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Abstract— This paper presents a novel approach to the navi-
gation of dynamically communicating robots via a bidirectional
interaction model between the robot network and the contin-
uous states. First, the robot dynamics is formulated as being
dependent on the communication network where two robots -
if in communication - can access each other’s position and goal
information. Next, three alternative strategies for establishing
the communication network depending on the robots’ states are
presented: deterministic, game-theoretic and mixed approaches.
In the first approach, the network is defined deterministically
based on the robots’ states and the communication range. The
game-theoretic network formation is based on utilizing the
conflict between the communication gain and cost. The mixed
approach integrates features from deterministic and game-
theoretic approaches. An extensive statistical study investigates
comparative performance characteristics for exploration, zone
and procession type goals.

I. INTRODUCTION

Many multi-robot applications require that all the robots

navigate simultaneously to their goal positions without any

collisions along the way. Most previous work has assumed

that each robot has complete information about the other

robots at all times – possibly over a communication channel.

However, this may not be possible since in general the

communication process is resource constrained. This paper

presents a novel approach to the navigation of multiple robots

under limited communication. The contribution of the paper

is that it proposes three alternative strategies – deterministic,

game-theoretic and mixed - that may be employed in setting

up the underlying network using a model of bidirectional

interaction between continuous states and the network graph.

Three areas in the literature are related: robotic navigation,

hybrid systems and network games. Multi-robot navigation

problem has been addressed in two different approaches.

In the computational geometry based approaches, the kine-

matic planning is separated from the dynamic control stage.

Planning is achieved in general either in a centralized or

decoupled manner [21], [14], [24]. Alternatively, feedback

based approaches use various forms of artificial potential

functions with the aim of establishing a formal analysis

framework [10], [13], [11] - assuming access to complete

information regarding all the robots. Sensor uncertainty has

been considered in [2] as the discrepancy between the

robots’ real and and measured positions may lead to jerky

movements or even collisions. The impact of time-varying

fading communication links on the performance of a mobile

network is studied in [18]. However, these work have not

considered the hybrid nature of the underlying navigation

problem. The models proposed for hybrid systems depend to

a great extent on the type of system requirements [7], [26].

The relation between graphs and control has been uncovered

[22], [19], [16]. Embedded graph transition systems have

been proposed as a grammatical approach to modeling and

controlling the switching of a system’s network topology,

continuous controllers and discrete modes [15] which has

then been employed in multi-robot deployment and coor-

dination in [23]. Here, a set of well-defined guarded rules

define the manner in which the network graph evolves over

time [15]. The definition of these rules needs to be expanded

if the agents have a separate payoff decision-making mech-

anism with respect to the graph evolution. On the other

hand, game theory has been used to model collaboration

models in automatic networks. One approach is based on

cooperative game theory, where cooperation is based on

coalition formation [20]. Most theoretical models use a two

stage structure [1], [17], [5] where approaches differ in

the manner these two steps are accomplished. First, the

players decide whether or not to join a coalition followed by

choosing their behavior depending on the coalition structure

in the second stage. However, these models do not take the

dynamics of the players into account. Hence, the interplay

between continuous dynamics, evolving robot network and

the communication strategy remains relatively less studied.

Consider a collection of p ∈ Z
+ cylinder-shaped robots

arbitrarily placed within a disk-like workspace that need

to move to their a priori specified target locations without

any collisions along the way. We assume that each robot

is capable of determining its own position relative to its

target1. Furthermore, at each instance, it communicates with

its neighboring robots as determined by the network graph.

