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Abstract— Our research focuses on anomaly detection prob-
lems in unknown environments using Wireless Sensor Networks
(WSN). We are interested in detecting two types of abnormal
events: sensory level anomalies (e.g., noise in an office without
lights on) and time-related anomalies (e.g., freezing temperature
in a mid-summer day). We present a novel, distributed, machine
learning based anomaly detector that is able to detect time-
related changes. It consists of three components. First, a Fuzzy
Adaptive Resonance Theory (ART) neural network classifier is
used to label multi-dimensional sensor data into discrete classes
and detect sensory level anomalies. Over time, the labeled
classes form a sequence of classes. Next, a symbol compressor is
used to extract the semantic meaning of the temporal sequence.
Finally, a Variable Memory Markov (VMM) model in the form
of a Probabilistic Suffix Tree (PST) is used to model and detect
time-related anomalies in the environment. To our knowledge,
this is the first work that analyzes/models the temporal sensor
data using a symbol compressor and PST in a WSN. Our
proposed detection algorithm is distributed, “light-weight”, and
practical for resource constrained sensor nodes. We verify the
proposed approach using a volcano monitoring dataset. Our
results show that this approach yields the same performance
as the traditional Markov models with much less cost.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are widely used in
environment monitoring applications. Each sensor in the
network can monitor its local region and communicate via
wireless communication with other sensor nodes to collab-
oratively produce a high-level representation of the environ-
mental states. With limited power resources, it is important to
reduce the amount of data to be transferred through the wire-
less network. In prior work, we have proposed a hierarchical,
distributed, and modular anomaly detection system (see [4]
and [5]) that does not require central decision making. The
system uses a neural network to perform sensor fusion from
multiple sensors and uses a heuristic discrete state time
model to capture time relations among different states. In this
paper, we extend our prior work by significantly enhancing
the discrete state machine through the use of a more robust,
high performance and memory efficient anomaly detection
method. This method consists of symbol compression that
extracts the semantic meaning from the raw data, along with
a Probabilistic Suffix Tree that is a much more efficient
method for anomaly detection.

Our main research objectives are twofold. First, we are
interested in capturing the semantic meanings from multi-
dimensional raw sensor signals (at each time instant) by
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classification. Second, we are interested in analyzing the
underlying sensor event sequence information. An active
volcano may have days or months of inactivity followed by
an eruption lasting only minutes. A WSN that is designed to
model time sequences should be able to model this process
and be able to detect eruptions. However, it is infeasible to
model the volcanic activity using a traditional high order
Markov chain, since an L-th order Markov model requires
|Σ|L states, where |Σ| denotes the number of alphabet
symbols and L is the length of past history/memory being
modeled.

For a large variety of time-related sequential data, statis-
tical correlations decrease rapidly with the distance between
symbols in the sequence. If the statistical correlations are
indeed decreasing, then there exists a “memory” length M
such that the empirical probability changes very little if
conditioned on subsequences longer than M . Ron et al. [8]
proposed an elegant solution to this problem. The underlying
observation in that work is that in many natural sequences,
the memory length depends on the context and therefore is
not fixed. Therefore, as in [8], we propose to use a Variable
Memory Markov (VMM) model to preserve the minimal
subsequences (of variable lengths) that are necessary for
precise modeling of the given statistical source. This results
in a more flexible and efficient sequence representation. It
is particularly attractive in cases where we need to capture
higher-order temporal dependencies in some parts of the be-
havior and lower-order dependencies elsewhere. The VMM
model can be implemented in the form of Probabilistic Suffix
Tree (PST) model. A PST is a tree whose nodes are organized
such that the root node gives the probability of each symbol
of the alphabet while nodes at subsequent levels give next-
symbol probabilities conditioned on a combination of one or
more symbols having been seen first.

