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Abstract— This paper presents an approach to the indirect
simultaneous positioning task of deformable objects based
on robust linear output regulation methods. Indirect control
requires maneuvering control points defined on a deformable
body to desired locations by manipulating points located
elsewhere on the object. The proposed control scheme uses a
linearization of the deformable object dynamics into a state-
space model for which the inputs are the forces applied to the
manipulation points and the outputs are the positions of the
control points. Then, the indirect simultaneous positioning task
is treated as a classical robust linear output regulation problem.
The proposed controller can compensate for deformable model
nonlinearities and material uncertainties. The controller per-
formance is illustrated through simulation and experimental
results obtained on a planar deformable object model. The
experiment was conducted using a robot controlled to apply
desired end-effector forces on the planar object.

I. INTRODUCTION

Robot manipulation has been used in manufacturing and
automated industries for several decades. Most of these
applications pertain to manipulating objects that are assumed
rigid. However, there are many applications where the ability
to manipulate deformable objects with the precision of
a robot manipulator would be beneficial. Examples could
include assembly of rubber materials, textile manipulation,
or soft tissue manipulation. Applications, such as soft tissue
handling in medical applications, requires the control of
the object’s deformation, that is, the positioning of certain
target points within the object. This type of interaction is
commonly known as indirect simultaneous positioning [1].
The goal is to move certain control points defined within an
object to desired locations by only manipulating other points
located elsewhere in the object, such as at the boundary. An
illustrative example would be a needle insertion task required
to take a biopsy from a specific spot within a tissue. The
target could move as the needle is inserted requiring several
attempts for a sample. However, it is possible to act on
the boundary of an object in order to stabilize the target
on the needle path. Solutions for different variations of this
problem were presented by Mallapragada et al. [2], Torabi et
al. [3] and Smolen and Patriciu [4]. All three approaches use
deformable object models to analyze the interaction between
needle, tissue, and manipulated boundary points.
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Deformable object manipulation uses computational mod-
els of the object in order to predict the changes in the
physical object when it is subjected to external forces.
Several approaches can be taken to model the objects, such as
finite element methods (FEM), mesh-free methods, or mass-
spring damper networks. There are already several articles
that use different control strategies based on different models
to achieve this goal. Wada et al [5] describe a PID control
scheme that allows them to guide certain control points of a
coarse spring model of a 2D fabric. They use the positional
relationship between the manipulation points and the control
points, and a PID controller on a prismatic manipulator to
achieve these desired manipulation points. Shibata and Hirai
[6] use a model that relates input forces to the desired control
point positions and show simulation results on a 1D linear
mass-spring-damper model. Smolen and Patriciu [7] use a
reproducing kernel particle method (RKPM) to model the
object. They use a control scheme based on the calculation of
a Jacobian between the manipulation points and the control
points at incremental states of deformation.

In this paper we propose a solution to the indirect simul-
taneous positioning problem based on the linearization of a
deformable model that relates the forces on the manipulation
points to the positions of the control points. The control
law is derived from the linear robust output regulation
of this linearized model. This formulation provides more
insight into the solvability of the problem and in determining
the controller gains to achieve regulation. Simulations and
experiments are performed on a planar object with one
manipulation point, one control point, and one of its edges
fixed as an essential boundary. Since the proposed approach
starts from a relatively accurate model of the deformable
object and applies robust control tools to achieve the desired
regulation it is expected the resulting controller will be
able to handle material non-homogeneities and geometric
nonlinearities.

The problem of indirect simultaneous control is described
in more detail in Section II. Object modeling and lineariza-
tion is described in Section III with the control derivation in
Section IV. The control performance is illustrated through
simulation and experimental results in V and VI, respectively.
Discussion of the results and proposals for future work
follow in Section VII.

II. INDIRECT SIMULTANEOUS POSITIONING

In this section we summarize the problem of indirect
simultaneous positioning [1] and introduce our approach to
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solve this problem. For this paper, we will concern ourselves
with 2-dimensional planar objects.