Once in communication, it can access the other’s position and

distance to goal information which are then used to update its

the state dynamics accordingly. This communication is very

useful as it can adjust its movement accordingly in order

to avoid collisions or not to block the other robots from

getting to their goal positions. In this paper, we consider three

alternative approaches to communication network formation–

deterministic, game-theoretic and mixed – based on a model

of bidirectional interaction between continuous states and

the network graph. The deterministic approach is based on

maintaining a required level of signal-to-noise (SNR) ratio

1Here, we assume that this information is not noisy, also the extension
to noisy case has been studied previously [2].
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between each pair of communicating robots. However such

an approach may be employed if each robot is capable of

detecting the received signal values from all the other robots

at all times. In case this is not possible, each robot can

use a game-theoretic approach based on pairwise games

which requires no communication or synchronization for

selecting the robot pairs. The robot pairs use the fundamental

tradeoff between attaining a high SNR and cost of commu-

nication in order to adjust the communication network. In

the mixed model, each robot employs a hybrid approach for

the dynamic network formation. The outline of the paper is

as follows. Multi-robot networks and dynamics are defined

in Section II. The next three sections describe each ap-

proach – deterministic, game-theoretic and mixed networks

respectively. Extensive simulation results are discussed in

Section VI. The paper concludes with a brief summary

including future work.

II. ROBOTS DYNAMICS

Let P = {1, . . . , p} be the set of robots all residing in a

two-dimensional workspace of radius ρ0. Each robot i ∈ P is

associated with the radius ρi ∈ R, a state bi : R
≥0 → R

2 and

a goal position hi ∈ R
2. The state of the robots b(t) ∈ R

2p is

defined as b(t) =
∑

i∈P bi(t)⊗ ei and the goal of the robots

h ∈ R
2p is defined as h =

∑
i∈P hi ⊗ ei where ei ∈ R

p

are the unit vectors in R
p. Let δij =‖ bi − bj ‖ denote the

robots’ pairwise relative distance and let βij = δ2
ij − ρ2

ij

where ρij = ρi +ρj . Since robots cannot overlap each other,

it is required that

∀i, j ∈ P βij ≥ 0 (1)

Furthermore, let β0i = ρ0i− ‖ bi ‖2 where ρ0i = ρ0 − ρi.

Each robot should also stay in workspace that is bounded by

radius ρ0 which means that:

∀i ∈ P β0i ≥ 0 (2)

The free robot configuration space F ⊂ R
2p satisfies Eq.1

and Eq.2.

A. State Dependent Network Graph

The communication among the robots is determined by

a state-dependent graph map g : F → G. Here G ={
g′|g′ ⊆ gP

}
is the set of all possible graphs on P and

gP is the complete graph. The graph map is defined as

g(b) = (P, E(b)) where E(b) denotes the set of edges as

defined by a communication matrix A(b) = [a ij(b)]. The

corresponding E(b) is defined as:

E(b) = {ij | aij = aji = 1} (3)

If aij = 1, this means that robot i wants to communicate

with robot j. If both robots want to communicate, a com-

munication link is setup. An edge ij ∈ E(b) exists iff a

communication link between robots i and j is established.

B. Network Graph Dependent State

The underlying graph on the other hand induces a set of

coupled gradient systems on F that define the state of each

robot. First note that each graph defines for each robot i, the

set of its immediate neighbors Ni(g) = {j ∈ P |ij ∈ E(b)}2

with which it is in direct communication. Robot pairs that

are in communication with each other access other’s position

and goal information. This information designates the state

dynamics as:

ḃi = −Dbi
ϕi(b, g) (4)

The function ϕi : F × G → [0, 1] is constructed as follows:

i.) The goal position for robots {i}∪Ni(g) are encoded; ii.)