The constructed PST model is essentially a symbolic
predictive model: the underlying continuous time signals are
first abstracted to a discrete space, analogous to a set of finite
categories. In some cases, this has the advantage of being
more immune to the problems of noise while still preserving
the essential underlying patterns or dependencies that govern
behavior in the observed domain. Arguably, it also produces a
more understandable model since its components are higher
level abstractions. All these advantages of the PST model
make it suitable to model temporal sequences in WSNs.

One of the challenges of using a PST model on resource
constrained sensor nodes is that the model complexity may
grow exponentially with the memory depending on the data,
which makes it impractical for resource constrained sensor
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nodes. For example, in the volcano monitoring dataset, it
is common to have a period of inactivity that extends over
several days, weeks or months. Using PST models directly to
model the sensor data is computationally prohibitive. Thus,
we use a data driven approach to automatically infer discrete
and abstract representations (symbols) of primitive object
interactions. These symbols are then used as an alphabet to
infer the high level structures of typical interactive behaviors
using PST models. This Markov model represents high level
semantic notions. These environment feature descriptors
are invariant of the sensor classes and time dependencies.
They constitute the input to a statistical learning framework
where discrete representations of interactive behaviors can
be learned by modeling the probability distribution of the
feature vectors within the interaction feature space.

Symbolic modeling and processing have several advan-
tages over continuous measurements and models, including:
1) sensor data is often discrete (i.e., certain radar systems
[12]); 2) environments that are modeled with discrete states
that have clear physical interpretations are natural and easy
for humans to interpret (e.g., eruption or no eruption vs. vi-
bration measurements); and 3) data compression techniques,
which we use to reduce the size of the observations, typically
require discrete state representations.

The rest of this paper is organized as follows. We first
review related work in Section II. We then present our pro-
posed approach in Section III, which includes our network
architecture. In Section IV, we test the approach on a volcano
monitoring dataset. Finally, we summarize our findings in
Section V.

II. RELATED WORK

Various regression models have been proposed for time-
related analysis in WSNs (e.g., [11]). Regression models
involve a complex parameter estimation process and may
suffer from model mismatch and bias-variance trade-off
problems. There has been some work on the use of prob-
abilistic time-series models in WSNs, such as the Kalman
Filters (e.g., [2]). In general, Kalman Filter-based models are
sophisticated and require significant computation. The fixed
length Markov model is another commonly used technique
for time series analysis [12]. Examples of fixed order Markov
models include the Markov Chain, Hidden Markov Model,
etc. Due to the limited resources in WSNs, building high and
fixed order Markov models is not feasible. The VMM is a
data-driven Markov model that supports online learning and
online detection. Note that in practice, the VMM is usually
implemented in the form of a PST. Many researchers have
proposed algorithms to build PST models in linear time and
space (e.g., [1]). In addition, the method is automatic, and
can be applied without assuming any preliminary informa-
tion. PST models have been applied in WSNs for object
tracking in (e.g., [10]). To the best of our knowledge, our
work is the first work that makes use of a PST model to
detect time-related anomalies in WSNs. Our results show that
a PST has the same performance as the same order Markov
model with less memory cost.

III. PROPOSED APPROACH

In this section, we first introduce the overall architec-
ture, followed by the description of symbol compression
method, PST model construction and a likelihood-ratio based
anomaly detector.

