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Abstract— Robust and reliable obstacle detection is an im-
portant capability for mobile robots. In our previous works we
have presented an approach for visual obstacle detection based
on feature based monocular scene-reconstruction. Most existing
feature-based approaches for visual SLAM and scene recon-
struction select their features uniformly over the whole image
based on visual saliency only. In this paper we present a novel
attention-driven approach that guides the feature selection to
image areas that provide the most information for mapping
and obstacle detection. Therefore, we present an information
theoretic derivation of the expected information gain that
results from the selection of new image features. Additionally,
we present a method for building a volumetric representation
of the robots environment in terms of an occpancy voxel map.
The voxel map provides top-down information that is needed
for computing the expected information gain. We show that our
approach for guided feature selection improves the quality of
the created voxel maps and improves the obstacle detection by
reducing the risk of missing obstacles.

Keywords: visual attention, shape-from-motion, visual obstacle
detection, EKF, voxel mapping

I. INTRODUCTION AND RELATED WORK

Nowadays, mobile robots find their way into more and
more sectors of our daily life. However, when operating

in public environments, such as shopping centers or home

improvement stores [1], or home environments [2] a large
variety of different obstacles must be detected by an au-

tonomous robot.
For obstacle detection most robots are equipped with sonar

sensors and laser range finders. Using these sensors, most of

the obstacles can be reliably detected. However, obstacles

whose maximum extent is mainly located above or below
the plane covered by the laser range finder and sonar sensors

are difficult to perceive. Therefore, it is necessary to use
additional methods for robust and reliable obstacle detection.

Vision-based approaches are suitable for this purpose since

they provide a large field of view and supply a large amount
of information about the structure of the local surroundings.

Beside stereo vision [3] and time-of-flight cameras [4],

monocular approaches are an adequate alternative for obsta-
cle detection. The majority of such approaches use feature-

based techniques that reconstruct the depth or the entire 3D

position of each feature. In our previous works [5], [2], we
propose such an algorithm for monocular scene reconstruc-

tion and obstacle detection. Our shape-from-motion approach

uses Extended Kalman Filters (EKF) to reconstruct the 3D
position of the image features in real-time in order to identify

potential obstacles in the reconstructed scene.
Other authors [6], [7], [8] use similar approaches for visual

SLAM. In contrast to our approach they are mainly focusing
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on recovering the 3D trajectory of a monocular camera, while

a precise reconstruction of the scenery is less important. Our
priorities are vice versa as we want to use the reconstructed

scene for obstacle detection and local map building.

For feature detection and feature selection most researches
apply interest operators like the Shi-Tomasi corner detector,

the Harris corner detector or its scale-invariant enhancement,

the Harris-Laplacian detector. These detectors provide a
bottom-up feature selection scheme where the position and

number of the chosen features depend on the content of

the input images. However, taking top-down knowledge into
account could lead to better results by choosing features in

image regions that result in the largest information gain for
the environment knowledge instead of choosing the features

based on the information content of the images only.

In [9] and [10] such a top-down approach is presented,
not for feature selection, but for feature tracking using an

improved active search strategy. In [11] the authors present

a visual SLAM approach for hand-held cameras that instructs
the user to perform position and orientation changes of the

camera to optimize the localisation. The actions and move-

ments are chosen so as to maximize the mutual information
gain between posterior states and measurements.

Another active vision approach is presented by Frintrop

et al. [12], where the camera is controlled by an active gaze
control module according to three behaviours for redetection

of known features, tracking of features and detection of new

features in unknown areas. Using a predesigned decision tree,
the system switches between these behaviours depending on

the number and expected location of known features.
In summary, these visual SLAM algorithms use the ac-

tive vision approach basically for controlling the camera’s

viewing direction in a way to improve the camera’s position
estimates and to enhance loop closings.

In this paper, we present a different active vision approach

that is focusing on feature selection. In contrast to the
aforementioned publications, we use a fixed camera with a

wide-angle lense whose viewing direction cannot be altered

dynamically. However, instead of moving the whole camera,
we can choose particular image regions that our algorithm

pays more attention to. By combining bottom-up and top-

down information we select features in those image regions
that provide the highest information gain for the obstacle

detection algorithm. By choosing new features at the right
places, we can detect more obstacles, allowing us to reduce

the total number of reconstructed features without increasing

the risk of missing obstacles. This results in an improved
performance of the whole obstacle detection algorithm.

In the next section, we give a brief overview of our

monocular obstacle detection algorithm. In section III we
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describe an algorithm for building a volumetric 3D-map,
that is fundamental for the main contribution of this paper,

a novel attention-driven approach for feature selection, that

is described in section IV. Finally, we present experimental
results and conclude with an outlook for future work.