Consider the task in which an elastic object, EO, has to
be deformed in a certain way. The final shape is defined by
specifying desired locations for some points of EO labeled
control points, pi

c for i = 1, . . . , Nc. The deformable body
is manipulated by applying forces on some boundary points
labeled manipulation points, pj

m for j = 1, . . . , Nm. It has
been shown in [5] that the number of manipulation points
must be at least the number of control points. That is, Nm ≥
Nc. Note that this condition is necessary but not sufficient.
The controllability properties of a deformable object are a
function of object structure, object material properties, and
control point and manipulation point locations. Therefore,
those have to be analyzed for each deformable object model.
A deformable object body illustrating the control points with
target positions, and manipulation points with external forces
is shown in Fig. 1.

Fig. 1. Deformable object showing forces on manipulation points and
control points being driven to target positions

The goal is to simultaneously drive the control points
to their desired locations using only forces acting on the
manipulation points. To achieve this task, our controller
design uses the following steps:

1) model the deformable object using a suitable method
such as FEM, mesh-free, mass-spring-damper, etc

2) linearize the model about the undeformed state to
obtain a state-space representation

3) ensure the regulation solution exists by performing
stabilizability, detectability, and solvability tests on the
model

4) formulate a controller based upon linear robust output
regulation theory

The modeling and linearization steps 1 and 2 are described
in in Section III. The stabilizability, detectability, and solv-
ability tests and controller formulation of steps 3 and 4 are
discussed in detail in Section IV.

III. DEFORMABLE OBJECT MODELING AND
LINEARIZATION

Several different approaches can be used to model de-
formable objects, including finite-element methods (FEM),
meshless methods, or spring-damper networks. Let’s assume

that the object is discretized into N nodes. These should
be such that some of them are located at manipulation
points and the control points coordinates. There are also
Nn = (N − Nm − Nc) additional node points that are
not control or manipulation points, pk

n for k = 1, . . . , Nn.
Assuming a dynamic model, these discretized formulations
can be shown, as in [8], to take the form

M p̈ + V ṗ + Kp = F ,

where p ∈ RN is a vector of displacements of each particle
of the discretized model from its undeformed state. That is, p
is a stacked vector containing positions of all points, pi

c|i =
1 . . . Nc, pj

m|j = 1 . . . Nm and pk
n|i = 1 . . . Nn, as they

deviate from their original positions. Also, M is an inertia
matrix, V is a damping matrix, K is a stiffness matrix, and
F is the external force vector. Depending on the type of
modeling approach and the dimension of the problem, these
matrices are likely a function of the position and velocity of
the object nodes:

M(p)p̈ + V (ṗ, p)ṗ + K(p)p = F .

This second order dynamics equation can be reformulated
to a set of first-order dynamics by introducing new states
to represent both the displacements and velocities or each
node in the model. That is, the state variable is x =[
pT ṗT

]T
. Also, the input control vector, u, is obtained

from decomposing the external forces such that F = F̃ u
where F̃ is an N × Nm matrix of 1s and 0s indicating
the states that represent manipulation points upon which the
forces in u act. The nonlinear system is now described by

ẋ = f(x(t), u(t))
y = h(x(t)). (1)

Next, the system obtained by linearizing (1) around the origin
is

ẋ = Ax + Bu

y = Cx (2)

where

A =
[

0 I
−M−1K −M−1V

]
B =

[
0

M−1F̃

]
evaluated at the undeformed operating point (x, u) = (0, 0).
Note that the output variables y are just the positions of nodes
that we have labeled as control points. As such, C will just
be a selector matrix that defines which states represent these

control points, i.e. y =
[
p1

c
T

. . . pNc
c

T
]T

.
The indirect manipulation task is accomplished when

outputs will have the desired values, yd. Formally, it is
required to design u(t) such that

lim
t→∞

y(t) = yd

Assuming the linearized model of the deformable object
given by (2), one can recognize that the task at hand can
be treated as an output regulation problem. The controller
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should be robust with respect to deviations from the nominal
plant due to nonlinearities and uncertainties inherent in the
deformable object models. This is a classical problem in
control systems and its solution is described in the next
section.

IV. INDIRECT DEFORMABLE OBJECT MANIPULATION
USING OUTPUT REGULATION CONTROL

The first complete treatment of the output regulation prob-
lem was presented by Francis [9]. Recently, a comprehensive
treatment of output regulation for linear and nonlinear sys-
tems is presented by Huang [10]. For the completeness of
the paper, this section summarizes the relevant concepts from
these sources used to solve our output regulation problem.