A. Architecture for the WSNs

As addressed in our previous works [4] and [5], we em-
ploy a hierarchical learning/communication structure for our
WSN. The sensor nodes in the WSN are divided into clusters,
as shown in Fig. 1. Each cluster has a clusterhead and
multiple cluster members. Each cluster covers a geographic
region and is responsible for detecting the environmental
changes in that region. Both cluster members and cluster-
heads run an identical detection system — a classifier, a
symbol compressor, a time analysis model and a missing
data estimator. Cluster members read in raw sensor readings,
oi, from the environment as input, and then perform sensor
fusion and classify data into categories ci. If an anomaly is
detected by the classifier, an abnormal alert is raised. After
the classification process, cluster members compress their
category labels and send the compressed category labels
si (higher level semantic symbols in temporal sequences)
to their clusterheads. Note that in our previous system, the
cluster member would send the class labels after each time
step. By compressing the class label sequence into a shorter
temporal sequence, we are able to save communication costs
by removing the redundancies in the temporal sequence. The
amount of redundancy removed depends on the compression
ratio of the original temporal sequence. Then, the clusterhead
analyzes the compressed sequences at a higher level. If
an anomaly is detected by the time analysis module, an
abnormal alert is raised. Clusterheads often cannot receive
complete labels from all of their cluster members, due to
unstable wireless communications. Ignoring missing data
would result in too many false positives (as justified in
our previous work [5]). Thus, the clusterheads first pre-
process the collected category labels by identifying and
estimating the missing values (using our technique described
in [5]). The learning system has a hierarchical structure
— clusterheads may have higher level clusterheads which
classify their output (compressed) class labels. Finally, the
root node obtains the final model of the environment. With
this learning architecture, the system is able to detect both
abnormal environmental changes and time-related changes.

We keep our design in a modular form because it gives
human operators the flexibility of turning off the modules
that are not needed. For example, the operator can turn off the
time analysis module if analyzing time is not of interest. In
addition, the WSN can be easily scaled to a large number of
sensors. At the same time, this hierarchical approach reduces
communication, which in turn saves energy in the WSN.

Fig. 2 demonstrates the flow of the sensor signals of an
individual sensor node in our proposed system, which is
a significant extension over our prior design in [4]. Each
sensor node takes in multi-dimensional raw sensor vectors
from the environment as input, and then performs sensor
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Fig. 2. The proposed architecture for an individual node.

fusion and classifies the raw sensor signals into categories
using a classifier. If the new category does not match one
of the existing normal categories, a sensor level anomaly is
detected by the system. The classifier that we use is the Fuzzy
Adaptive Resonance Theory (ART) neural network [3]. The
details of the Fuzzy ART neural network algorithm can
be found in [4]. After the sensor fusion and categorization
process is finished, the system further checks whether there
are time-related changes. The temporal sequence model is
a two-step process. First, the sequence of classes/categories
is first compressed with a symbol compressor (described in
Section III-B). It operates efficiently by sampling the string
statistics in a manner that allows a compressed representation
and exact reconstruction of the original string. Depending on
the implementation, learning and generating can be off-line
or on-line, real-time or non-real-time. Then the compressed
events are built into a PST model. In order to detect time-
related changes, the system measures the likelihood of the
current compressed sequence, compared to the PST model(s)
learned during the training phase.

Note that we propose this two-step structure to make our
system more flexible when capturing the temporal sequence
information. For example, system designers may substitute
another symbol compression method or Markov-based model
as desired. When modeling the temporal sequence, if time
duration within a state (class) is not of interest, the designers
can simply remove all consecutive repeated categories in the
symbol compression stage and let the PST model only the
state sequences.

B. Identifying semantic symbols from temporal categories

One significant extension to our previous work in [4]
is adding the ability to identify semantic symbols from
temporal categories. Identifying semantic symbols is of
particular interest since it allows reasoning to be extended
from individual temporal categories to a higher semantic
level. In this research we are interested in modeling the

joint (combined) behavior of pairs of interacting semantic
symbols. These semantic symbols can be constructed us-
ing compression algorithms. Compression algorithms can
roughly be categorized into lossless or lossy compression
[9]. Lempel-Ziv77/78 and Lempel-Ziv-Welch (LZW) are the
most widely used dictionary-based compression techniques
[9]. The main mechanism in both schemes is pattern match-
ing: find string patterns that have occurred in the past and
compress them by encoding a reference to the previous
occurrence. Our temporal sequence compression process
is defined as follows. The encoder/compression algorithm
takes a sequence of category labels C = {c1, · · · , cT } and
compresses it into another sequence denoted by S, which
encodes higher-level semantic meaning. We have used the
LZW algorithm to construct semantic symbols. LZW is an
improved implementation of the Lempel-Ziv78 algorithm.
The algorithm is designed to be fast to implement but is not
usually optimal because it performs only limited analysis of
the data. With the limited resources of a WSN, it is important
to reduce the amount of processing. In a typical compression
run, the algorithm takes a string as input, and processes
the string using a dictionary of distinct substrings. The
algorithm encodes the string (and builds the dictionary) by
making a single left to right traversal of a sequence. Initially,
the dictionary contains the alphabet with its corresponding
encoding. Then it sequentially adds every new substring that
differs by a single last character from the longest match that
already exists in the dictionary. This repeats until the string is
consumed. The idea is that, as the string is being processed,
it populates the dictionary with longer strings, and allows
encoding of larger blocks of the string at each replacement.