Fig. 1. The architecture of our approach. Features are selected in the input
images using an attention-driven approach. The features are tracked while
reconstructing their 3D positions using EKFs. The resulting point cloud is
used for building a voxel map that is used for navigation tasks and provides
information for the attention-driven feature selection.

II. MONOCULAR SCENE RECONSTRUCTION

As stated before, we use a single calibrated camera

that is mounted in front of the robot. During the robot’s
locomotion, the camera is capturing a sequence of images

I1:t = (I1, . . . , It) that are rectified immediately according

to the intrinsic camera parameters in order to correct the
lens distortions. Using the robot’s odometry, we can obtain

the position and the orientation of the camera and therefore

its projection matrix for each captured image. This prepro-
cessing step yields different two-dimensional views It of a

scene and the projection matrices Pt of the corresponding

ideal pinhole camera. The projection matrices fully describe
the camera including its position and orientation in the world

coordinate frame. For scene reconstruction we use a feature
based approach. Distinctive image points (image features) x′

j

are detected in the preprocessed input images and tracked

over the acquired image sequence while the 3D positions xj

of these features are estimated using EKFs (see Fig. 1).

Since we require a dense reconstruction of the scene for
obstacle detection, we have to cope with a large number

of features, which cannot be handled by a full covariance

SLAM approach in real-time. Therefore, we use one EKF
per feature to recover the scene structure. Each feature j
is associated with a state vector xj that represents its 3D
position, and a corresponding covariance matrix Σj .

A. Feature Selection and State Initialization

For selecting appropriate features in the captured images
we use a feature detector guided by our attention-driven

selection approach that is described in section IV in detail.
For newly selected features, the 3D positions, i.e. their

corresponding EKF states, must be initialized using a suitable
a priori estimate. For this purpose various methods have

been proposed in related literature. A simple method for

initializing the features is to choose their depths in a way
that the height of the initial feature position is zero, i.e. the

features are initialized on the ground plane. This kind of

initialization has certain advantages when used for obstacle
detection since false positive detections are reduced. Using

this method, we achieved good results for obstacle detection,

although it leads to high initial model errors, since many
points are initialized at too large depths.

In [5] we introduced a more complex method which uses

a classic multi-baseline stereo approach for initializing new

features. The approach uses the images that were captured

before the features were first detected and therefore can
immediately obtain valid depth estimates for newly detected

features. Hence, such an hybrid approach can react quickly

to obstacles that suddenly appear in front of the robot.

B. Feature Tracking

While the robot is moving, previously selected image
features are tracked in subsequent frames. In previous works,

we experimented with different tracking algorithms. Besides

SIFT descriptors, we applied bipartite graph matching in [5]
and a guided search using image patches combined with

an advanced descriptor update scheme in [2]. Since the

focus of this paper is on feature selection, we use the well
known Kanade-Lucas-Tomasi tracker so that our results can

be reproduced easier.

After the features are tracked, their 3D positions are
updated using the common EKF update equations leading

to a more precise reconstruction of the scenery. This step is

straightforward and is described in [7] and [5] in more detail.

III. MAP BUILDING AND OBSTACLE DETECTION

For obstacle detection, we perform the described monoc-

ular scene reconstruction for 200-300 salient features of the
scene simultaneously. Before the reconstructed features are

used to build a representation of the environment, they have

to undergo some post-processing where unreliable estimates
are removed. From all features that were tracked in the

current frame, we only use those that meet the following

two criteria: First of all, the covariance Σi of the estimated
3D point must be below a certain threshold [2]. Besides,

the estimated distance to the camera must be smaller than
3 m. This removes most virtual features that arise where the

boundaries of foreground and background objects intersect

in the image. These features do not correspond to a single
3D point in the scene and cannot be estimated properly.

The features that pass the above filters are inserted into

a three-dimensional volumetric model of the environment.
Similar to 2D occupancy grid maps, we partition the robot’s

surrounding three-dimensional volume V = {vi} into dis-

joint cube-shaped 3D cells (voxels) vi. Each voxel vi is
associated with an occupancy value p(vi) which specifies

the probability of the volume covered by the voxel being

occupied by an obstacle. Similar to 2D occupancy grid maps
a voxel is either fully occupied or free, partially occupied

voxels are not considered. The voxel map is modeled as a

Markov Random Field (MRF) of order 0, where the state
of each individual voxel can be estimated as an independent

random variable.