A. Robust Linear Output Regulation

The deformable object model represented by (2) is gen-
eralized to include exogenous signals, v, that originate from
some source outside the closed loop system. Also, we
consider the error, e = y−r, to be the output. Additionally,
the nominal values of the plant matrices have uncertainty
included such that the plant model is described by

ẋ = Awx + Bwu + Ewv

e = Cwx + Dwu + Fwv,

where the subscript “w” indicates the state-space matrices
deviate from their nominal values such that

Aw = A + ∆A, Bw = B + ∆B, Ew = E + ∆E

Cw = C + ∆C, Dw = D + ∆D, Fw = F + ∆F.

The inclusion of v =
[
rT dT

]T
terms indicate how the

reference signals, r, and disturbances d, affect the plant
states and outputs. The classical output regulation considers
the case where exogenous signals, v, are generated by v̇ =
A1v. However, for the task at hand we consider set-point
inputs and assume no disturbance signals, making v constant
and therefore A1 = 0. In general, the effect of the exogenous
signals on the system is incorporated by E =

[
0 Ed

]
, and

F =
[
−I Fd

]
.

Following [10], if the full state is available, the control
law can be used for robust output regulation is of the form

u = K1x + K2z (3)
ż = G1z + G2e

where x is the plant state vector, and z is a dynamic
controller state vector to be defined later to ensure robust-
ness. The closed loop system, with augmented state xc =[
xT zT

]T
, becomes,

ẋc = Acwxc + Bcwv

e = Ccwxc + Dcwv,

where

Acw =
[

Aw + BwK1 BwK2

G2(Cw + DwK1) G1 + G2DwK2

]
,

Bcw =
[

Ew

G2Fw

]
, Ccw =

[
Cw + DwK1

]
, Dcw = Fw.

The output regulation problem requires to design a con-
troller such that The matrix AC0 is Hurwitz, and

lim
t→∞

e(t) = lim
t→∞

(Ccwxc(t) + Dcwv(t)) = 0 (4)

Francis [9] showed that this is equivalent to finding the
unique matrix Xcw that solves the regulator equations:

XcwA1 = AcwXcw + Bcw

0 = CcwXcw + Fcw.

If the desired reference signals are constant then XcwA1 = 0.
The regulator equations are solvable if (A, B) is stabiliz-

able, (C, A) is detectable, and

rank
[
A B
C D

]
= n + p, (5)

where n is the total number of states and p is the number of
outputs to be regulated.

Huang [10] shows that if the dynamic portion of the
controller ż = G1z + G2e contains an internal model of
the exogenous signals, then the pair([

A 0
G2C G1

]
,

[
B

G2D

])
is also stabilizable. In fact, this pair corresponds to the
augmented system,

ẋ = Ax + Bu + Ev

ż = G1z + G2e (6)
e = Cx + Du + Fv.

where the augmented plant matrices are

Ã =
[

A 0
G2C G1

]
, B̃ =

[
B

G2D

]
.

Then, a stabilizing controller for the augmented system is
also a solution for the linear robust output regulation problem
[10].

The controller (3) needs the full state and the desired
output in order to perform the output regulation. However,
it is unrealistic to assume that the full state is accessible
since that would imply knowing every position and velocity
of each node in the deformable model. A more realistic
situation is one in which the only accessible information is
composed of control point and manipulation point positions.
The other positions and velocities must be estimated using
a state estimator. This can be accomplished by including
another dynamic state in the controller, x̂.

If we use a Luenberger observer, the new controller
becomes

u = K1x + K2z (7)
ż = G1z + G2e

˙̂x = Ax̂ + Bu + Ev + L (ym − Cmx̂−Dmu)

where L is the observer gain matrix and x̂ is the estimation
of our state variables. Notice that we have used the subscript
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m to differentiate between ym and y for the cases when there
is access to more states then just those we want to regulate.
If we let ex = x − x̂ represent the error between the true
state and the observer state, we can see that

ėx = ẋ− ˙̂x

= (A− LCm)ex.

Thus we need to design L such that A− LC is Hurwitz to
ensure the observer error asymptotically decreases to zero.

To show that this will still solve the output regulation
problem we need to show that the closed loop system is
stable. Let the closed loop state be

[
x z ex

]
, where we

will use the error of the observer, ex, instead of the observer
state, x̂ because it gives a more useful realization. The closed
loop system matrix Ac becomes:

Ac =

 A + BK1 BK2 −BK1

G2(C + DK1) G1 + G2DK2 −G2DK1

0 0 A− LCm


By the separation principle, the eigenvalues of the closed
loop system are the union of the eigenvalues the augmented
system (6) and (A−LCm). Since K1, K2 and L are designed
such that (6) and (A−LC) are stable, the closed loop system
is stable.

