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Abstract— This paper describes our on-going efforts toward
developing heterogeneous, cooperative systems technologies. In
particular, we present the role of unmanned mobile ground
systems (robots) in a heterogeneous sensor network, consisting
of two unmanned aircraft, a mobile ground robot, and a set
of four stationary ground sensors, performing an intelligence,
surveillance, and reconnaissance (ISR) mission. The unmanned
mobile ground robot is equipped with an infrared (IR) sensor,
the aircraft and the stationary ground sensors use optical
cameras and radio frequency (RF) detectors, respectively. The
primary responsibility of the mobile ground robot is to verify
the identity of a target based on its IR signature. In addition,
the mobile ground robot also assists with the sensor network’s
overall target localization estimation efforts by sharing its
IR sensor-based target location measurements with members
of the sensor network. Our analysis and field experiments
demonstrated scalability and effectiveness of our approach.

I. INTRODUCTION

Ever since the military and civilian use of unmanned
aircraft with on-board sensing capabilities became an integral
part of surveillance, reconnaissance, and sometimes combat
missions, it has become apparent that the next horizon of the
technology push requires the use of a network of multiple
unmanned platforms, including aerial, ground, surface, and
underwater vehicles. This paper describes our efforts to
advance the cooperative, heterogeneous systems technologies
as we solve some of the critical mobile sensor network
problems. Here, we focus on the role of ground mobile
sensors as they contribute to sensor network capabilities. The
motivation for our work comes from the current operational
needs identified by deployed soldiers in theaters: an increas-
ing number of military and humanitarian missions rely on the
capabilities rendered by a team of autonomous, cooperating
robots. The challenges introduced by such systems require
distributed algorithms for coordinated sensing and control of
heterogeneous mobile systems, since it is impractical to have
a centralized control architecture as the team size increases.
We present an asynchronous method for sensor exploitation
and fusion of data collected by multiple systems, and a means
to reliably share pertinent information among team members.

A number of methodologies discussed in the literature
address cooperative target localization using aircraft and
ground vehicles. Vidal et al. (2002) developed an evading
target tracking system using collaboration of one unmanned
aerial vehicle (UAV) and several unmanned ground vehicles
(UGVs) based on greedy pursuit policies. The potential
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of joint forces using unmanned systems for collaborative
military engagement was explored by Mullens et al. (2006).
Grocholsky et al. (2006) proposed a scalable target detection
and localization algorithm for decentralized, heterogeneous
sensor networks. A method for topological reconfiguration
of control architectures for heterogeneous, distributed UAV-
UGV sensor networks with small-scale experiments is dis-
cussed by Ippoolito et al. (2008).

Very few of the proposed solutions utilize on-board pro-
cessing, opting to relay the sensor data to a centralized
processing node, which limits scalability, and restricts the
sensors’ operational distance. Previously, we reported on
the development of an ISR system using multiple aerial
vehicles under fully distributed, cooperative control, where
multiple UAVs cooperatively search, detect, and track a
ground target [4]. In a related work, we demonstrated that the
use of multiple autonomous sensing vehicles renders several
key benefits, such as increased robustness and fault tolerance,
reduction in time required to achieve mission objectives, and
a decrease in the overall cost of ISR activities [10].

In this paper, we extend the sensor network capabilities
of our system by adding stationary radio frequency (RF)
sensors, which we call ground sensor pods (GSPs), and a
mobile infrared (IR) sensor. The mobility of the IR camera
is provided by an unmanned ground robot, which is con-
trolled by our cooperative autonomous system (CAS). This
mobile ground sensing platform (MGSP) cooperates with the
stationary and airborne surveillance assets by first verifying
the presence of the target at a predicted location, and then
by helping to improve the accuracy of the target localization
estimate through collection of additional measurements. In
the next section, we outline the motivation behind our work,
and then provide a short overview of key sensor network
technologies in Sec. III. A detailed description of the mobile
robot appears in Sec. IV, followed by experimental results
in Sec. V. We conclude this paper with a few remarks and
give a brief summary in Sec. VI.

