
Stochastic optimization of a neural network-based controller for

aggressive maneuvers on loose surfaces

Alexander V. Terekhov, Jean-Baptiste Mouret, Christophe Grand

Abstract— In this study we develop a feedback controller for
a four wheeled autonomous mobile robot. The purpose of the
controller is to guarantee robust performance of an aggressive
maneuver (90 degrees turn) at high velocity (about 10 m/s)
on a loose surface (dirty road). To tackle this highly non-
linear control problem, we employ multi-objective evolutionary
algorithms to explore and optimize the parameters of a neural
network-based controller. The obtained controller is shown to
be robust with respect to uncertainties of the robot parameters,
speed of the maneuver and properties of the ground. The con-
troller is tested using two mathematical models of significantly
different complexity and accuracy.

I. INTRODUCTION

As the results of DARPA Grand Challenge clearly show,

visual systems for unmanned vehicles make significant steps

forward [1], hence increasing the average speed of au-

tonomous vehicles. However, the path tracking algorithms

do not evolve significantly. It may be argued that further

increases of the vehicle speed will be delayed by the inability

of the path-tracking algorithms to cope with the task. The

classical “virtual target” algorithm or its variations are still

used in dominant amount of applications [2]. Roughly, in

this algorithm the robot steering commands are proportional

to the angle between the robot’s heading direction and the

direction towards a virtual target, moving along the desired

trajectories at some distance in front of the robot. The virtual

target algorithm has been vastly studied in the framework

of nonholonomic models of robots, which do not admit

any slippage. Some efforts has been made to enhance the

performance of the virtual target algorithm using a sliding

mode controller [3] by taking the slippage into account.

It seems that in order to achieve the control performance

comparable to the one exhibited by professional rally drivers,

one might have to change the point of view on the problem.

Instead of developing universal path tracking algorithms,

one could focus on obtaining a library of maneuvers and

conditions for their execution. Within such approach the

controller of each maneuver may significantly rely on a priori

information about the desired path, the properties of the soil,

the parameters of the robot/vehicle. Ideally, the maneuvers

are approximations of the optimal solution for a particular

movement.

Recently attempts were made to build a controller inspired

by the performance of the professional rally racers [4].

This work was supported by DGA, grant REI 2008.34.0018
The authors are with Institut des Systèmes Intelligents et de Robotique,

UPMC-CNRS, 4 Place Jussieu, 75005 Paris, France.
A.V. Terekhov: avterekhov@gmail.com
J.-B. Mouret: mouret@isir.umpc.fr
C. Grand: christophe.grand@isir.upmc.fr

The actions of professional rally during aggressive turning

were recorded and analyzed [4]. They appeared to be quite

reproducible: the steering angle and break/throttle commands

could be sufficiently well approximated by piecewise linear

functions of time. Moreover, similar vehicle trajectories can

be obtained as solutions of optimal control problem [4].

The aim of the current paper is to develop these results

and to obtain a feedback controller that would allow a

mobile robot to perform a maneuver (90 degrees turn) at

high speed. We start with finding a feedforward solution for

the maneuver, thus partly reproducing the results from [4] for

a four-wheeled mobile robot. The obtained solution is then

used as a reference for the feedback controller. The feedback

controller is searched in the class of feedforward neural

networks, with the inputs corresponding to the information

that we assume professional rally drivers might possess:

distance to turn, vehicle orientation, deviation from the path,

linear velocity of the vehicle and its angular velocity. The

controller is required to be robust with respect to disturbances

of the model and initial conditions.

The search of the solutions for both feedforward and

feedback controller rely on multiobjective stochastic opti-

mization. We have to involve this method because both

problems are highly non-convex and multiobjective and

because traditional methods—when applicable—converge to

local minima which are often distant from the global one.

The stochastic algorithms are highly demanding in terms of

computation; to be able to find a solution within reasonable

time, we therefore use a highly simplified model of the robot.

The solutions obtained this way are then tested on a more

complex and accurate model1.