B. Regulating Control Design Summary

In this section we summarize the output regulation control
steps as it applies to our deformable object control. The
overall process can be summarized as follows:

1) Model the object using the preferred method (e.g.
FEM, mesh-free, etc.)

2) Linearize the model about the undeformed state to
extract the state space model matrices A,B,C, and Cm.
For these models, we assume D, Dm, and E are zero,
with F simply −I .

3) Test if (A, B) is stabilizable
4) Test if (C, A) is detectable

5) Test if rank
[
A B
C 0

]
= n + p

6) Find G1 and G2 such that ż = G1z+G2e incorporates
an internal model of A1. For constant reference signals
and no disturbances it can be shown that setting G1 =
0p×p and G2 = Ip×p incorporates an internal model.

7) Augment the system model, as in (6)
8) Find fixed gain matrix K =

[
K1 K2

]
such that Ã +

B̃K is stable
9) Test if (AT , CT ) is stabilizable (if measured output ym

is different from output to be regulated y)
10) Design observer gain matrix L such that (A− LCm)
11) Implement controller (7)

V. SIMULATION

In this section, we will examine the robustness and perfor-
mance of our control scheme for the indirect positioning of
a deformable object first by simulation using MATLAB’s
Simulink, and then experimentally using a 5DOF robot
manipulator.

A. Mesh-free Deformable Object Model

For our simulations, we will consider a planar object as
shown in Fig. 2. The object was defined to closely represent
the phantom that would be used in the experiment, described
in Section VI. The object is 140 mm in both length and width
and discretized into a 9 × 9 grid with one edge fixed as
an essential boundary. This restricts 9 of the nodes to be
immobile, and thus are not included as states when we get
to the state-space representation. The node at the center of
the grid is used as the control point to be positioned to a
target. Four nodes at the center of the opposite edge is where
the external forces are applied. These are not independent
manipulation points but rather, four points that will have
the same control force input applied to them. The reason
for this is to mimic how the robot end-effector contacts
the phantom in the experimental setup. For our simulations,

Fig. 2. Planar object implemented as a mesh-free RKPM model

the deformable object is modeled using a mesh-free particle
method known as the reproducing kernel particle method
(RKPM), similar to [7]. The output regulation controller is
based on the linearization of this model. The control input
signal determined by this controller is applied to the plant
using this model to determine the deformation for the given
applied forces. Since, the object modeling is not the focus of
this paper, and for the sake of brevity, the foundations of this
method will not be described here. The reader is referred to
Chen et al. for more information [11]. The RKPM method
is implemented in C++ using a CUDA acceleration to speed
up the processing time.

For the state-space realization, we extract the form
M(d)d̈ + V (ḋ, d)ḋ + K(d)d = F from our model to get
the A, B, C and D matrices after linearization. For this
example, have 72 mobile nodes for which we have states
of position and velocity in two dimensions and thus 288
states, i.e. x ∈ R288. Also, we have a two dimensional
control input, u ∈ R2, and two dimensional output, y ∈ R2,
yielding:

A ∈ R288×288 B ∈ R288×2

C ∈ R2×288 D ∈ R2×2.

To get better results from our estimator, we will use the
manipulation points in addition to the control point as
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measured output, ym ∈ R10, and

Cm ∈ R10×288 Dm ∈ R10×2

although for our model, as mentioned before, both D and
Dm are all zeros.

B. Simulation Results

The simulation is conducted using MATLAB. The C++
RKPM model is compiled as a dynamic link library so that
its functionality can be implemented as the plant model
in Simulink simulations. The output of this plant, as well
as the force measurements are given gaussian white noise
with a variance of 0.01 mm2, and 0.001 N2, respectively, to
simulate the sensor noise experienced the experimental setup.

