
On the initialization of statistical optimum filters

with application to motion estimation

Laurent Kneip, Davide Scaramuzza and Roland Siegwart

Autonomous Systems Lab, ETH Zurich

Abstract— The present paper is focusing on the initialization
of statistical optimum filters for motion estimation in robotics.
It shows that if certain conditions concerning the stability of
a system are fulfilled, and some knowledge about the mean
of the state is given, an initial error covariance matrix that is
optimal with regard to the convergence behavior of the filter
estimate might be analytically obtained. Easy algorithms for
the n-dimensional continuous and discrete cases are presented.
The applicability to non-linear systems is also pointed out. The
convergence of a normal Kalman filter is analyzed in simulation
using the discrete model of a theoretical example.

I. INTRODUCTION

Statistical optimum filtering techniques certainly belong

to the class of the more powerful developments of the

past century. The foundation has been layed down around

1960 by Swerling[1], Thiele[2], [3], Stratonovich[4], [5]

and Kalman[6], and found its first applications in spacial

navigation and communication technologies. Today, it is

mostly used in a discrete recursive - and thus efficient - form

for solving demanding real-time filtering and sensor fusion

problems[7], [8], [9]. It is commonly known as producing

optimal results in case of being applied to linear systems,

where optimal means generating online state estimates with

minimized error covariance. Several extensions to the clas-

sical Kalman filter like the EKF (Extended Kalman Filter)

and the UKF (Unscented Kalman Filter) then also address

the problem of filtering signals at the output of non-linear

systems. They however quickly engage a lot of processing

resources and do no longer produce optimal results. The EKF

filter is doing a linearization of the non-linear system around

the current state estimate, and thus produces errors when

propagating the error covariance estimate through the model.

The UKF improves this by the so-called unscented transform,

which generally spoken consists in propagating the error

covariance estimate through a number of weighted sampling

points in the neighbourhood of the current state estimate (the

so-called sigma-points). It provides a more accurate value

for the propagated covariance in case of highly non-linear

systems.

Numerous internet tutorials and book chapters about the

discrete Kalman filter and its application to a huge variety

of different fields are evidence of its tremendous character.

Even classical problems like for instance SLAM[10] in

robotics (Simultaneous Localization And Mapping) could be

reformulated in a statistical way[11]. On the other hand, the

availability of compact and independent collections of the

formulas as well as the filter’s image of having a universal

applicability causes people to easily apply these ”cooking

recipies” without questioning the fundamental theories be-

hind it far too often. This is especially true for highly

interdisciplinary fields like robotics and autonomous systems.

A proof might be given by the related Wikipedia article

that is, unlike other topics, not introducing the concept in

a very objective way by exclusively focusing on the discrete

implementation of the Kalman filter, certainly at the same

time a proof for the complexity of the material.

The present paper addresses one specific problem that

is common to the classical Kalman filter as well as its

discrete derivates for linear and non-linear systems, namely

the choice of the initial error covariance matrix. Only little

literature can be found on this topic despite of a high

importance for the convergence of the filter. The commonly

applied way in robotics consists in an empirical choice of

positive starting values along the diagonal of the covariance

matrix, each one representing the error covariance of the

corresponding initial state estimate at the moment we switch

on the filter. Even though there is nothing wrong about this, it

is indeed possible to derive the initial filter covariance matrix

in a rigorous analytical manner.

The purpose of the present work is to state the exact

conditions that have to be met in order to easily calculate

an exact initial error covariance matrix, provide a compre-

hensive algorithm for doing so and show the impact on the

convergence behavior of motion estimation filtering. Section

II starts with introducing the generic system structure and

terminology used in this paper, and reminds some important

equations for the continuation of the work. Section III then

proceeds with the derivation of an easy method for obtaining

a valid initial covariance matrix for both the continuous and

discrete n-dimensional case. The applicability to non-linear

systems will also be depicted. Section IV concludes with

evaluating the convergence by comparing it to an empirical

choice of the initial covariance matrix. It shows the optimal

character of the methods described in this paper.