II. MATHEMATICAL MODELS

A. Simplified model

The schematic representation of the simplified model of

the robot is given in Fig. 1. The position of the robot is

defined by the location of its center of mass x, y and the

heading angle ϕ between the x axis and the longitude axis

1The source code of the models and of the numerical experiments
presented in this paper are available at: http://www.isir.upmc.fr/

˜mouret/evodb/

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4782

Fig. 1. Schematic representation of the robot.

of the robot. The motion of the robot satisfies the equations:

ẋ = Vm cos ϕ − Vl sinϕ,
ẏ = Vm sinϕ + Vl cos ϕ,
ϕ̇ = ω,

Jω̇ = T,

MV̇m = Fm + MωVl,

MV̇l = Fl − MωVm,

(1)

where ω is the angular velocity of the robot’s trunk, Vm and

Vl are the projections of the linear velocity of the robot’s

center of mass on the medial (longitude) and lateral axes

respectively, Fm, Fl and T are the total medial and lateral

forces and the total torsion torque, defined as the following:

Fm = Fm1 cos α1 − Fl1 sinα1 + Fm2 cos α2−

Fl2 sinα2 + Fm3 + Fm4,
Fl = Fl1 cos α1 + Fm1 sinα1 + Fl2 cos α2+

Fm2 sinα2 + Fl3 + Fl4,
T = L(−Fm1 cos α1 + Fl1 sinα1 + Fm2 cos α2−

Fl2 sinα2 − Fm3 + Fm4)+
d(Fl1 cos α1 + Fm1 sinα1 + Fl2 cos α2+
Fm2 sinα2 − Fl3 − Fl4),

Fli, Fmi are lateral and medial projections of the tangential

forces of wheel-road interaction for each wheel reference

frame (see Fig. 1), α1, α2 are the steering angles of the left

and right wheels, respectively.

For the forces Fmi and Fli we use the brush model, which

is relatively simple computationally, but at the same time

captures the main features of the wheel-road interaction. The

details of the brush model can be found in [5]. Roughly, the

medial and lateral tangential forces are defined as nonlinear

function of the lateral and medial projections of the slippage

velocity, Vsmi and Vsli, that is the velocity of the contact

point of the wheel (in case of no sliding this velocity is

zero):
Fmi = µFnif(Vsmi/Vi),
Fli = µFnif(Vsli/Vi),

where Vi is absolute value of the velocity of the axle of i-th
wheel, Fni is the normal force at the i-th wheel contact point

and µ is the coefficient of Coulomb friction. The function f
depends on the tangential stiffness of the tire cp.

To determine the normal forces we used the method

described in [6]. The resultant normal forces for i-th wheel

is given by the equations:

Fni =
M

4dL
(dLg + hLial + hdiam), (2)

where h is the height of the center of mass of the robot,

am and al are projections of the robot’s acceleration on the

corresponding axes.

The equation (2) describes weight redistribution caused

by the acceleration of the center of mass of the robot in

case when the pitch and roll angles of the robot are close to

zero. However, to compute the medial and lateral acceleration

one must provide the total medial and lateral tangential

forces, which, according to the brush model, depend on the

normal forces themselves. In order to solve this problem

we made an assumption that the weight redistribution (2)

does not happen instantly but with a characteristic time τ ,

which roughly correspond to the characteristic time of the

suspension system of the robot. We appended the dynamic

equations of the robot (1) with the following:

τ ȧl = Fl/M − al,
τ ȧm = Fm/M − am.

For sake of simplicity, we ignore the dynamics of the

wheels and assumed that there is a controller in each wheel,

which tracks the desired wheel rotation velocity perfectly.

We make the same assumption regarding the functioning of

the steering system. Thus, 2 steering angles and 4 wheel

rotation velocities represent the control inputs to the model.

In order to reduce the dimension of the control inputs we

regard 3 independent control inputs: the steering angle α of

the front wheels and the linear velocities of the front and

rear wheels, VF , VR, correspondingly. The steering angles

and velocities of the wheels are computed using Ackermann

rule:

Rω1 = VF

[

(

1 −
d
2L sinα

)2

+ sin2 α
]1/2

,

Rω3 = VR

(

1 −
d
2L sinα

)

,
α1 = arctan sin α

1−
d

2L
sin α

,

(3)

where ω1, ω3 are the left front and rear wheel angular

velocities; α1 is the steering angle of the left front wheel;

R is the wheel radius. The formulas for the right wheels

velocities and the steering angle are the same as (3), with the

exception that every “minus” sign is substituted by “plus”.

The following values of parameters of the model were

used in the simulations: M = 40kg, J = 3kg · m2, L =
0.5m, d = 0.25m, h = 0.1m, τ = 0.05s, µ = 0.6, cp =
105N/m2. These parameters roughly correspond to those of

a light mobile robot, which is being currently developed at

our institute. The Coulomb friction coefficient corresponds

to the movement on a dirty road.

