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Abstract— We present a novel momentum-based method for
maintaining balance of humanoid robots. By controlling the
desired ground reaction force (GRF) and center of pressure
(CoP) at each support foot, our method can naturally deal
with non-level and non-stationary ground at each foot-ground
contact, as well as different frictional properties. We do not
make use of the net GRF and CoP which may be difficult
or impossible to compute for non-level grounds. Our method
minimizes the ankle torques during double support. We show
the effectiveness of this new balance control method by sim-
ulating various experiments with a humanoid robot including
maintaining balance when two feet are on separate moving
supports with different inclinations and velocities.

Index Terms— Humanoid robot balance, linear and angular
momentum, non-level ground, centroidal momentum matrix.

I. INTRODUCTION

Even after several decades of intense activity, balance

maintenance remains as one of the most fundamental issues

of humanoid robot research. Starting from the early work

of [1], researchers have developed various approaches, such

as joint (e.g., ankle or hip) control strategies [2], [3], whole

body control strategies [4], [5], [6], [7], [8], and the methods

that find optimal control policies [9].

Except for a few notable exceptions [2], [6] most tech-

niques for humanoid balance and motion have focused

on controlling only the linear motion of the robot while

ignoring its rotational motion. In these methods a robot

is controlled to maintain its center of mass (CoM) along

a desired trajectory while restricting its center of pressure

(CoP) to remain inside the support base.

However, rotational dynamics of a robot also plays a sig-

nificant role in balance [10]. In fact, complete control of CoP,
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Fig. 1: Exter-
nal Forces

which is one of the most important in-

dicators for balance, is impossible with-

out also controlling the angular momentum.

This will be evident from the following

discussion. The rate of change of linear

momentum l̇ and the angular momentum k̇
about the robot CoM (hence dubbed cen-

troidal angular momentum in this paper) of

a humanoid robot are related to the GRF f
and CoP location p as follows (Fig. 1):

l̇ = mg + f (1)

k̇ = (p − rG) × f + τn (2)
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Fig. 2: Our momentum-based controller can maintain balance of humanoid
robot on non-level (but locally flat) and non-stationary ground, under
various disturbance forces.

where m is the total mass, rG is CoM location, and τn is

the normal ground reaction torque at the CoP. Together l
and k is called the spatial centroidal momentum, or in this

paper, simply spatial momentum h = (k, l) of the robot.

Obviously, as noted by [11], the rate of change of spatial

momentum has a one-to-one relationship with the GRF and

CoP. Whereas l̇ is completely determined by f and vice

versa, CoP location p, depends on both l̇ and k̇. Equivalently,

k̇ depends on both f and p. Due to this fact, attempts to

control CoP by controlling only CoM trajectory [5], i.e., only

linear momentum while ignoring the angular momentum, are

fundamentally incomplete. Indeed, experiments on human

balance control also show that humans tightly regulate

angular momentum during gait [12], which suggests the

importance of controlling angular momentum.

In this paper, we present a new method for humanoid

balance maintenance that controls both the linear and angular

components of the spatial momentum. We first define the

desired rates of changes of linear and angular momenta

that are necessary to maintain balance, and subsequently

compute their admissible values under the constraints of

ground friction and foot contact maintenance. Finally, joint

torques are computed using inverse dynamics to generate the

admissible momenta rate changes.

Desired momenta are realized by controlling the ground

reaction forces. When only one foot is in contact with the

ground, the desired support foot GRF is uniquely determined

from the desired linear and angular momenta rate changes.

However, for double support, there can be infinitely many

combinations of individual “foot” GRFs that can create the

desired momenta rate changes.

One seemingly straightforward way to deal with this

redundancy is by extending the method used for the single

support case: first determine the net GRF and CoP, and
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then somehow resolve them for each foot. This approach,

however, has a few drawbacks. Computing a net CoP when

each foot rests on different non-level surfaces may or may

not be possible. Furthermore, it is difficult to handle the

case where each foot is contacting grounds with different

velocities and friction properties.