At the beginning, all voxels are initialized with a probabil-
ity of 0.5 to indicate that nothing is known about the robot’s

environment. After a new frame It has been processed,

the voxel map is updated using the estimated features in a
similar way as laser and sonar range scans are inserted into

a 2D occupancy grid map. We use each reconstructed 3D
point as a single measurement that is described by the tuple

zj = (xj ,Σj ,Pt) consiting of the estimated 3D position

xj of the feature, its corresponding error covariance matrix
Σj and the current camera projection matrix Pt. For each

measurement zj the new occupancy probability p(vi|z1:j) of

each voxel vi can be updated recursively from its previous
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R with a fixed size. In our experiments the extent of R is set
to 1/4 of the complete image. Applying the feature detector

in the region of interest makes a big difference compared

to detecting features in the whole image, as the detector
will select the strongest features in a local image region

only. These features usually do not belong to the globally
strongest features and would not have been selected if the

feature detector was applied on the whole image. Hence, by

choosing the position of the region of interest R we can
control the location of newly selected features. The position

of R is chosen in a way to maximize the sum of the attention

values that are covered by the region:

R = argmax
R′⊂It

∑

x′∈R′

a(x′) (4)

Adding new features in this region therefore maximizes the

gain for the whole approach.

For computing the attention map, different measures and
objectives Oi can be taken into account. For computing the

final attention values a(x′) the weighted sum of the attention

values oi(x
′) of all objectives is used:

a(x′) =
∑

i

wioi(x
′) (5)

Currently, we use two different objectives - an “Obstacle
Uncertainty” objective and an “Inhibition of Return” ob-

jective. In order to allow the objectives to compute their

attention value based on the current scene reconstruction and
using information from the navigator about the planned path

we implemented a feedback-loop as seen in Figure 1. Hence,
the feedback-loop provides top-down information that is used

to guide the feature detector.

A. Obstacle Uncertainty - Objective: This objective is used

to focus the feature selection to areas where the obstacle situ-
ation is unclear and where more observations are necessary.

As measure for the uncertainty we use the entropy of the

voxel map that was described in the previous section. The
entropy is known from information theory and defined as:

H(X) = −
∑

p(x) log2 p(x). The entropy H(vi) of a single

voxel vi is given as binary entropy function:

H(vi) = −p(vi) log p(vi) − [1 − p(vi)] log[1 − p(vi)] (6)

It is maximal when the voxel is initialized with 0.5 and

nothing is known about that part of the environment. With
additional observations using the reconstructed features the

entropy decreases and will finally converge near zero after

the voxel has been explored and is classified as either free
or occupied. Obviously, each measurement zj decreases

the expected entropy H(vi) of the voxel and leads to an

expected information gain that can be expressed by the
mutual information:

I(vi; zj) = H(vi) − H(vi|zj) (7)

where H(vi|zj) is the entropy of the voxel vi after inserting

the measurement zj according to Eq. (1) in section III.

If a pixel x′

j is selected as new feature in the input image,
the resulting measurement zj will affect the occupancy

probability and hence the entropy of each voxel vi along

the ray r(P, x′

j) in different ways, depending on whether the
reconstructed point xj is located inside, behind or in front

of the voxel vi. Unfortunately, the location xj of the point is

still unknown when the corresponding pixel x′

j is selected as

feature. However, using the occupancy probabilities we can
compute the probability for the point xj to be located in a

certain voxel along the ray r(P, x′

j). If e.g. the occupancy

value of a voxel vn on the ray is near 1.0 while the values
of the previous voxels v0, . . . , vn−1 on the ray are near 0.0,

the point will most likely be located in vn. In general, the
probability for the point xj to be located in vn is:

p(xj ∈ vn) = p(vn)

n−1
∏

i=0

1 − p(vi) (8)

while the probability for the point to be located in any voxel

behind vn is:

p(xj ≻ vn) =

n
∏

i=0

1 − p(vi) (9)

In the first case, the voxel is assumed to be occupied, its
occupancy probability is increased and its entropy changes

to H(vi|occ). In the latter case, the voxel is assumed to
be free, the occupancy probability is decreased and the

entropy changes to H(vi|free). Taking these considerations

into account, we can predict the expected information gain
I(vi; x

′

j) for each voxel vi along the ray r(P, x′

j) after

selecting the feature x′

j :

I(vi; x
′

j) = H(vi) − p(xj ∈ vn)H(vi|occ)
− p(xj ≻ vn)H(vi|free)

(10)

For computing the entropies H(vi|occ) and H(vi|free) we
simulate updating the voxel as occupied and free using

Eq. (1). In order to simplify the computation we use the
ideal sensor model here which is sufficient for this purpose.