II. TERMINOLOGY

Figure 1 shows the general state-space representation of

a continuous system used as a basis for describing the

theoretical material in this paper. The terminology used is

mostly taken from [12], an excellent german book about

system theory for stochastic processes. The only input to the

system is the process noise z, no other deterministic signal

is used. This does not involve loss of genericy since not

having any impact on the evolution equations of the system

state covariance. The system matrix A, the input matrix G

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1500

Fig. 1. The generic state-space representation of a continuous system with
input process noise z(e; t) and output measurement noise r(e; t).

and the output matrix C maybe regarded as constant during

time. The related process and measurement equations are

given with

ẋ(e; t) = Ax(e; t) + Gz(e; t) (1)

y(e; t) = Cx(e; t) + r(e; t). (2)

The parameters (e; t) express the stochastic nature of the

signals as well as the dependency of time, respectively. Bold

capitals indicate matrices, bold minuscules vectors. The noise

in the system has the following properties:

• Input process z(e; t): non-stationary white gaussian

noise with mean µz = 0 and auto-correlation

Φz(t, τ) = Ψz(t) · δ(τ), Ψz being positive semi-

definite and holding the squared covariance and cross-

covariance terms of the different elements in z.

• Measurement noise r(e; t): non-stationary white gaus-

sian noise with mean µr = 0 and auto-correlation

Φr(t, τ) = Ψr(t) · δ(τ), Ψr again being positive semi-

definite.

The procedure presented in this paper is largely based

on the evolution equation of the mean µx and covariance

matrix Vx of the system state x (not to confuse with the

error covariance matrix V of the filter’s state estimation x̂).

The derivation of the equations is fairly simple. Since the

following only presents a compact form of the derivation,

the reader is invited to look up the detailed steps in the

relevant literature[12]. Via building the expectation value on

both sides of Eq. 1, we directly obtain

µ̇x(t) = A · µx(t). (3)

Assuming unbiased system states, the covariance matrix

may be computed via the equation

Vx(t) = E{x(e; t) · xt(e; t)},

which represents nothing more than the vectorial time-

variant squared mean of the state. Computing the derivation

easily leads to

V̇x(t) = E{ẋ(e; t) · xt(e; t)} + E{x(e; t) · ẋt(e; t)},

and replacing with Eq. 1 leads to the following first form

of the evolution equation

V̇x(t) = AVx(t) + Vx(t)At + GVzx(t) + Vxz(t)G
t.

Knowing that Vzx(t) = 1
2Ψz(t)G

t and Vxz(t) = Vt

zx
(t)

(again, see [12] for details), we finally obtain

V̇x(t) = AVx(t) + Vx(t)At + GΨz(t)G
t. (4)

This form of equation is also called a degenerated Riccati

equation, since it has the same form except that the higher

order term is missing.

A similar development is now done for discrete systems.

Figure 2 indicates the modified system in state-space repre-

sentation. The corresponding equations are

x[k + 1] = Ax[k] + Gz[k] (5)

y[k] = Cx[k] + r[k]. (6)

Regarding the noise in the system, we now have

E{z[e; k]} = 0, E{r[e; k]} = 0,

E{z[e; k] · zt[e; l]} = δkl · Ψz,

E{r[e; k] · rt[e; l]} = δkl · Ψr,

E{z[e; k] · rt[e; l]} = 0, ∀k, l

with δkl = 1 if k = l and else 0.

Again, via taking the expectation value of Eq. 5, we

directly obtain the evolution equation for the mean of the

state

µx[k + 1] = A · µx[k]. (7)

The derivation of the evolution equation for the state

covariance is significantly easier in the discrete case. We

have

Vx[k + 1] = E{x[e; k + 1] · xt[e; k + 1]}

= E{(Ax[e; k] + Gz[e; k]) · (Ax[e; k] + Gz[e; k])t}

= E{(Ax[e; k] + Gz[e; k]) · (xt[e; k]At + zt[e; k]Gt)}

= AE{x[e; k]xt[e; k]}At + GE{z[e; k]xt[e; k]}At

+AE{x[e; k]zt[e; k]}Gt + GE{z[e; k]zt[e; k]}Gt

The process noise z[e; k] and the ”old” state x[e; k]
are independent. Hence we have E{z[e; k]xt[e; k]} =
E{x[e; k]zt[e; k]} = 0, and we finally obtain

Vx[k + 1] = AVx[k]At + GΨzG
t (8)

as the evolution equation for the state covariance in the

discrete case.