II. MOTIVATION

Our previous work on cooperative multiple unmanned
aerial vehicles demonstrated the benefits of using au-
tonomous platforms to efficiently and effectively detect and
locate ground targets [5,6,10]. Fig. 1 shows a photo of our
UAVs and the two additional sensor platforms, all equipped
with on-board autonomous control, sensing, and peer-to-peer
communication capabilities. The motivation of the current
work is the need to verify targets once they are detected and
localized. The focus of this paper is to first show the effective
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Fig. 1. Aircraft (left), mobile ground sensor platform (center), and the ground RF sensor pods (right) developed by the US Air Force Academy Unmanned
Aircraft Systems Research Center

use of UGVs operating in the vicinity of suspected targets
as UGVs verify the identities of targets. The UGVs also
reduce the overall targets’ location uncertainties by providing
team members in a sensor network with close-up “views” of
targets. The second focus of the paper is to present innovative
cooperative technologies we developed, called CAS. The
CAS technologies consist of hardware and software modules
to facilitate portable control, sensing, and communication.
We plan to use CAS in multiple sensing platforms regardless
of their mobility functions, removing the need to develop
separate capabilities for different systems operating as part
of the same sensor network.

III. COOPERATIVE AUTONOMOUS SYSTEMS
This section provides a brief review of the important

cooperative autonomous system technologies that we devel-
oped. The distinguishing characteristic of our sensor net-
work comes from the fact that it is (1) autonomous, (2)
heterogeneous, and (3) distributed/scalable. The autonomy
of the system refers to the operational independence of each
sensor platform. In particular, the ability to automatically
allocate sensing and computational resources, as well as to
determine the best allocation of sensing platforms in real-
time – all without the need for a human operator to issue
control directives. A solid mathematical foundation forms
the basis of our sensor fusion method, and a straightforward
transformation of each sensor output to a common form
allows for a wide variety of sensor outputs to be incorporated.
The reactive nature of our control algorithms and the absence
of a centralized processing node allow the system to function
in a fully distributed fashion (i.e., local sensor information
is processed separately on neighboring platforms), with each
one making independent decisions. Adding new, or removing
old sensor platforms at runtime does not require special han-
dling within the sensor network, which is a desirable property
for many combat and emergency deployment scenarios.

A. Event-Driven, Multi-Threaded Software
A highly modular design of our distributed sensor network

results in a flexible and practical research platform for devel-

oping cooperative sensor fusion, control, and communication
technologies. The implementation of each module is suffi-
ciently agile to allow many intelligent behaviors of varying
complexity, without unnecessary external dependencies on
hardware or software operating environments.

The on-board software is best characterized as a hierar-
chical collection of event-driven modules that encapsulate
and abstract many individual sensor technologies equipped
on the vehicles (see Fig. 2). This architecture is imple-
mented using the Qt cross-platform application framework by
Nokia, which makes it possible to compile and execute our
distributed sensor application on several popular operating
systems (i.e., Microsoft Windows and embedded versions of
Linux). We were able to implement and evaluate several hy-
brid configurations of stationary and mobile ground sensors,
as well as airborne platforms, with minimal amount of devel-
opment [10]. Our software solution is multi-threaded, taking
full advantage of recent advances in embedded, multi-core
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Fig. 2. Software architecture of the heterogeneous on-board processing sys-
tem (HOPS), configured for the UAV sensor platform. A similar hierarchy,
which consists of interacting top-level managers overseeing processing and
IO operations within their respective module, is in use on all of the nodes
participating in the distributed sensor network, including the ground station
computer. Each module provides a strict separation between hardware-
specific device drivers and general-purpose algorithms and behaviors.
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Fig. 3. Interactive graphical user interface in use on the multiple unmanned systems ground station. The ground station provides a real-time view of the
telemetry and sensor data collected by the sensor network, along with various control options to modify parameters and behavior modules of each sensor
node. The ground station also re-broadcasts the same information over a local network for use by more specialized applications, such as database archival
and Google Earth visualization tools.

processing technologies. Support for standard communica-
tion methods, such as TCP/IP and UDP network protocols, is
also included, enabling straightforward integration with other
cooperative, autonomous systems. The software interface of
the CAS ground station (see Fig. 3) conveniently allows just
one person to monitor real-time progress of several vehicles
simultaneously.