Therefore, in this paper, we present a novel method to

compute the individual foot GRF and foot CoP such that they

create the admissible spatial momentum rate change which is

the closest possible to the desired value. By directly dealing

with each foot separately, we do not need to compute the 3D

convex hull of the contact points and can deal with different

ground friction at each foot.

The proposed method computes the foot GRFs and CoPs

such that they minimize ankle torques while generating

desired rates of changes of momenta. This is achieved

by solving two constrained linear least-squares problems.

Minimizing ankle torque is important because typically the

ankle torque is more constrained than others in that it should

not cause foot tipping.

We perform various simulation experiments on our bal-

ance controller with a humanoid robot model including

pushing the single or double-supported robot in various

directions and maintaining balance when two feet are on

separate moving supports with different inclinations and

velocities.

II. RELATED WORK

Although valuable research by Sano and Furusho [2]

was performed as early as 1990, the importance of angular

momentum for balance maintenance started to be seriously

explored much later [6], [13], [12]. Kajita et al. [6] included

angular momentum criteria into the whole body balance

control framework. Komura et al. [10] presented a balance

controller that can counteract rotational perturbations us-

ing angular momentum inducing inverted pendulum model

(AMPM) which augments the 3D Linear Inverted Pendulum

Model (LIPM) [14] with the additional capability of pos-

sessing centroidal angular momentum. Naksuk et al. [15]

considered angular momentum criteria for trajectory gener-

ation of humanoid robots. Abdallah and Goswami [16], and

Macchietto et al. [11] defined balance control objectives in

terms of CoM and CoP, and achieved this goal by controlling

the rates of change of linear and angular momenta of the

robot. Hofmann et al. [17] presented a momentum-balance

controller that gives higher priority to linear momentum over

angular momentum.

Like [6], [16], [11], [17], we also control both the linear

and angular components of the spatial momentum of the

robot for balance maintenance. However, our method differs

from that of [6], which does not check for the admissibility

of the desired values of linear and angular momenta, and

from [16], [11] which define the balance control objectives

in terms of CoM and CoP and not directly in terms of linear

and angular momenta. Additionally, our method computes

contact forces at each support foot, and therefore can be used

both during double-support and single-support and also on

non-level ground and non-stationary grounds, whereas [16],

[11], [17] consider only single-support.

Regarding the computation of individual foot GRFs and

CoPs, Hyon et al. [18] presented a method to minimize the

sum of the squared norm of forces at sample contact points

while satisfying the desired net GRF and CoP. This method

can minimize each foot GRF if the sample contact points

are well distributed. Our method also minimizes foot GRFs

but puts higher priority to minimizing ankle torques, i.e.,

keeping foot CoPs below ankles.

III. MOMENTUM-BASED BALANCE CONTROL

We describe our momentum-based balance controller in

this section. Fig. 3 shows the block diagram of our balance

controller. The joint torques are determined through the

following steps. We first specify the desired rates of changes

of linear and angular momenta for balance (Sec. III-A),

and then determine the corresponding foot GRF and foot

CoP (Sec. III-B). The admissible momenta rate changes

corresponding to physically realizable foot GRF and CoP are

computed as well. Next, we resolve the joint accelerations

that will satisfy the admissible momenta rate changes as well

as the foot contact constraint. Finally we compute necessary

joint torques to create the joint accelerations and the external

forces using inverse dynamics (Sec. III-C). Each step will

be detailed now.
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Fig. 3: Controller Block Diagram

A. Desired Momenta for Balance Maintenance

Some balance controllers define the balance control ob-

jectives in terms of CoP [16], [11] while others use mo-

menta [6]. Although the rate of change of spatial momentum

has a one-to-one relationship with GRF and CoP, their

significance regarding balance are different. Whereas the

former relates to robot motion, the latter characterizes the

nature and constraints of the ground contact. Since the

friction values and the unilateral nature of the robot-ground

contact limit the allowable range of external forces, the GRF

and CoP impose important constraints on achievable range

of momenta rate change. Therefore, we use the momenta

as control objectives whereas GRF and CoP are used as

constraints for verifying the physical realizability of the

forces.