B. Full model

In addition to the simplified model we use a more com-

plex and accurate model, which we call the “full”. In the

full model three dimensional displacement of the robot is

admitted. Thus, the position of the robot trunk is given by 3

coordinates and 3 angles. In addition, the suspension system

of the robot is modeled in more details. We assume that

each wheel axle admits linear displacement in the direction,

parallel to the vertical line of the trunk. The displacement is

4783

restricted by the spring-damping force acting on the wheel

from the trunk and representing the suspension system. The

normal force of wheel-road interaction is proportional to

the amount of the wheel’s lowest point penetration into

the ground and the speed of the penetration. The force

is constrained to be unidirectional. The tangential forces

of the wheel-road interactions are described by the brush

model the same way as in the simplified model. The wheels

are assumed to be actuated by motors. The torque of each

motor is considered proportional to the difference between

the current and the desired speed of the wheel rotation. The

total number of degrees of freedom of the model is equal to

14: 6 for the trunk translation/rotation, 4 for the suspension

system, and 4 for the motors of the wheels. We skip more

detailed description of the full model. We would like to add

that the full model was obtained using Maxima software for

symbolic computations. The equations were then transformed

into a C++ form, in which they count approximately 30,000

symbols.

III. OPEN-LOOP CONTROLLER

At the first stage, we search for an optimal trajectory

of the robot making 90 degrees turn at high velocity. We

assume that the desired path is composed of three parts:

two linear parts orthogonal to each other and one circular

part connecting them (see Fig.4). The robot is located 30

m in front of the turn, directed towards it and has initial

velocity of 10 m/s. The robot is than allowed to move

for 10 seconds, during which the steering angle and front

and rear wheels velocities change piecewise linearly with

time. The parametrization of the control inputs is illustrated

in Fig. 2. The range of steering angle change is fixed to

±40 degrees, the linear velocities of the wheels are allowed

to vary between 1 and 10 m/s. On the whole, the control

inputs are described by 18 parameters, 6 parameters for each.

We search for a solution that minimizes the deviation

from the desired path and maximizes the average velocity

of the robot’s center of mass. As these two objectives are

clearly conflicting we use the framework of multiobjective

optimization. We find it more convenient than, for example,

fixing maximum allowed deviation and then maximizing

average velocity of the maneuver. One of the advantages

of the multiobjective optimization is that it provides a

set of solutions, rather than a single one, thus, giving a

researcher a possibility to choose the best one according to

his/her criteria. Since the result of the optimization usually

represents an approximation of the global optimum, the latter

is particularly valuable.

Recent research in stochastic optimization proposed nu-

merous algorithms to simultaneously optimize several ob-

jectives [7]; most of them rely on the concept of Pareto

dominance, defined as follows: a solution p∗ is said to

dominate another solution p, if two following conditions are

satisfied: (i) the solution p∗ is not worse than p with respect

to all objectives, (ii) the solution p∗ is strictly better than p
with respect to at least one objective.

0 2 4 6 8 10
−20

−10

0

10

20

30

40

Time (s)

S
te

e
ri
n

g
 a

n
g
le

 (
d
e
g
)

Fig. 2. Schematic representation of the control inputs parametrization for
the steering angle.

� ��� � ��� � ��� � ��� �
�

���

	

	��

��

�����������������

�
��
��
�
�
��
�
��
�
��
��
�
�
�

Fig. 3. The Pareto front approximation for open-loop controller. The circle
denotes the selected solution (see the text).

The non-dominated set of the entire feasible search space

is the globally Pareto-optimal set (Pareto front). It represents

the set of optimal trade-offs, that is solutions that cannot be

improved with respect to one objective without decreasing

their score with respect to another one.

Typical algorithms of multiobjective optimization first

generate a set of N random points, called a population. Then

they enter a loop of four steps until a convergence criteria is

met (in this work, a fixed number of iterations is performed):

1) Sort population with respect to dominance such that

non-dominated candidate solutions are ranked 1, those

which are only dominated by non-dominated ones

ranked 2, etc. Candidate solutions that are attributed

the same rank are then sorted with regard to a diversity

measure (in objective space) to favor solutions in the

less crowded parts.

2) Keep only the best N solutions (during the first itera-

tion, this step is useless).

3) Use the sorted population to generate new candidate

solutions by perturbing the kept ones (e.g. by adding

a Gaussian noise).

4) Merge the newly generated candidate solutions and the

previous population; this gives the new population.

Here we used Sferes v2 framework [8], implementing

NSGA-2 [9], which follows the introduced computation

scheme. We performed 10,000 iterations with the population

size equal to 300.

The outcome of the optimization algorithm is an approx-

imation of the Pareto front for the two objective functions:

average speed of maneuver and its accuracy. As it can be

seen from Fig. 3 the objectives are indeed conflicting. All

solutions have the average velocity above 8 m/s. In general,

for this range of velocities we need the most precise solution

4784

4785

of the open-loop controller (Fig. 5).