B. Heterogeneous Control and Coordination

To coordinate and control multiple mobile platforms in
a distributive manner, we developed a state-machine based
control architecture that selects an appropriate behavior from
a set of collaborative behaviors. Each platform independently
makes its control, sensing, and communication decisions
in real-time based on the mission objectives, the status of
the current mission, and the processed sensor data. For
illustration purposes, Fig. 4 shows a sample state machine
used by our UAVs. The state-machine shows that a UAV can
operate in one of the four states (GS – global search, AT
– approach target, LT – locate target, and RT – reacquire
target) during a mission. An operating state can change
in response to a variety of events (shown as arrows in
the figure) which include sensor observations and a request
for assistance from neighboring aircraft. The MGSP uses a
simplified state-machine at present to meet the objectives

Fig. 4. Different control states (i.e., behaviors) and transitions of the
cooperative UAV controller; CH denotes the cost of helping with target
localization. GS (global search) is the initial state of each UAV; target
detections activate the AT (approach target) state. The UAVs orbit in the LT
(locate target) mode while observing the target. If the aircraft sensors fail
to detect a target, the controller switches to the RT (reacquire target) mode,
which helps the UAVs to locate nearby targets.
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of the target verification task. The stationary sensors do not
have any control associated with them.

C. Sensor Fusion Technologies

Distributed and locally processed sensor observations are
incorporated with sensor data communicated by cooperating
sensor nodes using a modified Sigma-Point Kalman Filter
(SPKF). The SPKF is capable of providing higher accuracy
than the extended Kalman filter (EKF) because the SPKF
incorporates up-to the second-order probability distribution
of the estimate information [7]. Given the distributed nature
of our sensor network, our foremost concern lies with the
synchronization of various measurements, a problem that is
exacerbated by the non-deterministic latency of the radio
communication. To address this issue, we have developed
the Out-Of-Order Sigma-Point Kalman Filter (O3SPKF) [6],
which uses the following equations for the state update:

x̂+(tx) = E
[
x(tx) | Y+]

x̂−(tx) = E
[
x(tx) | Y−

]
ŷ(tm) = E

[
y(tm) | Y−

]
We use tm to denote the time when a measurement was
made, and tx marks the time of the filter’s last state estimate.
Symbol x(t) represents the true target state (i.e., its position
and velocity) at time t, and x̂−(t) and x̂+(t) are the state
estimates just prior and after a measurement is made at time
t, respectively. Symbols y(t) and ŷ(t) represent the actual
and expected measurement values at time t, while Y− and
Y+ denote the history of observations just before and after
the new measurement data is incorporated.

In general, we are interested in the value of x(t); however,
the filter only “knows” x̂(tx) corresponding to the newest
measurement. To propagate x̂(tx) forward in time to predict
x(t), we use a target’s motion-model state equation. If tm < tx
then the sensor data is “old”, but may still contain valuable
information about the target. In this case, the O3SPKF propa-
gates the current state back in time in one step, incorporates
sensor measurement at time tm, and updates the current
estimate of the target’s position at time tx using the delayed
measurement in conjunction with covariance calculations [6].
In relation to the above state variables and observation, we
can determine uncertainties via covariance, as shown below.

Σ
−
x̃(tx)

= E
[
(x(tx)− x̂−(tx))(x(tx)− x̂−(tx))T ]

= E
[
x̃−(tx)x̃−(tx)T ]

Σ
+
x̃(tx)

= E
[
(x(tx)− x̂+(tx))(x(tx)− x̂+(tx))T ]

= E
[
x̃+(tx)x̃+(tx)T ]

Σ
−
ỹ(tm) = E

[
(y(tm)− ŷ(tm))(y(tm)− ŷ(tm))T ]

= E
[
ỹ(tm)ỹ(tm)T ]

Symbol Σ represents covariance of the errors between actual
and estimated states, and ỹ denotes the error between true and
expected measurement values. Finally, L is the Kalman gain

used to adjust the estimated state and the error covariance.

L(tx, tm) =
E

[
(x(tx)− x̂−(tx))(y(tm)− ŷ(tm))T

]
Σ
−
ỹ(tm)

=
Σ
−
x̃(tx)ỹ(tm)

Σ
−
ỹ(tm)

.

x̂+(tx) = x̂−(tx)+L(tx, tm)
(
y(tm)− ŷ(tm)

)
Σ

+
x̃(tx)

= Σ
−
x̃(tx)
−L(tx, tm)Σ−ỹ(tm)L(tx, tm)T ,

The resulting filtering technique allows the distributed system
to optimally use even the stale sensor data as a part of the
estimation process. The benefits of using O3SPKF instead of
buffered SPKF are explored in [10].