The overall behavior of the balance controller against

external perturbations is determined by the desired spatial

momentum rate change. We employ the following control

policy:

l̇d/m = Γ11(ṙG,d − ṙG) + Γ12(rG,d − rG) (3)

k̇d = Γ21(kd − k) (4)
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where l̇d and k̇d are desired rate of change of linear and cen-

troidal angular momentum, respectively, rG,d is the desired

CoM. Γij = diag(γij) is the 3×3 feedback gain parameter

matrix. Equations (3) and (4) try to achieve desired CoM

trajectory, linear momentum, and angular momentum. For

postural balance experiments we set kd to zero and set

the horizontal components of rG,d to the mid-point of the

geometric centers of the two feet. For other cases, these

values may be determined from the desired motion. Note

that we do not have angular position feedback in (4) because

there is no “position” corresponding to angular momentum.

l̇d and k̇d will be used to determine admissible foot GRF

and CoP in the next step.

B. Foot GRF and CoP of Each Support Foot

The desired momentum rate changes in (3) and (4) may

not necessarily be admissible. Generating them might require

the GRF to be outside the friction cone or the CoP to exit the

foot support area. Therefore, in the next step, we determine

admissible external forces such that the resulting momentum

rate changes are as close as possible to the desired values.
While GRF and CoP are uniquely determined from the

desired rates of changes of linear and angular momenta

during single support, there can be infinitely many solutions

for double support. Hence we consider each case separately.
1) Single Support Case: When GRF and CoP computed

from the desired momentum rate change (eqs. (1) and (2))

are admissible, we can directly use them. If not, it means that

we cannot simultaneously satisfy both l̇d and k̇d, and hence

we need to find an optimal GRF and CoP that will create

admissible momentum rate change as close as possible to

the desired values.

dpp

Gr gr
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f

p

Gr

f

df
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Fig. 4: When pd, the CoP corresponding to the desired GRF fd (dotted
arrow), is outside the support base, it is not admissible. When the CoP
is made admissible by moving it within the support surface, the robot
cannot satisfy both linear and angular momenta objectives. Two extreme
solutions are illustrated. One is to fully respect linear momentum objective
by sacrificing angular momentum (left) and the other is the opposite (right).
One can choose a solution between the two extremes.

Fig. 4 shows two extreme cases for determining f and

p. The first case, left, fully respects linear momentum by

laterally shifting the GRF without changing its direction, i.e.,

the robot puts higher priority to controlling CoM position

(related to linear momentum) over body pose (related to

angular momentum). As a result, given a large perturbation,

rapid rotation can be generated to keep linear momentum

under control. This strategy can be seen from humans when

they rotate the trunk or arms forward to maintain balance

given a forward push.

Fig. 4 at right, after the lateral shift, the GRF line of

action is rotated to fully respect angular momentum such

that p and f satisfy k̇d = (p − rG) × f . However, linear

momentum is no longer respected, i.e., the robot puts higher

priority to keep the desired pose (angular momentum) over

its desired location (CoM). In this case, the uncontrolled

linear momentum can make CoM to go too far, making it

necessary to take a step in order to avoid a fall.
In this paper, we choose the first strategy to increase the

capability of postural balance controller.
2) Double Support Case: Given the desired momentum

rate changes, computing foot GRFs and CoPs of a double-

supported robot is an under-determined problem, allowing

us to impose additional optimality conditions to resolve the

foot GRFs and CoPs. In this paper, we take the approach to

minimize the ankle torques. A large amount of ankle torque

can cause foot tipping. Hence, minimizing ankle torque is

important.
Due to the presence of cross product in (2), the optimiza-

tion of foot GRFs and CoPs is a nonlinear problem, which

typically requires significant computation time and yet can

prematurely terminate at a local minima. One way to convert

this into a linear problem is to express the foot GRF and

foot CoP using the contact forces at sample points [19], [18].