Fig. 2. The generic state-space representation of a discrete system with
input process noise z[k] and output measurement noise r[k].

1501

III. OBTAINING THE INITIAL ERROR COVARIANCE

MATRIX

The most important thing to understand is that the initial

error covariance is not depending on the measurement noise.

By definition, the initial error covariance is expressing the

error of the initial state estimate, a value that is set by hand

before the filter is engaged. In the discrete case, this is for

instance representing an a priori estimate used for correcting

the first measurement, and hence it is obvious that it is neither

taking any measurements into account and nor depending on

the measurement noise. The only difference to a standard

a priori estimate is that it has not been obtained through

propagation through the model, which is again obvious since

there is no previous state estimate.

The following development is based on the assumption

that the system is in a statistically stationary mode when

switching on the filter. First of all, there are some criteria

that have to be met in order to even allow a stationary mode:

• The system has to be able to stabilize in a certain point,

which means for instance being self-stable around a

known location in state-space, despite of process noise

acting on the true state, or being stably controlled

around a known set-point for the state. In the latter case,

a known deterministic setpoint input could additionally

determine the system equations.

• The process noise has to enter a stationary mode, which

means that the corresponding auto-correlation matrix

should no longer be time dependent.

The reader might now ask why all this is needed. The point

is that it provides means to get an idea about the expectation

value of the system state and its covariance at the moment

we switch on the filter. Doing so when the system is in

a stationary mode then increases freedom in time, since it

does no longer matter when we turn on the filter exactly. If,

for whatever reason, some knowledge about the expectation

value and its covariance is given for a certain instant in time,

and if we are able to switch on the filter at exactly this

moment, the principle depicted here might also be applied

to non-stationary cases. In practice however, this is most

probably not the case.

Once these conditions are fulfilled, the basic steps for

obtaining the initial covariance matrix are rather easy. Since

the different steps are depending on whether we work in

continuous or discrete time space, the following is explained

individually.

A. Continuous case

According to the initial conditions we mentioned before-

hand, we may assume that we have a certain knowledge

about the state of our system when engaging the filter,

which helps to find a good starting value for the initial

filter estimate. As always, E(.) is taking the expectation

value and x̂ represents the state estimate. We have x̂(e; 0) =
E{x(e; 0)} = µx(0), and since we assume being in station-

ary mode, µx(0) is known (in our case, it is 0 simply because

we do not have any determined additional inputs). Please

be aware that the time scale here is shifted with respect to

Section II. Since being in the stationary mode, t = 0 for

the filter actually corresponds to t → ∞ for the observed

system.

The next property we might derive in the mentioned mode

is about the rate at which the covariance of the system state is

changing, namely that we have V̇x(0) = 0. From Equation

4, we may then directly derive that

0 = AVx(0) + Vx(0)At + GΨzG
t. (9)

Note that Ψz is no longer a function of time. From the

definition of the initial error covariance V(0), we then find

that

V(0) = E{[x̂(e; 0) − x(e; 0)] · [x̂(e; 0) − x(e; 0)]t}

= E{[µx(0) − x(e; 0)] · [µx(0) − x(e; 0)]t}

= µ2

x
(0) − 2µx(0) · E{x(e; 0)} + E{x(e; 0)xt(e; 0)}

= µ2

x
(0) − 2µ2

x
(0) + E{x(e; 0)xt(e; 0)}

= E{x(e; 0)xt(e; 0)} − µ2

x
(0)

= Vx(0)