IV. MOBILE GROUND SENSOR PLATFORM

Due to its widespread use in robotics research appli-
cations and the availability of open-source software API,
we selected the Pioneer P3-AT ground robot, manufactured
by the Mobile Robots Inc., as the base platform for our
UGV implementation. The unit comes equipped with on-
board sonar sensors, providing basic obstacle avoidance
functionality that is sufficient for outdoor testing in a semi-
structured environment.

We use the CAS single-board computer system (SBC) to
control the robot. Global Positioning System (GPS) updates
and magnetic heading (from the Honeywell HMR2300 com-
pass) are obtained from an autopilot unit, mounted on a non-
magnetic scaffold above the robot’s chassis (see the center
photo in Fig. 1). The on-board CAS software provides IEEE
802.11b ad-hoc WiFi connectivity to other sensor units in
the network, as well as a ground station. The CAS software
module, as shown in Fig. 2, listens for target detection and
localization events, and steers the robot toward an estimated
target location. The IR sensor provides thermal gradient
information via gray scale images. This camera system was
selected because of its low cost and lightweight form factor,
ideally suited for our unmanned ground robots and UAVs.

Fig. 5(a) shows the image of the outdoor propane heater
(see Fig. 6, right) as observed by the IR sensor installed
on the MGSP. The Thermal-Eye camera firmware uses auto-
matic gain control when converting thermal data into pixels,
which means that IR sources in the sensor’s field of view can
be identified without a priori knowledge of the target’s total
thermal output. This turns out to be a very useful feature
when target detection must be performed without knowing

Fig. 5. An image captured by our IR camera sensor (left) and the filtered
image through image processing (right)
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Fig. 6. Radio frequency (left), visual spectrum (center), and thermal (right)
target emitters used during field evaluation of the distributed sensor network

the distance to the target, but it also affects the size of the
target in the image as seen by the camera, requiring a typical
camera calibration before each mission. In our experiments,
we assume that the target emits a roughly circular thermal
signature, and the presence of this IR feature is used to verify
the target’s position. During execution, the MGSP target
detection algorithm searches for a circular compact “blob” in
IR images. As seen in Fig. 5(a), blobs caused by reflections
and other artifacts are characterized by a low compactness
measure, allowing for a successful detection of the IR target,
as visualized in Fig. 5(b).

Recall the earlier discussion of our sensor fusion al-
gorithm, in which we described how measurements from
different sensors are combined to produce an estimate of the
target’s location. Considering the type of information and
feature detection abilities of each sensor, we found that in
the general case, the optical camera can contribute more to
the localization effort than the IR sensor [9]. However, in the
environment that contains visually complicated backgrounds,
extracting the target information from the scene can be chal-
lenging. Therefore, if the target has an active heat signature,
e.g., an engine of a running vehicle, then the IR camera
sensor can provide key discriminating information to enable
successful target detection. In the experimental configuration
that we consider in the next section, the GSPs’ long-range
RF-detection capability is first used to cue the orbiting UAVs
on the approximate location of the target. The UAVs then use
their on-board optical sensors to refine the position estimate.
Finally, the MGSP is called-in to verify target identity with
its IR camera.

V. EXPERIMENTAL RESULTS

The main goal of the target localization experiment was to
illustrate the value of cooperation by heterogeneous sensing
platforms on a real-world ISR problem. As a secondary
objective, we were interested in how each sensor contributes
toward the overall target localization of our distributed sensor
network. To allow for such an in-depth analysis, the CAS
software collects and records detailed run-time execution
traces, including timestamps for each sensor measurement

and the corresponding output of the sensor fusion module.
Thus, we can reconstruct each mission in detail using off-
line, software-in-the-loop tools.