However, this approach increases the dimension of the search

space significantly. For example, [19] used 16 variables to

model a GRF and CoP of one foot, which is 10 more than

the dimension of the unknowns.
Instead of increasing the search space to make the op-

timization problem easier, our method is to approximate

the nonlinear optimization problem by sequentially solving

two smaller-sized constrained linear least-squares problems,

first one for determining the foot GRFs, and the next for

determining the foot CoPs.
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Fig. 5: By expressing foot GRF with respect to the local frame of the foot
located at the ankle, we can factor out the moments τr , τl applied to the
ankle by the foot GRFs fr and fl. rr and rl denote the ankle locations.

To this end, let us first rewrite (1) and (2) for the double

support. Following [2], we will express the GRF at each

foot with respect to the ankle (Fig. 5). The benefit of this

representation is that we can explicitly express the torques

applied to the ankles.

l̇ = mg + fr + f l (5)

k̇ = k̇f + k̇m (6)

k̇f = (rr − rG) × fr + (rl − rG) × f l (7)

k̇m = τ r + τ l (8)
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where fr and f l are the right and left foot GRFs, rr, rl

are the ankle locations, and τ r, τ l are the ankle torques. In

(6), we divide k̇ into two parts, k̇f , due to the ankle force,

and k̇m, due to ankle torques.

The idea of our method is simple and intuitive. In order

to minimize the ankle torques (k̇m → 0), foot GRFs fr, f l

should create k̇f as close to the desired rate of change of

angular momentum (k̇f → k̇d) as possible while satisfying

l̇d. If k̇f = k̇d, the ankle torques can vanish. If k̇f 6= k̇d,

the ankle torques are determined to account for the residual

of the angular momentum rate change, i.e., k̇d − k̇f .

a) Determination of foot GRFs: The goal is to deter-

mine the foot GRFs fr and f l that minimize the following

objective function:

min ||l̇d − l̇|| + w||k̇d − k̇f || + ǫ(||fr|| + ||f l||) (9)

where l̇ and k̇f are the functions of fr and f l (eqs. (5), (7)).

w and ǫ (w ≫ ǫ > 0) are weighting factors for the angular

momentum and the total GRF magnitude, respectively. Like

the single-support case, we give higher priority to linear

component of the spatial momentum rate change over the

angular component by setting w low.

To enforce the friction cone and unilateral force con-

straints, we model each GRF using four basis vectors βij

and their magnitudes ρij that approximate friction cone on

the ground (Fig. 6)

f i =
4∑

j=1

βijρij := βiρi (10)

where βi = [βi1 · · · βi4]. Substituting (10) into (9), we

get a linear least-squares problem with simple non-negativity

constraints:

min ||Φρ − ξ|| s.t. ρi ≥ 0 (11)

where ρ = [ρT
r ρT

l ]T . Φ and ξ are constants.1 We solve (11)

using the Non-Negative Least Squares algorithm [20], which

has the merit that it does not require parameter tuning.

b) Determination of foot CoPs: After determining foot

GRFs, we compute the minimal ankle torques such that

they generate the residual angular momentum rate change,

k̇m,d = k̇d − k̇f . Since f i is fixed, τ i can be written as a

linear function of di and τn,i (Fig. 6):

τ i = [−f i]Ridi + Riτn,i (12)

where Ri is the orientation of a foot, so that we can

express the optimization problem as a constrained least-

squares problem:

min ||Ψη − k̇m,d|| + ǫ||η − ηd|| s.t. η ≤ η ≤ η (13)

1ξ =
[

(l̇d − mg)T wk̇
T

d 0
T

]T
and Φ =

[

βr βl
wδr wδl

ǫ1

]

where

δi is defined as the coefficient matrix to express angular momentum rate
change due to ρi, i.e.,

δrρr := (rr − rG) × fr =
4

∑

j=1

(

(rr − rG) × βr,j

)

