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Abstract—BVP Path Planners generate potential fields then subdivided generating patches with different resolutions.
through a differential equation whose gradient descent rep- After that, any graph search algorithm may be used to obtain
resents navigation routes from any point of the environment the path. The combination of* or D* with a hierarchical

to a goal position. Resulting paths are smooth and free from d it . . ¢ lgorith like Hi hical
local minima. In spite of these advantages, this kind of planners ecomposition gives rise 1o algorthms fixe Hierarchica

consumes a lot of time to produce a solution. In this paper, we A" [4] or HierarchicalD* [2]. Another way to generate paths
present a new approach that combines our BVP Path Planner hierarchically is using wavelet functions for environment
with the Full Multigrid Method, which solves elliptic partial  decomposition [17]. The wavelet transform is a very fast
differential equations using a hierarchical strategy. Our new approach that allows the decomposition of the environment

approach, called Hierarchical BVP Path Planner, enables real- . . . .
time performance on large environments. Results show that our at different levels of resolution. The smooth path is achieved

proposal spends less than% of the time needed to compute a Using the information provided by the coefficients in the
solution using our original planner in several environments. wavelet expansion.

In this work we extend our Path Planner on Boundary
Value Problem, called BVP Path Planner (or BVP PP) [16],

One of the main goals of robotics is to create robotssing the numeric solution of a multi-resolution BVP. The
that can act autonomously in the environment. This goalriginal BVP PP allows the control of the steering behavior
is very complex and requires advances in several domairf,robots in dynamic environments using a potential field for-
as localization, mapping, and planning. This paper focusesalism. The resulting paths represent a compromise between
on the path planning problem which consist of findindength and safety, since the paths reduce the obstacle hitting
a viable collision-free path for a robot to reach a goalprobability[3]. The new path planner, called Hierarchical
The path planner should produce a fast answer, particulaf3vP Plath Planner (or HBVP PP), inherits all properties
in problems that involve risk to human life, like rescueof the original BVP, but is much more efficient, usually
operations during natural disasters, for instance. In thespending less thaih% of the time needed for the original
cases, robots are expected to act efficiently and spendingethod to compute a solution. Like the original planner,
a minimum time in path planning. the new approach can be adapted and used in mapping

Most path planners are generally based on graph searchimgd localization problems [10], [14], [16], [13], and in path
algorithms, as thed* [5] and D* [15]. The A* algorithm planning in non-homogeneous terrains[11]. In the latter, the
operates in an environment represented as a regular grid gsldnning considers the traveling preference to guide the robot
finds the least-cost path from a given initial cell to a targetowards the goal.
cell using a heuristic functionD* behaves likeA* except The paper is divided as follows. Section Il describes the
that, if the costs change during the execution, the algoriththeoretic aspects of BVP PP. In Section I, we introduce
adds the information to its map and replans a new pathe HBVP PP. In Section IV, we present some results in 2D
efficiently. Due to the environment discretization, in bothenvironments and compare the performance of the HBVP
algorithms the path generated is not smooth and the robeP with the original BVP PP and* algorithm. Section V
may have to pass close to obstacles, requiring thus somigcusses some aspects of our approach and Section VI
post-processing to smooth the path and ensure a high qualifsesents our conclusions.
navigation.

A solution to improve the performance of path planners Il. BVP PATH PLANNER

is to reduce the complexity of the problem by means of a The original BVP path planner [16] generates paths using

hierarchical approach [9], [18], [6], [7]. The environment isthe potential information computed from the numeric solu-
represented in different resolutions and used as input to thgn of

path planners, thaf[ will (_Jlecu_je Whgt is t_he_best resolu'qon V2 p(r) = ev- Vp(r), 1)

to be used for a given situation using criteria such as time

restriction or memory limitations. A common hierarchicalwith Dirichlet boundary conditions, where < %2 and
representation is the quadtree decomposition [8], where tihe| = 1 corresponds to a vector that inserts a perturbation
environment is first represented using a coarse grid which iis the potential fielde € R corresponds to the intensity of
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Fig. 1. Hierarchical environment representation. (a) the environment is represented by a hierarchy ofM( gnidth different resolution. Red and blue
cells correspond to obstacles and goals, respectively, while the arrows illustrate the vector field. (b) and (c) show the coarsest and finest mesh, respectively.