This equation expresses the fact that the initial error

covariance of our filter is equal to the state covariance of

the model in the stationary mode, which is actually quite

meaningful. By replacement in Equation 9, we finally obtain

a formula to determine the initial error covariance matrix,

namely

AV(0) + V(0)At = −GΨzG
t. (10)

The challenge now consists in solving this equation for

V(0). For matters of simplicity, the right side of the equa-

tion is replaced with M = −GΨzG
t. Assuming that the

dimension of the problem is n, the equation is equivalent to

(r(., .) is taking a certain row from a matrix)

r(A, 1)rt(V, 1) + r(A, 1)rt(V, 1) = M11

r(A, 1)rt(V, 2) + r(A, 2)rt(V, 1) = M12

...

r(A, 1)rt(V, n) + r(A, n)rt(V, 1) = M1n

r(A, 2)rt(V, 2) + r(A, 2)rt(V, 2) = M22

...

r(A, 2)rt(V, n) + r(A, n)rt(V, 2) = M2n

...

r(A, n)rt(V, n) + r(A, n)rt(V, n) = Mnn

Note that only the equations corresponding to the upper

triangular part of M are being considered. This is sufficient

since V(0) is a symmetric matrix just as M and hence

the number of unknowns corresponds to the number of

equations. It is also straight-forward to see that each of the

remaining equations would actually be equivalent to one of

the listed ones. The terms r(A, i) ·rt(V(0), j) always create

a sum of n products where each time one element from A

is multiplied with one element from V(0). We have

r(A, i) · rt(V(0), j) = Σn
k=1AikVjk.

1502

Let’s put the unknowns of V(0) into a vector v according

to the following principle

v =





























V11

V12

...

V1n

V22

...

V2n

...

Vnn





























.

Again, only the elements of the upper triangular part are

considered. The same may be done for the right side of the

equation leading to a vector m that contains the elements

of the upper triangular part of M. Both vectors contain

q = n(n+1)
2 elements. The essential step now consists in

introducing v into our row-multiplications. This is done

using the function f(i, j), which is producing a row-vector

of size q with all elements being zero except the one at index

p being equal to one, with

p(i, j) =

{

(Σi−1
l=1n − l + 1) + j − (i − 1) if i ≤ j

(Σj−1
l=1 n − l + 1) + i − (j − 1) if i > j

.

The function f(i, j) actually does nothing else then a

mapping between a certain element in the matrix V(0)
and the corresponding element in the vector v, all while

respecting the symetrical structure of V(0). This finally leads

to

r(A, i) · rt(V(0), j) = (Σn
k=1Aikf(j, k)) · v,

and by replacing in our initial list of equations, our

problem may be reformulated as





























Σn
k=1A1kf(1, k) + Σn

k=1A1kf(1, k)
Σn

k=1A1kf(2, k) + Σn
k=1A2kf(1, k)

...

Σn
k=1A1kf(n, k) + Σn

k=1Ankf(1, k)
Σn

k=1A2kf(2, k) + Σn
k=1A2kf(2, k)

...

Σn
k=1A2kf(n, k) + Σn

k=1Ankf(2, k)
...

Σn
k=1Ankf(n, k) + Σn

k=1Ankf(n, k)





























· v = m.

Let’s define S such that S ·v = m. The solution to obtain

the elements of V(0) thus finally results to

v = S−1 · m. (11)

The pseudocode for creating the matrix S and generally

solving for v/V(0) is given with Algorithm 1.

Algorithm 1 Procedure for computing V(0) in function of

A, G and Z in the continuous case.