ρr,j

}{W

}{R
rf

rp

rd

rr ri

rn,

),,( hdd yx

),,( hdd yx

Fig. 6: We represent the ground pressure to the right foot using the foot
CoP dr in the right foot frame {R}, a normal moment mn,r , and the foot
GRF fr . fr is represented with four basis vectors βrj (j = 1 . . . 4)
that approximate the friction cone of the ground and the magnitudes
ρrj (≥ 0). Therefore, the ground pressure is defined by 7 parameters,
{ρr1, . . . , ρr4, drx, dry , mn,r}. This representation is compact, having
only one more parameter than the minimum (3 for force and 3 for torque),
and allows simple expression of the constraints for the rectangular foot

support, i.e., ρj ≥ 0, dj ≤ dj ≤ dj , and |taun| < µfr,z . µ is a friction

coefficient and h is the height of foot frame from the bottom.

where η = [dr,x dr,y τn,r dl,x dl,y τn,l]
T is the vector of

the unknowns and Ψ ∈ R
3×6 is a constant matrix of which

elements are determined from (12). η and η are determined

by the lengths of foot, and ηd is chosen such that τ i is zero

(i.e., the line of action of f i intersects the ankle). Eq. (13) is

another least squares problem, but this time with upper and

lower constraints. We use an implementation of Levenberg-

Marquardt method [21] to solve this problem. Note that

both least-squares problems have only a small number of

variables, so optimization can be carried out quickly.

After determining the admissible external forces, we com-

pute corresponding admissible momenta rate changes k̇a and

l̇a from (5) and (6).

C. Joint Accelerations and Torques

The next step of the balance controller is to determine the

joint accelerations θ̈a such that they satisfy the admissible

momenta rate changes as well as the contact constraints

between the foot and the ground. Finally, we compute nec-

essary joint torques to create the joint accelerations and the

external forces. For this purpose, we employ the procedures

similar to [11].

θ̈a is determined such that it minimizes the following

objective function:

w||ḣa − Aq̈ − Ȧq̇|| + (1 − w)||θ̈d − θ̈||

s.t. Jq̈ + J̇ q̇ = ad

(14)

where ḣa = (k̇
T

a , l̇
T

a )T is the admissible spatial momentum

rate change. We use the differentiation of the centroidal spa-

tial momentum relationship, h = Aq̇ where A ∈ R
6×(6+n)

is the centroidal momentum matrix [22] that linearly maps

generalized velocities to momentum and n is the number

of DoFs of the robot. q̇ = (v0, θ̇) is the generalized

velocities where v0 ∈ se(3) is the spatial velocity of the

base frame (trunk) and θ̇ ∈ R
n is the joint velocities.

θ̈d specifies desired joint acceleration (possibly determined

from a prescribed motion trajectory). J is the Jacobian

matrix mapping the generalized velocities to the velocity
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of the feet. w controls the importance between the balance

objective and the style (or prescribed motion) objective.

ad = [aT
d,r aT

d,l]
T is the desired accelerations of the feet.

We set ad such that each foot has the desired configuration

T d ∈ SE(3) and velocity vd ∈ se(3). Specifically, for each

foot, we use the following feedback rule:

ad,i = kp log(T−1
i T i,d) + kd(vi,d − vi) (15)

for i ∈ {r, l} where kp and kd are positional and derivative

feedback gains, respectively. We solve (14) by converting it

to a linear equality constrained least-squares problem.

Finally, we compute feedforward torques by performing

inverse dynamics. For this purpose, we use the hybrid system

dynamics algorithm [23], which is useful for performing in-

verse dynamics for floating-base mechanisms. Since external

forces are explicitly specified for all the links contacting the

ground, we can treat the robot as an open loop system even

when multiple links are in contact with the ground, thereby

making it possible to use the inverse dynamics algorithms

for open loop mechanisms.

Overall torque input is determined by adding feedback

terms:

τ = τ ff + τ fb (16)

τ fb = Γp(θa − θ) + Γd(θ̇a − θ̇) (17)

where Γp and Γd are diagonal matrices representing pro-

portional and derivative gains, respectively. θa and θ̇a are

determined by numerically integrating θ̈a over time.

IV. EXPERIMENTS AND DISCUSSION

We tested the new balance controller by simulating a

humanoid robot model (Fig. 2). The total mass of the robot

is 52 kg and each leg has 6 DoFs. We use the Webots

software (www.cyberbotics.com) for dynamics simulation.