In concrete terms, we chose the following inputs to the

MLP:

1) s – distance to the turn (negative before the turn and

positive after), ranging between -35 and 80 m;

2) magnitude of the velocity of the robot’s center of mass,

from 0 to 12 m/s;

3) ω – angular velocity of the robot trunk, ±3 rad/s;

4) signed distance between the trajectory and the robot’s

center of mass, ±3 m;

5) angle between the heading direction of the robot and

the tangent to the trajectory, ±270 deg;

6) slippage angle, ±270 deg;

7) feedforward steering angle (as provided by open-loop

controller);

8) feedforward front wheels velocity;

9) feedforward rear wheels velocity.

The outputs of the neural network are the corrections to the

steering angle, front and rear velocities of the wheels. These

values are supposed to lay within the range of ±0.2 rad and

±2 m/s, respectively.

The neural network has therefore 9 inputs and 3 outputs

(VL, VR and α). One hidden layer with 15 neurons is used.

All values are scaled to be in the range [−1, 1] before

entering the neural network and scaled back to fit the range

for the outputs after leaving it. Neurons have the classical

sigmoid transfer function in [−1, 1] range:

ϕ(x) =
2

exp(−λ(x + b))
− 1

where λ = 7, x is the weighted sum of inputs and b is a

bias, which represents the parameters of the controller. The

MLP is therefore parametrized by 198 real values (synaptic

weights and biases), each one in the range [−5, 5].

B. Training

The training of the neural network controller is performed

off-line. The online schemes, which were proved to be

efficient for refining the model of the robot [13], cannot be

adopted here, because the efficiency of the movement cannot

be estimated locally, and requires it to finish. Thus, the search

of the optimal parameters of the MLP is essentially the same

as of those of the open-loop controller. However, in order to

make the result robust to various disturbances and model

uncertainties, we evaluate the performance of the controller

for different initial velocities, Coulomb friction coefficients

and mass-inertial characteristics of the robot. Instead of

using the deviation and the average velocity of a single

trajectory, we use the maximum deviation and the minimum

average velocity over all listed conditions. These values are

minimized / maximized using NSGA-2 (see section III).

The following model parameter changes are used in train-

ing session:

1) V = 9m/s,
2) V = 11m/s,
3) µ = 0.55,

4) µ = 0.65,

��� ��� ��� ��� ��� ���

�

���

�

	
��������
�������

�
��
�

�
�
��
�
��
��
��
��

��
�

Fig. 6. Pareto from approximation for closed-loop controller.

5) J = 2.5 kg · m2 and M = 30 kg,

6) J = 3.5 kg · m2 and M = 50 kg,

The population size and the number of iterations of the

optimization algorithms were the same as in section III.

C. Results

The obtained Pareto front is given in the Fig. 6. As it can

be seen, the minimum value of the deviation from the desired

trajectory is very small: about 0.4 m. One must remember

that this value corresponds to maximum deviation over 7

conditions (1 referent and 6 disturbed). The control outputs

generated by one of the solutions are presented in Fig. 8.

As it can be seen, the neural network significantly alters the

shape of the control (compare the curves “1” and “2”).

We are particularly interested in the abilities of the con-

troller to generalize for different types of disturbances. To

check it we run a series of “testing” simulations for the

following set of disturbances:

1) µ = 0.55 and J = 2.5 kg · m2, M = 30 kg,

2) µ = 0.65 and J = 2.5 kg · m2, M = 30 kg,

3) µ = 0.55 and J = 3.5 kg · m2, M = 50 kg,

4) µ = 0.65 and J = 3.5 kg · m2, M = 50 kg,

5) angle of turn set to 85 degrees,

6) angle of turn set to 95 degrees.

Here we use mixed disturbance of the mass-inertia character-

istics and the Coulomb friction coefficient, but also a brand

new type of disturbance — the angle of turn. We would like

to emphasize that our controller significantly uses a priori

information about the angle of turn, so it can be expected not

to work correctly for the angles of turn significantly different

from 90 degrees. However, we want it to be robust with

respect to some uncertainties in the angle of turn.

We tested the best 20 controllers (20 left most points in

Fig. 6) in the disturbed conditions, listed above. We found

that all of them were capable to cope with the disturbances,

however, some of them performed significantly better than

the others. To measure the ability of the controllers to

generalize we compared the maximum errors in training and

testing conditions. The increase of the maximum error in

testing conditions ranged from 10% to 500%. In 6 out of 20

solutions the increase of the maximum error was less than

25%. These solutions are denoted with circles in Fig. 6. The

disturbed trajectories for one of these individuals are given

in the Fig. 7 (left plot).

4786

4787