To approximate the real sensor model coarsely the models

parameters are chosen to pocc = 0.8 and pfree = 0.2.
In Figure 4 the information gain for a single voxel

is plotted against the occupancy probability of the voxel

according to Eq. (10) using the ideal sensor model with

different values for pocc and pfree. In all graphs the in-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

p(vi)

I
(v

i
;x

′ j
)

pocc=0.8,pfree=0.2

pocc=0.7,pfree=0.3

pocc=0.6,pfree=0.4

Fig. 4. Information gain I(vi;x
′

j) of a single voxel that is plot against the

occupancy probability of the voxel using different values pocc and pfree

of the ideal sensor model.

formation gain drops at both ends. Hence, updating voxels

that are already identified as free or occupied with a high
certainty does not lead to a significant information gain.

Surprisingly, the function of the information gain may have

a local minimum for occupancy values near 0.5 depending
on the chosen parameters pocc and pfree. This is a result

of the characteristics of the the binary entropy function
with its steep slope for probabilities near 0 and 1. Small

changes in the probability lead to large information gains

for these values. The occupancy update function counteracts
this tendency. Here, the change in the probability for cells

with a occupancy probability near 0.5 is dominant compared

to those with probabilities near 0 or 1. For less reliable
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sensor models the binary entropy function will dominate the
characteristics of the information gain and updating voxels

whose occupancy state is completely unknown is expected

to yield a smaller information gain compared to voxels
where at least some information is already available and

where additional observations can ascertain their real states.
However, when using values pocc ≥ 0.8 and pfree ≤ 0.2 for

the ideal sensor model this effect disappears.

As stated before, Eq. (10) yields the information gain of

a single voxel along the ray after selecting a new feature
x′

j . In order to obtain the total information gain for selecting

the feature x′

j the gains of all voxels along the ray have to
be accumulated. This can be implemented efficiently using

ray casting. Putting all together, we get the final attention

function for the obstacle uncertainty objective:

o1(x
′) =

∑

i

u(vi)I(vi; x
′) (11)

In this equation we added an additional weight function
u(vi) that can be used to control the importance of a each

voxel. For obstacle avoidance e.g. the occupancy states of

voxels along and near the path that was planned by the
navigator are more important than voxels that are far away.

Additionally, we use higher weights for voxels near the robot

than for distant voxels.

B. Inhibition of Return - Objective: The second objective
we apply is an inhibitory objective that implements a so

called Inhibition of Return. It is required to avoid the atten-

tion getting stuck at the same image region while other parts
of the image are never chosen for selecting new features. The

objective manages an activity map M = {m(x′)|x′ ∈ It}
that has the same size as the attention map and the input
image. This activity map keeps track of the image regions

Rt−1, Rt−2, . . . previously selected for feature selection ac-

cording to Eq. (4). Therefore, each element mt(x
′) of the

current activity map Mt is updated as follows:

mt(x
′)=ηmt−1(x

′)+βδ (x′) , with δ (x′)=

{

1 x′ ∈ Rt−1

0 otherwise

Here, η denotes a decay rate that decreases the previous acti-

vation mt−1(x
′). It is chosen to η = 0.95 in our experiments.

The parameter β denotes some activation parameter that adds

activation to all elements in the activity map that correspond

to the image region Rt−1 chosen for feature selection in
the previous iteration. Reasonable values for this parameter

are β = 0.1, . . . , 0.2. Finally, the attention value of this
objective can be easily defined as: o2(x

′) = −m(x′), where

the activation that accumulates the positions of the previously

selected regions has an inhibitory influence on the overall
attention a(x′) in Eq. (5).

Using the Inhibition of Return Objective together with the

Obstacle Uncertainty Objective results in a movement of the

region of interest used for feature detection similar to the
saccade-like movement of the eyes of vertebrates, allowing

to cover the whole field of view while concentrating on the
most interesting parts of the environment.

V. RESULTS

In our experiments we used a 1/4” CCD fire-wire camera

for image acquisition. The camera is mounted in front of

(a) (b)

(c) (d)

Fig. 5. (a) Input image as seen by the robot’s front camera. The region
that is used for feature selection is marked by the blue rectangle. (b) The
information gain for each pixel of the upper left image, where red color
indicates high values and blue corresponds to low values. (c) Input image
taken a few frames later. The reconstructed features are shown as dots,
where the height is coded by different colors (green: < 0.10 m, yellow-red:
0.10 m - 1.15 m) (d) Information gain for each pixel of the lower left image

our robot at a height of 1.15 m and tilted by 35° towards the

ground.

