for the robot. Trajectories that exert the
maximum amount of torque may be needed in certain areas
of the scene, in order to pick up an object, or push something
out of the way.
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