the perturbation produced by; and p(r) is the potential The SOR method updates the potential of a eelis
at positionr € R2, respectively. Bothv and ¢ must be hrough:

defined before computing this equation. The gradient descent .
Po+pe+pr+pi— 4pe

on these potentials represents navigational routes from any  p. = p’ + w( +
point of the environment to the goal position. Trevisan et al. 4
[16] shows that this equation does not produce local minima +€[(p’“ — D)ve + (pp — pt)vy]) 3)

and generates smooth paths. 8

To solve numerically a BVP, we can consider that thevherew = ——+— with ¢ = cos = + cos = wherem and

. o . . . ) 2:hV/A—c? " ™ n

solution space is discretized in a regular grid. Each@e)Jl) n are the grid dimensions.
is associated to a squared region of the real environmentSOR is an extension of the GS method with an accelerator
and stores a potential valug(i,j). Using the Dirichlet factor, which usually makes the potential convergence using
boundary conditions, the cells associated to obstacles in t8®R faster than GS. However, the error produced by SOR
real environment store a potential value ofhigh potential)  often grows before the convergence sets in, resulting in os-
whereas cells containing the target store a potential value @iflatory potential fields during the calculation. On the other
0 (low potential). hand, the error produced by the GS method monotonically

A high potential value prevents the robot from runningdecays during the computation of the potential. This makes
into obstacles whereas a low value generates an attractitie GS more useful in tasks like robotic exploration, since
basin that pulls the robot. The relaxation methods usuallyre robot can use partial results as an approximation of the
employed to compute the potentials of free space cells apgtential field [12].
Gauss-Seidel (GS) and SOR (successive over-relaxation).
The GS method updates the potential of a edlrough: [1l. HIERARCHICAL BVP PATH PLANNER

Our proposal, the Hierarchical BVP Path Planner, uses
as core the combination of the BVP Path planner and the
Full Multigrid Method (FMG), proposed by Brandt [1]. This
wherev = (vg, vy), andp., py, p:, pr andp; are illustrated method solves elliptic PDEs efficiently through a combina-
in Figure 2. tion of solutions at several resolution levels. Basically, it
takes an instance of the problem on a grid of pre-specified
fineness and generates coarser grids containing a cruder
problem representation. The method solves the problem in

= Pb + Dt l-pr +m + 6((pr - pz)vz; (pb - pt)vy) )

> the coarsest grid, which is easy and cheaper, and obtains
& II (i,j+1) successive solutions on finer and finer grids.
The HBVP PP works as follows. The entire environment is
B BE & () () (+1) represented by a hierarchy of homogeneous megbles,},
where each mesi;, hasL x L% cells, denoted byc} ;}.
B (ij-1) Each cellcﬁj corresponds to a squared region centered in

environment coordinates= (r;, ;) and stores a particular
potential valuepﬁj and an error valueeﬁJ-. Figure 1(a)
shows the hierarchy of grids, where red and blue cells are
associated to obstacles and targets, respectively, and the
arrows represent the vector field. The potential fields in all

Fig. 2. Representation gfc, py, pt, pr and p; on the grid. grids were computed using the FMG method. Figure 1(b)
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and (c) show the vector field on the coarsest grid and on tltemponents of the error what is crucial to the algorithm

finest grid, respectively.

convergence. After, we compute the residual of the grid

To use the FMG method in our planner, we consider that1;_; and restrict it to the grid\M; (Line 8). The error

the Eq. 1 is solved in an uniform grid with cell size Then,
Eq. 1 becomes

V2 p'(r) + ev.Vpi(x) = f" )

with f" = 0, for better understanding the algorithm.
Let the linear elliptical operatofV? + ev.V) be A" and
Eq. 1 becomes

Alph = f" (6)

of this grid is reseted (Line 9) and the V-cycle, illustrated in
Algorithm 2, is executed (Line 10). The potential of the fine
grid M,_, is corrected through the error computed from the
execution of V-cycle (Line 11), and smoothened times
(Line 12). The gridM;_ is then ready to be used in the
navigation process. The steps in the lines 7-12 are exeguted
times or until the error of the potential convergence reaches
a desired value.