Note that with the proposed two-step temporal modeling
process, it is not necessary to keep all entries in the dictio-
nary. Especially with limited memory in the wireless sensor
nodes, we wish to build a small dictionary. If a system
can afford to build a PST with order up to M , dictionary
entries with length shorter than M can be pruned, since
they can be modeled by an M -th order PST. The length
of each dictionary entry corresponds to a real-world event in
discrete time. Specifically, the length of a single-alphabet
entry in the dictionary denotes the time duration of the
event’s occurrence and the corresponding index carries that
semantic meaning. Thus, the compressed temporal sequence
is able to maintain the higher-level semantics of the initial
temporal sequence while using a shorter length. In WSNs,
transmitting a compressed sequence saves communication
costs compared to transmitting uncompressed raw data.

C. Modeling semantic interactions using PSTs

Another significant extension to our prior work in [4] is
modeling semantic interactions using PSTs. The PST model,
which was originally designed for classification purposes,
has the advantage of improved extraction of statistical infor-
mation from sequences. The trade-off is that it deliberately
throws away some of the original sub-sequences during
the analysis process to maintain a compact representation.
In resource constrained WSNs, compact data models save
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energy in nodes by reducing the amount of data being
transferred among the nodes. We are interested in building
models of the environment that are able to support both inter-
pretation and anomaly detection. We achieve this by using
PSTs to efficiently encode the sequences of the categories
corresponding to observed interactive behavior in the feature
space. In the following, the definition of the PST is first
given. Then, we explain how the PST is used to detect time-
related anomalies in the WSN.

The PST is a stochastic model that uses a suffix tree as
the index structure. This approach is based on the “memory”
of natural sequences. That is, the root node of the PST gives
the empirical probability of each symbol in the alphabet
while each node at subsequent levels is associated with a
vector that gives the next symbol given the label of the node
as the preceding segment. For example, P (si+1|s0...si) =
P (si+1|si−M ...si), where i > M , gives the empirical
probability distribution P of the next symbol si+1 given the
last M symbols in the preceding segment. Furthermore, a
tree of order M has M levels beyond the root. Detailed PST
inference and pruning procedures can be found in [6].

Let S = {su : u ∈ U} denote a compressed temporal
sequence of size U , where u denotes the discrete time unit
after compression. To model the normal behavior using the
Maximum Likelihood criterion, we find a model that max-
imizes the probability of a given sequence of observations.
Given a PST λ, the total likelihood of the observations can be
expressed mathematically as L = P (S|λ). If the probability
of the observation sequence given the model is below a
threshold θ, then an anomaly is detected. A likelihood-ratio
detector is addressed in detail in the following subsection.

The computation for this procedure is fast and inexpensive.
The PST model has been shown to be implementable in lin-
ear time and space [1]. Let the length of the training sequence
be n, the memory length of PST be M , the alphabet be Σ,
and the length of a testing sequence be k. Apostolico and
Bejerano’s PST building algorithm takes O(n|Σ|) time [1].
This procedure is a one-time overhead cost to the system
during the initial period (unless the PST needs to be updated).
To detect anomalies after the PST is constructed, the system
has to calculate the likelihood that the testing sequence
matches the built PST. The sequence matching procedure
is a simple tree traversal, and the detection procedure takes
O(mk) time. Thus, it is practical for sensor nodes that have
limited resources.