Fig. 5a shows an image of the scene as seen by the front

camera. In Fig. 5b the expected information gain is shown

for each pixel of the image. High values are drawn using red
colors and indicate high benefits for selecting new features

in these regions. As seen in Fig. 5b the highest information

gain can be achieved by selecting new features in the upper
part of the image especially near the obstacle shown in Fig.

5a. According to Eq. (4) our approach selects the features

in this region as indicated by the blue rectangle in Fig. 5a.
After the robot has approached the obstacle, our algorithm

for scene reconstruction has estimated the 3D positions of

the selected features as seen in Fig. 5c. The reconstructed
points are shown as colored dots, where the color indicates

the estimated height of each feature. Since the obstacle has
now been discovered, adding new features in this area would

results in minor information gain as denoted by the blue and

yellow colors in Fig. 5d. Instead, new features will now be
selected in the image regions around the detected obstacle in

order to discover these unknown parts of the environment.

(a) (b)

Fig. 6. Image regions that were used for feature selection during the last
10 frames are shown as transparent rectangles. Areas where more attention
was paid to are more opaque. Images were taken while (a) driving around
a right hand bend and (b) driving along a narrow corridor.

Similar desired behaviors of our approach are shown in

Fig. 6 where we tried to visualize the saccade-like movement

of the region of interest. The regions that were used for
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feature detection during the last 10 frames are shown as
transparent yellow rectangles. Image areas that were used

more often are more opaque than areas where less attention

was paid to. Fig. 6a was taken while the robot was turning
around a right hand bend. Here, our approach guides the

feature selection to the upper right image areas that newly
became visible to the camera in order to discover those

parts of the environment not being observed before. This is

important for local path planning since the robot must react
quickly to obstacles that suddenly appear behind corners.

Fig. 6b shows an image where the robot is moving along a

corridor. Here, most features are selected on distant objects in
the upper parts of the images. This is reasonable since these

features remain visible over more frames of the captured

image sequence compared to foreground features that move
out of the field of view very quickly due to the robots forward

motion. Additionally, the foreground objects have already

been discovered by previous measurements.

Fig. 7. 3D voxel map that was created while driving through the test
environment. Each place was visited only once. The colors of the voxels
indicate their heights as in Fig. 5c.

Fig. 7 shows a 3D voxel map that was created using the

algorithms presented in this paper. Voxels that were estimated

as occupied are shown using different colors, where the
color again codes the height of each voxel. For visualization

purposes only, we used a laser based SLAM approach for

correcting the odometry before creating the maps printed on
this page. In our final application the robots odometry is

sufficient for mapping since we are only interested in the

robots local environment for obstacle detection, where slight
odometry errors can be neglect.

In Fig. 8 two occupancy maps are shown that were created
from voxel maps of the same test environment. While creat-

ing these maps we reduced the number of features that are

tracked per frame to 50-100 in order to show the advantages
of our proposed guided feature selection. The map in Fig.

8a was created by selecting the features according to the

attention-driven approach presented in this paper while Fig.
8b shows a map that was created using features that were

detected uniformely in each image.
Although the same number of features was used for

creating both maps, the right map in Fig. 8 contains several
voxels whose occupancy probability is unknown though they

have been visible to the camera. Additionally, some voxels
were erroneously estimated as occupied. However, the left

map that was created using our guided feature selection

approach contains significantly less errors and less voxels
whose obstacle situation is unclear. These results show that

the guided feature selection can improve the map-building

and the detection of obstacles by reducing the uncertainty

Fig. 8. Occupancy maps that were created from voxel maps. (left)
Map created using the proposed attention-driven feature selection approach.
(right) Map created by selecting the features uniformely in each image.

in the created map and therefore by decreasing the risk of

missing an obstacle. A video of the approach can be found
here: http://www.youtube.com/user/neurobTV

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a method for creating
volumetric voxel maps using 3D points that were obtained

from monocular scene reconstruction. We use the created
maps for navigational tasks like obstacle detection. Ad-

ditionally, these maps provide top-down information for

an attention-driven feature selection scheme. Our approach
selects new features in those image regions that maximize the

information gain. As a result, the created maps contain less

uncertainties, and more obstacles can be detected without
increasing the number of reconstructed features and therefore

without increasing the runtime of the whole algorithm.
Although this approach was developed to robustly handle

the obstacle detection problem, it is very flexible and can be
modified depending on the purposes the scene reconstruction

is used for. With small changes in the objectives presented
in section IV or by adding new objectives it can be adapted

easily to create a dense scene reconstruction for building

precise 3D models or to improve visual odometry.
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