In this experiment, we used four stationary RF ground
sensor pods positioned at randomly-selected locations within
a rectangular, flat, one square kilometer mission area. Two
UAVs, with the cruising speed of 22 m/s, were each equipped
with a 100◦×140◦ field-of-view, digital pan, tilt, and zoom
optical camera, providing 640×480 color JPEG image out-
put at a rate of two frames per second. The MGSP Thermal-
Eye IR camera, with a 17◦ FOV, utilized a fixed, non-
gimbaled mount on the Pioneer P3-AT robot, and provided
a 720× 480 gray scale JPEG output at three frames per
second. The stationary GSPs first estimated an approximate
position of a 2.4 GHz RF target by integrating the distance
information obtained through analysis of received RF power
attenuation. The coarse GSP estimation was then shared with
all of the CAS vehicles via the on-board WiFi radio, and
served as the initial target location for the airborne UAVs.
The UAVs’ on-board cameras, programmed to look for a red,
car-sized target (see Fig. 6, middle), refined the estimate,
and once the sensor network’s computed uncertainty of the
target’s position fell below a predefined threshold, the MGSP
approached the target for verification. It is important to
emphasize that all of these decisions, including asynchronous
cooperation between the sensors, as well as distributed
navigation planning are completely autonomous, requiring
no human involvement [4,10].

In this experimental study, the detection range of the RF-
based GSPs exceeded the size of the search area, which
eliminated the search phase of the problem from the ex-
periment (evaluation of our system’s ability to find targets
is given in [10]). Instead, here we look at the localization
accuracy and the rate of the error convergence as a function
of the number and type of CAS units participating in the
mission, during the last 100 seconds of the localization effort.
As explained in the previous section, we utilize the off-
line, software-in-the-loop capability of our sensor network
implementation to obtain a post-mission reconstruction for
most of the localization data presented in Table I and Fig. 7
(note that the solid-black line in the figure corresponds to
the “GSP/UAVx2/MGSP” entry in the table, which was the
actual tested configuration).

From the convergence data in Table I, we confirm the hy-
pothesis that the localization error is decreased as additional
sensors are introduced into the network. In particular, note
that due to the inherent ambiguity involved in estimating
distance from an RF source based on the received power
measurement, the GSP-only network can resolve the target’s
position to within a 40 m radius (which gives a spatial
resolution error of about 4% over the 1× 1 km2 mission
area). The estimate error is reduced by an order of magnitude
once the target is observed by one of the UAVs (which occurs
approximately 60 seconds into the mission). Making use
of the sensor data collected by the second UAV results in
additional 54% to 65% improvement in the accuracy of the
position estimate (compared to the UAVx1 scenario) during
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TABLE I
CONVERGENCE OF THE OFFLINE LOCALIZATION ERROR

Position Error ±σ (meters)
last 60 sec last 30 sec last 5 sec

GSP 37.04 ± 0.47 37.45 ± 0.25 37.76 ± 0.03
GSP/UAVx1 10.30 ± 7.37 5.95 ± 1.47 4.29 ± 1.01
GSP/UAVx2 8.38 ± 8.50 2.75 ± 1.33 1.55 ± 0.41

GSP/UAVx2/MGSP 7.94 ± 8.78 2.01 ± 1.18 0.94 ± 0.33

the last 30 seconds of the ISR mission. Finally, incorporating
the IR measurements from the MGSP provides another 27%
to 39% gain. Occasional increases in the localization error
are caused by occluded sensor measurements, wind turbu-
lence, GPS drift, and communication lag. These artifacts
increase the uncertainty of the target position estimate, which
perturbs the localization error as shown in Fig. 7. Along
with the improvement of the target location estimate to the
sub-meter level, note that the addition of the MGSP sensor
observations also decreases the variance of the position
estimate (see Table I), indicating smaller uncertainties within
the O3SPKF algorithm, which in turn meets our goal for IR-
based target verification.

VI. SUMMARY

In this paper we described a decentralized solution for
an autonomous, heterogeneous sensor network, and consid-
ered the use of a mobile ground robot equipped with an
IR sensor for solving a target verification and localization
problem. This CAS framework makes use of event-driven,
multi-threaded, cross-platform software to achieve optimized
data processing and increased robustness. Challenges caused
by latency and non-deterministic, asynchronous sensor data
processing are addressed with a novel O3SPKF sensor fusion
algorithm. Our theoretic developments are evaluated in the
context of a real-world ISR mission, in which we use RF,

IR, and optical sensors to detect and localize a stationary
ground target.

We plan to continue sensor development to include mobile
RF sensors that can improve on the localization accuracy of
the stationary GSPs. In addition, we are extending the current
O3SPKF and control implementations to handle multiple
ground targets.
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