M = −G · Z · Gt

n = (dimension of A)

q =
n(n+1)

2
⊲ number of unknowns

H = (identity matrix of dimension q)
⊲ H helps for f to get row-vectors

index = 1 ⊲ create matrix S and vector m
for i = 1 to n do

for j = i to n do

for k = 1 to n do

p = 0
if j ≤ k then

for l = 1 to j − 1 do

p = p + n − l + 1
end for

p = p + k − (j − 1)
else

for l = 1 to k − 1 do

p = p + n − l + 1
end for

p = p + j − (k − 1)
end if

(row index of S) =
(row index of S) + Ai,k · (row p of H)

end for

for k = 1 to n do

p = 0
if i ≤ k then

for l = 1 to i − 1 do

p = p + n − l + 1
end for

p = p + k − (i − 1)
else

for l = 1 to k − 1 do

p = p + n − l + 1
end for

p = p + i − (k − 1)
end if

(row index of S) =
(row index of S) + Aj,k · (row p of H)

end for

(element index of m) = Mi,j

index = index + 1
end for

end for

v = (inverse of S) · m ⊲ solve for v
index = 1 ⊲ create V (0)
for i = 1 to n do

for j = i to n do

Vi,j = vindex

Vj,i = vindex

index = index + 1
end for

end for

B. Discrete case

The derivations in the discrete case are a bit different.

We may again assume that we know µx[0], the mean of the

system state during the stationary mode. The conclusions

about the state covariance in this mode result to Vx[k] =
Vx[k − 1] = Vx[0]. In analogy to the derivations under

Section III-A, we may also state that V[0] = Vx[0], which

means that the error covariance at the time we switch on

the filter is equivalent to the state covariance in stationary

mode. Replacing these relationsships into Equation 8, we

finally obtain

1503

AV[0]At − V[0] = −GΨzG
t (12)

as an equation for obtaining the initial error covariance

matrix.

Again replacing the right side of the equation with M, we

may reformulate the problem as

[r(A, 1)rt(V, 1) . . r(A, 1)rt(V, n)] · rt(A, 1) − V11 = M11

[r(A, 1)rt(V, 1) . . r(A, 1)rt(V, n)] · rt(A, 2) − V12 = M12

...

[r(A, 1)rt(V, 1) . . r(A, 1)rt(V, n)] · rt(A, n) − V1n = M1n

[r(A, 2)rt(V, 1) . . r(A, 2)rt(V, n)] · rt(A, 2) − V22 = M22

...

[r(A, 2)rt(V, 1) . . r(A, 2)rt(V, n)] · rt(A, n) − V2n = M2n

...

[r(A, n)rt(V, 1) . . r(A, n)rt(V, n)] · rt(A, n) − Vnn = Mnn

Using the same terminology as under Section III-A, we

may change the equations to

[Σn
k=1(Σ

n
z=1AizVkz) · Ajk] − Vij = Mij

⇒ {[Σn
k=1(Σ

n
z=1Aizf(k, z)) · Ajk] − f(i, j)} · v = Mij .

This finally leads to

























































Σn
k=1(Σ

n
z=1A1zf(k, z)) · A1k

Σn
k=1(Σ

n
z=1A1zf(k, z)) · A2k

...

Σn
k=1(Σ

n
z=1A1zf(k, z)) · Ank

Σn
k=1(Σ

n
z=1A2zf(k, z)) · A2k

...

Σn
k=1(Σ

n
z=1A2zf(k, z)) · Ank

...

Σn
k=1(Σ

n
z=1Anzf(k, z)) · Ank





























− Iq





























· v = m,

which is again a problem of the form S ·v = m and may

be solved according to Equation 11. Another pseudocode

for obtaining the exact initial error covariance in the discrete

case is given with Algorithm 2.

C. Extension to non-linear systems

The extension to non-linear systems is strongly inspired

from the EKF. The basic idea consists in simply replacing

the constant system matrix A by a state depending matrix

A(x(e; t)) that implements a linearization around the current

system state. In the continuous case, Equation 10 then for

instance changes to

A(x(0; e))V(0) + V(0)At(x(0; e)) = −GΨzG
t.

This however introduces a small problem regarding the

determination of the initial error covariance matrix V(0) (or

the covariance matrix at t → ∞ for the real system), namely

that we don’t know the exact value of x(0; e) and are thus

not able to compute the initial system matrix. The best we

can do consists in replacing A(x(0; e)) by its expectation

value. We then obtain

E{A(x(0; e))} = A(E{x(0; e)}) = A(µx(0))

Algorithm 2 Procedure for computing V(0) in function of

A, G and Z in the discrete case.