The obtacle robots Ni(g) are to be avoided. In this manner,

the state dynamics of each robot aims to coordinate with

those of its neighboring robots. The formulation of ϕ i is a

modified version of that presented in [11]:

ϕi(b, g) = σd ◦ σ ◦ ϕ̂i(b, g) (5)

The function ϕ̂i : F × G → [0,∞) is defined as:

ϕ̂i(b, g) =
γi(b, g)ki

βi(b, g)
(6)

where ki ∈ Z
+ is the relative weighting parameter. The

function ϕ̂i is made admissible via composing it with σ :
[0,∞) → [0, 1] defined as by σ = x

x+1 . In order to make

the goal a non-degenerate critical point, further composition

with a sharpening function σd : [0, 1] → [0, 1] defined as

σd(x) = x1/k is used. The formulation of ϕ̂i is dependent on

the communication network since the numerator term γ i and

the denominator term βi both depend on the neighborhood

set Ni(g). The function γi : F × G → [0,∞) encodes its

distance to the goal as well as the corresponding information

communicated by its neighboring set N i(g) as:

γi(b, g) = (bi − hi)
T (bi − hi) +

∑

j∈Ni(g)

(bj − hj)
T (bj − hj)

(7)

The denominator βi : F ×G → [0,∞) encodes the distance

from freespace boundary based on its own state information

as well as that communicated to it via its neighborhood set

Ni(g).

βi(b, g) = β0i

∏

j∈Ni(g)

βijβ0j (8)

For example, consider a scenario initially as shown in

Fig. 1(left) where only robots 1 and 2 are communicating.

Hence, while the state dynamics of robots 1 and 2 are cou-

pled, the state dynamics of robot 3 is completely independent

of them. As the robots navigate, their states change which

can potentially change the network graph. If robots 1 and

3 approach each other and the communication network is

changed as seen in Fig. 1(right), the state dynamics of robots

1 and 3 change and start taking each other into account.

2As g is an undirected graph, j ∈ Ni(g) ↔ i ∈ Nj(g).

1826



Fig. 1. A sample 3-robot navigation scenario – as robots 1 and 3 get close
to each other, the network graph changes accordingly.

C. Communication Network Formation Models

The formation of the graph map g and hence the com-

munication matrix is dependent on the environment and

the communication network formation model. Consider an

environment having environmental noise with variance σ 2
n.

Suppose a scheduling mechanism like TDMA or FDMA

is used in order to ensure that there is no interference

caused by simultaneous communication of different robots

in the network. Assume that each robot has a fixed amount

transmitter power PT allocated for communication. Three

alternative approaches to communication network formation

are proposed: 1) Deterministic; 2) Game-Theoretic and 3)

Mixed. In the sequel, each will be explained in detail.

III. DETERMINISTIC NETWORK

In deterministic communication, it is assumed that each

robot has a set of detectors that measure the received

signal levels from the other robots and hence determine the

quality of link for each pairwise connection. It allocates its

transmission power in a static manner to the other robots

depending on the quality of links established. In general,

as the quality of the link will be associated with whether

received signal to noise ratio is above a given threshold τ ,

this restriction yields that ∀j ∈ Ni(g), δij < ρc as shown in

the following Lemma.

Lemma 1: Consider fixed PT . SNR > τ iff δij < ρc where

ρc =
√

PT

(p−1)100.1τ σ2
n

.

Proof: A good quality link requires that SNR > τ . Since

SNR = 10log(
PT

(p − 1) δ2
ijσ

2
n

) (9)

τ < 10log(
PT

(p − 1) δ2
ijσ

2
n

) → 100.1τ <
PT

(p − 1) δ2
ijσ

2
n

which implies that

δij <

√
PT

(p − 1) 100.1τσ2
n

≡ ρc � (10)

Hence the graph map g is defined by the communication

matrix A(b) that is symmetric with binary elements.

aij(b) =

{
1 δij ≤ ρc and i �= j
0 otherwise

(11)

Let it be noted that the magnitude of the communication

range ρc will affect the connectivity of the underlying graph

g. If the communication range is on the order of workspace

coverage – namely ρc
∼= ρ0, then underlying graph will

be a fully connected graph g = gp. On the other hand, if

the communication range is very small ρc << ρ0, then the

underlying graph will on average have a low connectivity.

Furthermore, |Ni(g)| < p − 1 means that some of the

transmission power remain unused.