We follow the steps outlined in Section IV-B to implement
the controller. The gains for stabilizing the augmented plant
are solved using linear-quadratic regulator (LQR) optimal
control. Additionally, the stabilizing estimator gain matrix,
L, is obtained from Kalman estimation techniques. The final
controller is as described by (7)

We apply this control scheme to our system using a step
reference signal of -14 mm in the x-direction and 4.2 mm in
the y-direction. This allows us to see that the robustness can
accommodate 10% of the body length in control point defor-
mation. The resulting output for the control point defined at
the center of the planar deformable object is shown in Fig. 3.
For better visualization, Fig. 4 shows the trajectories of the
control and manipulation points are overlaid with the initial
and final deformations of the object. The results show the

Fig. 3. Simulation output of the control point position.

the robust controller based on the linearization of our model
achieves regulating even when the nonlinear plant deviates
significantly from our linearization point.

VI. EXPERIMENT

An experiment is conducted to test the robustness of the
output regulation-based controller on an actual deformable
phantom. The planar slab is modeled using the same mesh-
free model with stress-strain parameters set to closely mimic
the deformation of the actual object used. The forces are ap-
plied by a robot end-effector and the control point measured
by a stereoscopic camera as described in the next section.

Fig. 4. Original and fully deformed object nodes with overlaid manipulation
and control point trajectories.

A. Experimental Setup

The planar slab is positioned on a table in the workspace
of a robot with one edge clamped and resting atop ball
bearings to reduce frictional effects during deformation. The
robot manipulator is a 5DOF arm actuated by a hybrid po-
sition/force control scheme similar to that described in [12].
This ensures the end-effector orientation and z-coordinate
(vertical) position are restricted by set values, while the
motion in the x,y-plane is controlled to achieve a desired
force. The actual force is measured from a force-torque
sensor on the robot end-effector with the desired force set to
be the control signal, u, of the output regulation controller
described in IV-B. The center of the object is marked using
an infrared LED which is tracked in real-time using a
stereoscopic camera. The x,y-displacement of the LED is
extracted from the camera output and fed back into the
controller as the output to be regulated, y. Additionally, the
robot end-effector displacement from its initial position when
the object is undeformed, is fed back to the controller for the
manipulation point displacements. Together with the control
point, these displacements make up the measured output, ym.
The experimental setup is seen in Fig. 5. Note that there is
also coordinate frame registration aspect to this experiment
to convert between camera and object coordinate systems.
The camera is registered to the object using 3-pt registration
from LEDs placed with known positions in the object frame.

B. Experimental Results

The same control scheme parameters from the simulation
used for the experiment. The reference signal was a step of
-0.003 m in the x-direction and 0.002 m in the y-direction.
The response of the system shown in Fig. 6. The robustness
has clearly compensated for the actual object nonlinearities
and fictional disturbances. The control signal force from the
regulating controller as well as the measured force actually
applied by the robot end-effector are plotted in Fig. 7.

Again we see the robustness compensating for the model-
ing errors as well as environmental disturbances.
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Fig. 5. Experimental setup showing object, manipulator, IR LED and
camera

Fig. 6. Experiment output of the control point position.

VII. CONCLUSION AND DISCUSSION

The indirect deformable object manipulation solution pro-
posed in this paper comprises three steps. Firstly, a dis-
cretized model of the deformable object is built. Secondly,
the discretized model is linearized around the origin allowing
thus to formulate the indirect manipulation problem as an
output regulation problem. Thirdly, a robust output regulator
is synthesized for the linearized system. The nonlineari-
ties and modeling errors are treated as disturbances to be
compensated by the robust control scheme. Simulation and
experiment illustrate the feasibility of the proposed approach.

For our simulations and experiments we use a planar ob-
ject discretized into a 9×9 grid with one manipulation point

Fig. 7. Experiment force control input signals.

and one control point. An RKPM mesh-free model relating
the manipulation point forces to control point deformation
is used as deformable object model. In the experiments,
the forces are applied to a deformable phantom by a robot
manipulator. The simulations and experiments both show that
the controller can robustly position the control point to the
desired position.

Our future work will focus on applying this control
scheme to more complex objects, such as those with inhomo-
geneities. The proposed approach can be extended to include
multiple control and manipulation points and 3-dimensional
objects. One limitation of the current approach is that the
dimension of the system can become large for complex
deformable objects making the real time implementation
challenging. In future we will address this issue by applying
a model reduction technique [13] to the linearized system.
Additionally, we will also explore the control of systems in
which the robot dynamics is included into the plant model
equations and have the robot motor torques as inputs. These
models are valuable when the robot and deformable object
dynamics properties are comparable.
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