In the experiments of this paper, we excluded the robot

arms from the balance controller because arms may be

engaged in other tasks to carry out simultaneously. Also, the

arms are relatively lightweight to affect the state of balance

significantly.

Fig. 7 shows the snapshots of the robot maintaining

balance under external push (120 N, 100 ms). When the per-

turbation is small, the desired GRF and CoP computed from

(3) and (4) are admissible and thus the robot can achieve

both the desired linear and angular momentum objectives.

When the perturbation is greater as shown in Fig. 7 and the

controller puts higher priority to linear momentum objective,

the admissible GRF and CoP are realized by generating

large angular momentum. The resulting motion of the robot

is similar to human’s behavior of rotating the trunk in the

direction of the push to maintain balance.

Fig. 8 shows trajectories of CoM, CoP, and de-

sired/admissible momenta rate changes of this experiment.

Fig. 8 (a) shows that CoM is restored smoothly after the

perturbation. Right foot CoP is shown in Fig. 8 (b) and

it is well maintained within the safe region defined inside

the foot support. The actual foot CoP is slightly different

from the admissible CoP due to the consideration of the

desired motion in (14) and to the numerical error of the

simulation. Fig. 8 (c) shows the desired and admissible

Fig. 7: Snapshots of robot balancing motion when a forward push of 120 N
is applied for 100 ms to CoM of the double-support robot on the stationary
support.

linear momentum rate changes and they are almost identical

because the controller always respects the desired linear

momentum objective. In contrast, the angular momentum is

sacrificed when the desired spatial momentum rate change

is not admissible (Fig. 8 (d)).
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Fig. 8: Trajectories of CoM, foot CoP, and momentum rate changes for the
experiment in Fig. 7. Two circles in each figure indicate the start and end
of external push.

Fig. 9 (top row) shows the balance control behavior when

the single-supported robot is pushed laterally. Similar to the

forward push, the robot maintains balance by rotating the

trunk. Although the single-supported robot has more limited

range of admissible CoP than double supported case, the

swing leg as well as the upper body can be employed to

create larger angular momentum.

Fig. 9 (bottom row) shows the robot maintaining balance

on moving supports. In this case, the perturbation from the

supports is continuous and the robot shows fairly large trunk

rotation. The desired CoM is set to the mid-point of the

geometric centers of the two feet and its desired velocity

is set to the average velocity of the feet. The supports are

inclined by ± 10 deg. and they move 1 m back and forth.

The controller does not use any information on the actual

direction and magnitude of the pushes or the velocity of

the moving supports. In all the experiments, the following

parameters were used: Γ11 = diag{40, 20, 40}/m and

Γ12 = diag{8, 3, 8}/m in (3), Γ21 = diag{20, 20, 20} in

(4), w = 0.1, ǫ = 0.01 in (9), and ǫ = 0.01 in (13).
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Fig. 9: Top: A leftward push (100 N, 100 ms) is applied to the single-support robot on the stationary ground. The robot maintains perturbation by counter-
rotating the upper body. Bottom: Two moving supports with different inclination angles translate forward and backward in a sinusoidal pattern, and the
robot keeps balance by rotating its upper body. The red arrows indicate the linear momentum of the robot.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel balance control

method for humanoid robots on non-level, non-continuous,

and non-stationary grounds. By controlling both linear and

angular momentum of the robot, this whole body balance

controller can maintain balance under relatively large pertur-

bations and often generates human-like balancing behavior.

A distinctive feature of our method is that, by determining

the CoP and GRF at each support foot without using the

traditional net CoP and net GRF of the robot, the controller

can deal with different ground geometry and ground frictions

at each foot. We showed the performance of the balance

controller through a number of simulation experiments.
In this work, we give higher priority to linear momentum

over angular momentum. While this is a sensible choice for a

postural balance controller, a more robust balance controller

will be possible if we find an optimal balance between the

two, which remains as a promising venue of future work.
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