IV. GAME-THEORETIC COMMUNICATION

As the distance between a pair of communicating robots

increases, the power usage efficiency decreases. Hence, there

is a trade-off between attaining high SNR and power usage

efficiency. An alternative approach to communication net-

work formation to use a game-theoretic model based on a

payoff function that takes this trade-off into consideration. In

this approach, given (g, b), each robot has the policy of trying

to allocate its transmission power uniformly only among its

Ni(g) neighbors as PT

|Ni(g)| . As the network is changing over

time, this means that power allocation per communication

link is also dynamic. Furthermore, in contrast to deterministic

network formation, such an approach does not require any

detectors for the received signal levels.

A. Payoff Function

The pairwise payoff function vij : G× F → R is defined

as follows:

vij(g, b) =
ςi

1 + e
−ai(

PT l(δij)

|Ni(g)|N0
−τ ′)

−
PT

|Ni(g)| l(δij)
(12)

where τ ′ = 100.1τ , l denotes the loss factor due to diffusion

and absorption in the environment and is taken as l(δ ij) =
1/δ2

ij and No = 2σ2
n denotes the noise spectral density. This

function represents the degree of satisfaction of the robots to

the link quality, as well as a cost function to measure the cost

incurred. Generally, the quality of link is known to depend

on SNR, so we let the first term to be an increasing function

of SNR with the additional to property that its value must be

equal to 0 in case SNR = 0. This means that a robot is more

and more satisfied with the service as the quality improves.

We use a sigmoid function for this purpose [25]. However,

it should be noted that our scheme can be applicable to

many other functions of similar nature. Secondly, the cost

for the robot is defined as a function of power and distance.

As power is itself a valuable commodity, the specific cost

function should reflect the expense of establishing a link with

a particular robot. In particular, as their pairwise distance gets

larger, so does the cost of this communication link. The total

payoff function that encodes this trade-off is formulated as

vi(g, b) =
∑

j∈Ni(g)

vij(b) (13)

The goal is to maximize the total payoff defined as such by

adjusting the communication network. Hence each robot will

try to maximize its own total payoff.

1827



B. Pairwise Game

Each individual robot plays a pairwise game with the rest

of the robots. Let pij be the probability that it chooses to play

with robot j. Consequently, it is associated with a set of deci-

sions xi(t) = (xi,1(t), . . . , xi,i−1(t), xi,i+1(t), . . . , xi,p(t))
where xi,j(t) ∈ {0, 1} as:

xi,j(t) =

{
1 with probability pij

0 with probability 1 − pij
(14)

If xi,j(t) = 1, robot i wants to play a game with j. In case

a robot wants to play with more than one robot, it chooses

one player j with uniform probability. This dynamic process

requires no communication or synchronization for selecting

the robot pairs. Once this decision is made, the pair ij is

selected to play a pairwise game. Note that the order is not

important – the pair ij being selected is equivalent to the

pair ji being selected. Let C(t) be the set of robot pairs that

are selected.

C. Game Graph Update

In the game-theoretic network formation, the graph g is

updated based on a game-theoretic approach. Given that

ij ∈ C play the game, if the edge ij is already in the

robot network, the decision is to deactivate it or not while

otherwise, the decision is to activate it or not – all based on

the payoff function. Robots act individually and decide to

activate a link if it makes each robot at least as well off and

one better off and remove a link if its deletion makes either

robot better off. The pair ij then updates the communication

matrix A(b(t)) as follows:

aij(b) =






0 if ij ∈ C(t) and

vi(g − ij, b) > vi(g, b)
1 if ij ∈ C(t) and

vi(g + ij, b) > vi(g, b)
aij(b) otherwise

(15)

aji(b) =






0 if ij ∈ C(t) and

vj(g − ij, b) > vj(g, b)
1 if ij ∈ C(t) and

vj(g + ij, b) > vj(g, b)
aji(b) otherwise

(16)

Hence, the communication matrix changes depending on the

pairwise games that are being played. All matrix entries

where there are no corresponding games being played remain

unchanged. As a result of game between i and j, an existing

communication link between them is removed iff v i(g−ij) <
vi(g) or vj(g− ij) < vj(g) while a new communication link

is established iff vi(g + ij) < vi(g) and vj(g + ij) < vj(g).