D. Likelihood ratio detection scheme

We are interested in detecting anomalies in an unknown
environment. Therefore, we assume that the initial model
that we have learned is the normal model of the environment;
variations from the initial model are treated as anomalies. Let
S denote the entire (compressed) sequence of environmental
states S = {S̃, Ŝ}, where S̃ denotes the training sequence,
and Ŝ denotes the target testing sequence. Given a segment of
observations/class labels S̃ = {s1, · · · , sv}, and a segment
of observations/class labels Ŝ = {sv+1, · · · , sU}, the task
of detecting anomalies in the sequence Ŝ is to determine

if Ŝ is the same as S̃. (Note that in some applications the
types of anomalous events are known; in that case S̃ can
represent abnormal observations, and an anomaly is detected
when Ŝ matches S̃.) The likelihood-ratio detector is similar
to that proposed by Reynolds, et al., in [7] for speaker
verification problems. The anomaly detection problem is
formulated as determining if sequence Ŝ is different from
the normal sequence S̃. The anomaly detection task can be
restated as a hypothesis test between:

H0 : Ŝ is normal and H1 : Ŝ is abnormal. (1)

The likelihood ratio test to decide between these two hy-
potheses is given by:

p(Ŝ|H0)
p(Ŝ|H1)

{
≥ θ accept H0

< θ reject H0
(2)

where p(Ŝ|Hi), i = 0, 1, is the probability density function
for the hypothesis Hi evaluated for the observed sequence Ŝ,
also referred to as the likelihood of the hypothesis Hi given
the sequence. The decision threshold for accepting or reject-
ing H0 is θ. For our temporal anomaly detection, the null
and alternative hypothesises use PST models λ. Hence, we
denote the PST model for the null hypothesis as p(Ŝ|H0;λ0)
and for the alternative hypothesis as p(Ŝ|H1;λ1). The likeli-
hood ratio detector is p(Ŝ|H0;λ0)/p(Ŝ|H1;λ1). Usually, the
logarithm of this statistic is used giving the log-likelihood
ratio,

Λ(Ŝ) = p(Ŝ|H0;λ0)− p(Ŝ|H1;λ1) (3)

During the training period, we may encounter various event
sequences that are normal, abnormal and/or undetermined.
The model for H0 can be estimated using a normal event
sequence. However, the model for H1 is less well defined
since it potentially must represent every abnormal situation
possible. Since the environments that WSNs operate in
are typically unknown, it is not possible to train H1 with
every abnormal situation. Therefore, we believe the universal
background model (UBM) [7], which uses all hypothesized
sequences of events, is more suitable. The UBM in our
application is the entire set of training data, which may
include normal, abnormal and undetermined event sequences.

IV. EXPERIMENTS

A. Volcano Reventador data

We use a volcano monitoring dataset to test the proposed
anomaly detection system. The dataset was collected by
Werner-Allen, et al., over a 24-hour time period at the
Volcano Reventador [13]. The data used in our experiments
is obtained from one of the seismic stations, which samples
the environment at 120 Hz. Since the data is voluminous,
we have analyzed one day’s worth of data, which is approx-
imately 200 megabytes. This data is from a single station (a
single sensor node), which is not from a complete sensor
network. The following experiments that we conduct do
not involve clusters or clusterheads. However, the detection
process for the entire WSN work is described in Section III.
We have demonstrated in our prior work [4], [5] that the
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previously proposed detection system works with multiple
layers of clusters of sensor nodes that use multiple sensors in
our lab environments. Our previous approach uses heuristic
discrete states to model time; since the 2-step temporal
modelling approach proposed in this paper also uses discrete
state representations, we believe this should work with
the existing system architecture when implemented on the
physical nodes. The current approach is more robust when
detecting multiple anomalies in the environment and takes
less communication by transmitting compressed temporal se-
quences. We use the volcano dataset here as proof-of-concept
to illustrate how our enhanced time modeling module works
on a real world dataset. In future work, we will evaluate our
system using a full WSN.