M = −G · Z · Gt

n = (dimension of A)

q =
n(n+1)

2
⊲ number of unknowns

H = (identity matrix of dimension q)
⊲ H helps for f to get row-vectors

index = 1 ⊲ create matrix S and vector m
for i = 1 to n do

for j = i to n do

for k = 1 to n do

temp = (zero row vector of size q)
for z = 1 to n do

p = 0
if z ≤ k then

for l = 1 to z − 1 do

p = p + n − l + 1
end for

p = p + k − (z − 1)
else

for l = 1 to k − 1 do

p = p + n − l + 1
end for

p = p + z − (k − 1)
end if

temp = temp + Ai,z · (row p of H)
end for

(row index of S) = (row index of S) + Aj,k · temp
end for

mindex = Mi,j

index = index + 1
end for

end for

S = S − (identity matrix of size q)

v = (inverse of S) · m ⊲ solve for v
index = 1 ⊲ create V (0)
for i = 1 to n do

for j = i to n do

Vi,j = vindex

Vj,i = vindex

index = index + 1
end for

end for

Using this system matrix provides a way to use all the

previously established formulas in the non-linear case, too.

IV. APPLICATION TO MOTION ESTIMATION

One problem arising when trying to evaluate the estab-

lished algorithms is that its effects on the convergence of

the filter can only be investigated in the statistical mean.

This means that if we want to analyze the error of the

state estimate, we do not only need to run experiments

with ground-truth data, but also need to run a theoretically

endless number of experiments with the same statistical

starting conditions in order to verify the general convergence

behavior of the filter. Therefore, the example presented in this

paper consists of a simulation that might be repeated many

times.

The example we are going to investigate is shown in

Figure 3, a block between springs moving on a horizontal

track. x[k] designates the position, a[k] the process noise (ac-

celeration), and the system is assumed to be self-stable since

losing energy due to friction between block and track. The

friction force is proportional to the speed v[k] (coefficient

1504

Fig. 3. Block between springs on horizontal track with friction.

r). The total spring constant is c. The state of our system is

x[k] = (x[k] v[k])t. T is the discrete time step. Hence the

model of our system results to

x[k] =

(

1 − T 2

2 c T − T 2

2 r

−Tc 1 − Tr

)

· x[k − 1] +

(

T 2

2
T

)

a[k]

y[k] =
(

1 0
)

x[k] + r[k]

For the experiment, T = 0.01s, c = 0.2 and r = 0.8.

The process noise is defined with σa = 0.8 and Ψa = σ2
a.

Figure 4 shows one example for the evolution of the position

during time. The simulation time is 20 s and the filter is

enabled at t = 10s, which leaves enough time to the system

to enter the stationary mode. The Kalman filter is able to

safely estimate the state of our system despite of a noise

variance of σr = 0.03.

With regard to the evaluation of the convergence behavior,

it only makes sense to analyze the squared average error of

position and speed since the initial error might have different

sign depending on the random noise. The initial error co-

variance matrix found by our algorithm is

(

0.02 0
0 0.004

)

.

Different error covariances are obtained by multiplying the

elements along the diagonal with a certain factor. For each

initial error covariance matrix, the average is taken over 500

runs. Figure 5 shows the resulting estimation error. It shows

clearly that the initial error covariance matrix computed by

our formula results in best filter convergence performance

Fig. 4. Example for the position of the block (gray=groundtruth,
brightgray=measurement, black=filter estimate).

(factor 1), both in position and speed. Setting the initial error

covariances too high, even by orders of magnitude, does not

have a huge influence on the convergence of the position.

The influence on the speed is however noteable. Setting the

initial error covariance only a bit too low directly results in

slower convergence. It can be concluded that the convergence

of the not directly measurable states is more critical. The

inaccurate choice of the initial error covariance matrix like

for instance

(

1 0
0 1

)

certainly has a strong negative influence

on the convergence speed of the filter.