V. MIXED STRATEGY

A third approach is to use a mixed communication strat-

egy that combines features from deterministic and game-

theoretic communication. First, the neighbor set is parti-

tioned into two disjoint sets depending on whether each

neighboring robot is outside the ρc range or not. Hence,

Letting N ′
i (g) ≡ {j ∈ Ni(g) | δij > ρc} and N ′′

i (g) ≡
{j ∈ Ni(g) | δij ≤ ρc}, then Ni(g) = N ′

i (g) ∪ N ′′
i (g). It

then devises its communication strategy accordingly. For

each robot in N ′′
i (g) , PT

p−1 is allocated. Letting ni = |N ′′
i (g)|

be the number of such robots, the total amount of power

allocated for this communication is ni
PT

p−1 .

Secondly, for robots outside this range and hence in N ′
i (g),

it employs a modified version of game-theoretic strategy for

setting up links. First, each robot is associated with a set of

decisions with only the robots in P − N ′′
i (g) in regards to

playing a game or not. Let each decision set be denoted by

xi(t) = {xi,k(t) | k ∈ P −N ′′
i (g)} where xi,j(t) ∈ {0, 1}

is defined as in Eq. 14. Again, in case that a robot chooses

to play with more than one robot, then the robot chooses one

player xi = j with uniform probability. Once this decision

is made, the pair ij is selected to play a pairwise game. It

allocates the remaining amount of power P ′
T ≡ PT −ni

PT

p−1
uniformly among these robots. The pairwise payoff function

wij : G × F → R is defined as follows:

wij(g, b) =
ςi

1 + e
−ai(

P ′
T

l(δij)

|N′
i
(g)|N0

−τ ′)
−

P ′
T

|N ′
i (g)| l(δij)

(17)

The total payoff function that encodes this trade-off is

formulated as:

wi(g, b) =
∑

j∈N ′
i (g)

wij(b) (18)

After this, the decision making proceeds as in purely game-

theoretic communication. Recalling that C(t) is the set of

robot pairs that are selected, if the edge ij is already in the

robot network, the decision is to deactivate it or not while

otherwise, the decision is to activate it or not – again all

based on the payoff function. The graph map g is defined by

the communication matrix A(b) as:

aij(b) =






1 δij ≤ ρc and i �= j
0 if δij > ρc and ij ∈ C(t) and

wi(gt − ij, b) > wi(gt, b)
1 if δij > ρc and ij ∈ C(t) and

wi(gt + ij, b) > wi(gt, b)
aij(b(t)) otherwise

(19)

VI. SIMULATIONS

This section presents results from a set of simulations

that are conducted with 20 robots all having radii 25cm.

As explained, the task of all the robots is to navigate

simultaneously to their a priori specified goal positions in

a workspace of radius 15m. We consider three different kind

of goals as shown in Fig. 2 which differ with respect to

the distance between two vertically or horizontally adjacent

robot goal positions defined as ρd. In exploration type goals

(ET), the robots are required to navigate to goal positions that

cover the given workspace where ρd is large. Here, ρd = 5m.

In procession type goals (PT), the robots are required to

position themselves in a cortege arrangement and hence ρd

is relatively small. Here, ρd = 1m. Finally, in the zone type

goals (ZT), ρd is somewhere in between those of the two

other type goals. Here ρd = 2.5m.
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Fig. 2. Sample configurations for different goal types: a) Exploration type
(ET), b) Zone type (ZT), c) Procession type (PT).