B. Preprocessing

The raw seismic data O is normalized and categorized by
the Fuzzy ART neural network. The raw sensor data O is
classified into |Σ| = 13 categories by setting the vigilance
parameter ρ of the Fuzzy ART system to 0.93. Hence, the
output temporal categorization sequence C has an alphabet
size |Σ| of 13. Note that the physical meaning of these 13
categories is unknown. In future work, if we have the ground
truth of the seismic data, the Fuzzy ART neural network
can assign more meaningful categories (e.g., magnitudes of
eruptions) by adjusting its vigilance parameter ρ. The data is
grouped into hour-long subsets. Based on visual inspection,
there are no volcanic activities during the period between
the 1st hour and the 15th hour; we regard this period as the
normal period. There is an anomaly/eruption between the
15th hour and the 16th hour. Thus, we regard this hour as
an abnormal period. We are unable to determine whether the
periods following the eruption are “normal after eruption” or
“abnormal”. As a result, we currently discard the data after
the 16th hour. In summary, we treat hours 1−15 as a normal
period and hour 16 as an abnormal period.

The following performance metrics are used to evaluate
our system: compression ratio, True Positive Rate (TPR),
True Negative Rate (TNR), False Positive Rate (FPR) and
False Negative Rate (FNR).

C. PST vs. Fixed length Markov model

We first compare the performances between the PST
model and the traditional fixed length Markov model on the
volcano monitoring dataset. In this experiment, we use the
abnormal period’s category sequence (hour 16) as training
data and the normal periods’ (hours 1-15) category sequences
as testing data. The performance is measured by the negative
log-likelihood of the normal category sequence given the
observation of the abnormal category sequence. Specifically,
we construct both PST and fixed length Markov models from
the training data with Markov orders 1, 2, 3, 4, 5, and 10.
For each PST/fixed length Markov model, we calculate the
negative log-likelihood P (C|λ) of the testing sequence C
given the PST/fixed length Markov model λ. The larger the
negative log-likelihood value is, the more dissimilar are the
compared sequences. We expect the dissimilarity between

the abnormal period and the normal period to grow as the
memory order grows.

Our results are summarized in Table I. The empirical
results indicate that the sizes of PST models are much
smaller than the traditional fixed length Markov models
as the order increases. For example, observe that the 10th

order fixed length Markov model uses 981 states, while the
order-10 PST model only uses 205 states. The negative log-
likelihood is the same between a sequence given a PST
model and a fixed length Markov model with the same order,
since we eliminate nodes that have the same probabilities
as their parent nodes when constructing the PST models.
The model is lossless in terms of capturing the information
of the training data. Therefore, we prefer a PST model
over a fixed-length Markov model because it is purely data-
driven, it is flexible, and most importantly, it takes less
space. Note that the PST models can be pruned to remove
some low probability nodes (see [8]); however, this will
lead to information loss. In future work, we will evaluate
the proposed detection system based on PST models with
thresholds to remove low probability nodes. In addition,
we will explore a systematic procedure for deciding the
threshold values for PST models in the proposed detection
system.

TABLE I
COMPARISON OF FIXED LENGTH MARKOV MODELS VS. PST MODELS

Order Num. of nodes − log-likelihood
Fixed 1 12 −0.0141
length 2 45 −0.0112
Markov 5 296 −0.0069

10 981 −0.0046
PST 1 12 −0.0141

2 41 −0.0112
5 146 −0.0069
10 205 −0.0046

D. PST model with compressed temporal sequence

As shown in the previous section, using the PST model di-
rectly on the volcano monitoring dataset is still not practical
for the resource limited sensor nodes, i.e., it takes 208 states
to build a PST model with a memory of 10 observations.
An observation with 10 samples can hardly capture any
meaningful sequences in the environment monitoring type of
applications. In reality, daily life activities usually take more
than 10 observations to capture. If modeling such a long
sequence of actions is important to an application, the PST
model will not be a practical solution if used directly on the
raw samples. Our proposed compression technique, in which
the PST is built from the higher level symbol representation
rather than the original data, addresses this issue.