10 10.05 10.1 10.15 10.2 10.25 10.3 10.35 10.4 10.45 10.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3 (a) average squared error of position

t [s]

x
 [

m
]

factor 0.01

factor 0.03

factor 1

factor 100

factor 1000

factor 10000

10 10.05 10.1 10.15 10.2 10.25 10.3 10.35 10.4 10.45 10.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
(b) average squared error of velocity

t [s]

v
 [

m
/s

]

factor 0.01

factor 0.06

factor 1

factor 10

factor 100

factor 1000

Fig. 5. Results of example 1 for different initial error covariance matrices
each time averaged over 500 runs. The green curves show the convergence
when the initial error covariance has been set too high, the red ones when it
has been set too low and the blue one the one obtained using the principle
depicted in this paper.

V. CONCLUSIONS AND OUTLOOK

This paper has shown the feasibility of deriving a correct

initial error covariance matrix for statistical motion esti-

mation filters. It could be shown that the specific case of

a stationary system leads to analytic ways for computing

the corresponding state covariance matrix, which is indeed

equal to the error covariance matrix under the condition that

some knowledge about the mean of the stationary state is

given. The potential effects on the convergence of the filter

estimate could be demonstrated in simulation, and it has been

shown that if the intial assumptions are valid, applying the

procedure presented in this paper basically leads to optimal

convergence.

1505

Future work now consists in evaluating the proposed

procedures using real data with valid ground truth. The goal

is to validate the application to an EKF fusion filter for MAV

motion estimation. The challenge of generating statistical

means might be overcome via logging longer datasets and

engaging the filter offline at many different instants. Another

certainly demanding aspect will be the extraction of all the

model parameters for a given log, which obviously depends

on several factors like for instance pilot skills and external

conditions.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreement n. 231855

(sFly) and from the Swiss National Science Foundation under

grant agreement n. 200021 125017/1.

REFERENCES

[1] E. Reich and P. Swerling. The detection of a sine wave in gaussian
noise. Journal of Applied Physics, 1953.

[2] Steffen L. L. Time series analysis in 1880. a discussion of contribu-
tions made by T.N. Thiele. International Statistical Review, 49:319–
333, 1981.

[3] Steffen L. L. Thiele: Pioneer in Statistics. Oxford University Press,
2002.

[4] Stratonovich R. L. Optimum nonlinear systems which bring about
a separation of a signal with constant parameters from noise. Ra-

diofizika, 2(6):892–901, 1959.
[5] Stratonovich R. L. Application of the markov processes theory to

optimal filtering. Radio Engineering and Electronic Physics, 5(11):1–
19, 1960.

[6] Kalman R. E. A new approach to linear filtering and prediction
problems. Transaction of the ASME, Journal of Basic Engineering,
pages 35–45, 1960.

[7] L. Armesto, J. Tornero, and M. Vincze. Fast ego-motion estimation
with multi-rate fusion of inertial and vision. Int. J. Rob. Res.,
26(6):577–589, 2007.

[8] L. Armesto, S. Chroust, M. Vincze, and J. Tornero. Multi-rate
fusion with vision and inertial sensors. In Robotics and Automation,

2004. Proceedings. ICRA ’04. 2004 IEEE International Conference

on, volume 1, pages 193–199, April-1 May 2004.
[9] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart. Fusion of

imu and vision for absolute scale estimation in monocular slam. In
International Conference on Unmanned Aerial Vehicles, Dubai, 2010.
Accepted for publication.

[10] J.J. Leonard and H.F. Durrant-Whyte. Simultaneous map building and
localization for an autonomous mobile robot. pages 1442 –1447 vol.3,
Nov 1991.

[11] A. Davison, D. Reid, D. Molton, and O. Stasse. MonoSLAM: Real-
time single camera SLAM. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(6):1052–1067, 2007.
[12] Schlitt H. Systhemtheorie für stochastische Prozesse. Springer Verlag,

1992.

1506