We study the nature of the resulting navigation behavior

under limited communication. Each robot has transmitter

power PT = 10 dBm allocated for wireless commu-

nication. The environmental noise is considered in lev-

els varying from low, medium and high as given by

σ2
n ∈

{
5 × 10−5, 15 × 10−5, 5 × 10−4

}
. In deterministic

networks, with τ = 10, these in turn correspond to three

different communication ranges ρc calculated using Eq.10:

ρc =






3.2m if σ2
n = 5 × 10−5

1.9m if σ2
n = 15 × 10−5

1m if σ2
n = 5 × 10−4

(20)

Hence, for deterministic networks, as the environmental

noise level increases, the communication range ρc decreases.

The parameters ςi and ai in the pairwise payoff function

are set to 10 and 1, respectively. For a zone type goal with

σ2
n = 15× 10−5, a sampled time evolution of the navigation

task with a game-theoretic network is shown in Fig. 3. In

each graph, the star marks indicate the goal positions. The

first graph shows the robots’ initial positions and the network

topology at the first iteration of the game. The next graphs

show the progress of the tasks along with the corresponding

networks. The last graph shows the final network when the

task is completed.

For each network and goal types and noise level, 100

simulations are performed with the robots starting at random

initial positions. In the game-theoretic networks, at the

start of all the simulations, the robots are initialized to be

fully disconnected. We study three performance statistics:

Task completion percentage, average connectivity and task

completion efficiency.

The task completion percentage is defined to be the

percentage of navigation tasks that have been successfully

completed in finite time. Hence, failure is any case where

navigation of all the robots to their target locations is not

achieved. The performance in task completion is presented

in Table-I where it is observed that successful navigation

can occur despite restricted communication ranges and hence

partial connectivity. For σ2
n = 5 × 10−5, for both de-

terministic and game-theoretic networks, task completion

percentage is better in procession type goals whereas for

higher noise levels, task completion is better in exploration

type goals. Mixed networks exhibit similar performance,

regardless of the noise level. As link activation in the game-

theoretic approach is performed in a probabilistic manner,

collisions become likely. The mixed strategy, which copes

Fig. 3. A sampled time evolution in zone type goal navigation with a
game-theoretic network.

with this deficiency using deterministic approach, has the

best performance with respect to task completion percentage.

TABLE I

TASK COMPLETION PERCENTAGE

σ2
n 5 × 10−5 15 × 10−5 5 × 10−4

Strategy ET ZT PT ET ZT PT ET ZT PT

Deterministic 90 86 96 99 87 87 99 96 42

Game-theoretic 91 96 99 97 90 93 100 98 72

Mixed 100 100 99 99 100 99 100 99 100

The average connectivity D̄ is defined as the time average

of the average normalized degree of the robot network

defined as:

D̄ =
1

tf

100

p

∫ tf

0

∑

i∈P

1

p − 1
|Ni(g(b(t)))| dt

where tf denotes the task completion time. The closer is

this value to 100, higher is the connectivity. Table II shows

average degree percentage of the resulting robot networks.

As expected, exploration type goals have inherently lower

connectivity as compared to procession type goals. Fur-

thermore, in all, the connectivity decreases as noise level

increases.

TABLE II

AVERAGE CONNECTIVITYD̄

σ2
n 5 × 10−5 15 × 10−5 5 × 10−4

Strategy ET ZT PT ET ZT PT ET ZT PT

Deterministic 3.3 13.6 32.4 0.8 2.7 16 0.4 0.7 2

Game-theoretic 15.4 23.3 33 8.2 14 21.7 3 7.1 13.3

Mixed 16 26.1 38.8 8.3 14.6 24.5 3 7.2 13.7
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Task completion efficiency (tce) is measured by normal-

ized path length which is the average of the total distance

traveled by the robots from their initial positions to their goal

locations normalized by the Euclidean distance between their

initial and goal positions as:

tce =
1

p

∑

i∈P

∫ tf

0

∥∥∥ḃi(t)
∥∥∥ dt

‖bi(0) − hi‖

b(0) denotes the initial position of the robots. Note that

a smaller tce value indicates greater overall efficiency in

task completion. Task completion efficiency results for the

different type of goals are presented in Table III. In the

deterministic network, interestingly, for all task types, task

completion efficiency increases as the communication range

becomes smaller with the effect being more observable for

the exploration type goals. This can possibly be attributed

to the fact that as the robots become more myopic, they

take less of other robots’ states and goals into consideration

and hence navigate more efficiently. Of course, as task com-

pletion percentages deteriorate simultaneously, this means

while tasks are less likely to be completed, if completed,

their realization efficiency is higher. On the other hand, for

game theoretic and mixed networks, task efficiency remains

roughly the same with respect to task types and noise levels.

TABLE III

TASK COMPLETION EFFICIENCY – tce

σ2
n 5 × 10−5 15 × 10−5 5 × 10−4

Strategy ET ZT PT ET ZT PT ET ZT PT

Deterministic 3.66 3.12 3.18 1.58 2.52 2.67 1.4 1.52 1.94

Game-theoretic 2.75 2.94 2.99 3.22 2.74 2.73 2.67 2.5 2.9

Mixed 2.78 2.92 3.06 3.24 2.77 2.79 2.77 2.52 2.37

VII. CONCLUSION

This paper considers the problem of navigation of dy-

namically communicating robots where there is a bidirec-

tional interaction between the robot network and continuous

states. First, the robot dynamics is formulated as being

dependent on the communication network where two robots

- if in communication - can access each other’s position

and goal information. Next, three alternative strategies for

establishing the communication network depending on the

robots’ states are presented: deterministic, game-theoretic

and mixed approaches. In the first approach, the network is

defined deterministically based on the robots’ states and the

communication range. The game-theoretic approach is based

on utilizing the conflict between the communication gain and

cost. The third approach is a mixture of the deterministic and

game-theoretic approaches. Our extensive simulation results

indicate that for goal positions including exploration, zone

and procession types, employing a mixed network formation

yields best task completion percentages. As part of ongoing

research, we are considering different type of game-theoretic

networks.

ACKNOWLEDGMENT

This work has been supported by Bogazici University BAP

Project 09HA201D and Tubitak Project MAG 107M240.

REFERENCES

[1] Aumann,R.J. and J.H. Dreze, “Cooperative games with coalition
structure”, Int. J. Game Theory, no.3, pp.217-237, 1974.

[2] Bayram, H., E. Ertuzun and H.I. Bozma, “Reactive Rearrangement
of Parts under Sensor Inaccuracy: Particle Filter Approach”, Proc. of

IEEE Int. Conf. Robot. Autom., pp.2029-2034, 2006.
[3] Franceschetti, M. and R. Meester,Random Networks for Communica-

tion,Cambridge Univ. Press,2007.
[4] Hart, S. and A. Mas-Colell, “A simple adaptive procedure leading to

correlated equilibrium”, Econometrica, 68(5), pp.1127-1150, 2000.
[5] Jiang, T. and J.S.Baras, “Fundamental tradeoffs and constrained coali-

tional games in automatic wireless networks”, Proc. of 5th Int. Symp.

on Modeling and Opt. in Mobile, Ad Hoc & Wireless Networks, 2007.
[6] Jiang, T. and J.S. Baras, “Coalition formation through learning in

automatic networks”, Proc. of Int. Conf. Game Theory for Networks,
pp.10-16, 2009.

[7] Henzinger,T. A. ,“The theory of hybrid automata” in Verification of
Digital and Hybrid Systems (M.K. Inan, R.P. Kurshan, eds.), 1790,
pp.265-292, Springer-Verlag 2000.

[8] Jackson, M.O. and A. Wolinsky, “A strategic model of social and
economic networks”, J. Econ. Theory, 77, pp. 44-74, 1996.
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