We applied the standard LZW symbol compression al-
gorithm on the category sequences of the dataset. The
average dictionary size for 16 hours (excluding the pre-built
characters in the dictionary) is approximately 61 entries per
hour. Based on the given data, we observe that there are
long periods of inactivity, which are denoted by sequences of
category “1”. Then, we apply the compression algorithm to
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all 16 hours of data independently. The average compression
ratio for the 16 hours is approximately 33:1. The compressed
representation of data saves on both processing power and
reduces the amount of storage on the sensor nodes. Most
importantly, when the local sensor nodes transmit the tem-
poral models to the clusterheads, they are able to save the
transmission power as well.

TABLE II
PERFORMANCES FOR PST ORDERS 5 AND 10 W. COMPRESSION

PST order Threshold FNR(MissRate) FPR(FalseAlarm)
5 0 17.5% 16.8%

0.5 0% 85.9%
0.9 8.8% 34.9%
1.1 22.2% 10.7%
1.5 99% 1.8%

10 0 1.8% 6.8%
0.5 0% 77%
0.9 0% 17.6%
1.1 2.3% 3.4%
1.5 97.7% 0.9%

To detect anomalies in the temporal sequence, we employ
a likelihood-ratio detection scheme as given in Eq.(2). The
detection procedure works as follows: during the training
period, we use semantics (compressed symbols) from hours
1-16 to obtain the alternative hypothesis p(S|H1), and hour
16 to obtain the null hypothesis p(S|H0). We have built two
PST models for the dataset with orders 5 and 10. Table II
shows the confusion matrix obtained when adjusting the
threshold θ. Based on the detection performances, the FPR
for the order-5 PST model is 16.8% when θ = 0, which has
the best tradeoff between FPR and TPR. The FPR for the
order-10 PST model is 3.4% when θ = 1.1, which has the
best tradeoff between FPR and TPR. Therefore, we choose θ
values of 0 and 1.1 for PSTs of orders 5 and 10, respectively.
In addition, the miss rates for PST orders 5 and 10 PST
models are 17.5% and 2.3%, respectively. The miss rates and
false alarm rates are relatively low for both PST models. The
tree sizes for the orders 5 and 10 PST models are 186 and
241 nodes, respectively. Note that the nodes on PST models
that are built from compressed sequences represent higher
semantic temporal meanings. Therefore, the nodes represent
much longer observations compared to the nodes on the PSTs
that are built from the uncompressed sequences, (i.e., the
order 10 PST is modeling a sequence with approximately 330
observations compared to 10 observations). The detection
results show that our proposed PST model with symbol
compression method is able to detect anomalies with high
performance. Additionally, the UWB-based likelihood ratio
detector is robust and able to detect multiple anomalies in a
time sequence with high performance. The robustness and
the ability of detecting multiple anomalies are significant
enhancements to our previous heuristic state machine.

V. CONCLUSIONS

Using resource constrained WSNs for environment mon-
itoring of applications such as volcanic eruptions is chal-
lenging, because the event of interest is usually preceded

by a long period of inactivity and the event itself lasts only
for a short period of time. In this paper, we have proposed
a two-step temporal modeling procedure to analyze and
extract semantic symbols from a sequence of observations.
The system detects time-related changes online by using a
likelihood-ratio detection scheme. Our proposed temporal
modeling technique is able to capture high-order temporal
dependencies in some parts of the behavior and lower-
order dependencies elsewhere. We have verified the proposed
approach using a volcano monitoring dataset. Results show
that our system yields a high performance. Our iterative
temporal learning approach captures the temporal dependen-
cies in data and removes redundancies, which translate into
energy savings in the WSN. The algorithm is distributed, and
supports a hierarchical learning structure, which we believe
will scale to a large number of sensors and will be practical
for resource constrained sensor nodes. In future work, we
will implement and evaluate the time analysis module on
our wireless sensor network (rather than a single sensor on
a single node).
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