The V-cycle algorithm receives as input the grid; and
acts in the error of the potential convergence for each grid

Assuming thap” is an approximate solution to Eq. 5 ande, with i < k& < N. Initially, the V-cycle minimizes

p™ is the exact solution, we can define the eeor= p" —p
and the residuat” = A"p" — f". With this information, we
can rewrite Eqg. 5 as

A" +et) =0 6)
which means that
.Aheh _ _Ahﬁh-
Using the residuat”, we obtain the Residual Equation
Alel = —ph @

and the Correction Equation

p= i et (®)

the error associated to the grithf;, through the relaxation
process that is executed, times, not necessarily until the
potential convergence (Line 1). If the current grid is the
coarsest gridM x (Line 2) then the algorithm updates the
potential using the residual (Line 11). Otherwise, the residual
is computed in the gridV, (Line 5) and restricted to the grid
M1 (Line 6). The error from the grid\ .1 is reseted
(Line 7) and the V-cycle algorithm is recursively called
receiving as input the grid\; (Line 8). The potential
of the grid My, is updated with the error computed from
the coarse grid (Line 10) and smoothenedtimes.

Observe that the restriction and the prolongation operators
are applied only to the free space cells. Besides, when the
potential converges on the coarse grids the robot can use its

which are the fundamental equations of the FMG method.vector field to navigate.

To propagate the information in the grid hierarchy, we

must define two operators: the restriction operafigrand
the prolongation operataP.

R = and P =

s [0 | s [ =
NI ==
W [0 | s [ =

;|>—‘00|>—A;|>—A
00| s | 00| =
a|>—‘00|>—ta|>—t

Algorithm 1 HBVP

1: {Make sure all the grids have the correct environment
representation. }

2: Solve exactly the coarsest grith . {GS or SOR}

3: Set My as the finer grid ready to use.
4: for i+~ Nto 2do

The operatorR takes the information in the fine grid, level 5:
i in the hierarchy, and restricts it to the coarse grid, levels.
i+ 1 in the hierarchy. The level represents the grid with .

discretizationh while the leveli + 1 represents the grid with
discretizatior2h. The operatof takes the information in the

coarse grid, level + 1, and interpolates it to the fine grid,
level i. Figure 1(a) illustrates the direction of information 1o0:
propagation of these operators on the grid hierarchy. 11:

The HBVP Path Planner algorithm, shown in Algorithm 1
works as follows. Initially, all grid§ My, Mo, .., My} will
represent the environment in a specific resolution, where the

My is the coarsest representation. The algorithm receive$"

as input the hierarchy of grids, and then it computes thé®

12:
13:

Set initial guesg’ ! « I.p*
for j «+ 1ton do
Relax a; times on A~ 15~1 = 0.

ri «— Roi—1

e +0

calls V-cycld M)

Correctp’~! « pi~! + Pé

Relax as times on A~ 1pi—1 = 0.
end for

Set M,_; as the finer grid ready to use.
end for

potential in the gridMy (Line 2) using any relaxation
method (GS or SOR). That results in a coarse representation
of the potential field.

IV. RESULTS

The potential of the other grids; is prolongated to

This section presents several results that compare the

M;_1, with N > ¢ > 2 (Line 5). This initial approximation HBVP PP with the original BVP PP, as well as with
is smoothenedy; times using only GS method (Line 7). the A* algorithm. These results have been obtained(in
SOR method can not be used since it eliminates the smodatliferent environments with arbitrary obstacles and goal
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Algorithm 2 V-cycle needs a post-processing step to smooth the path generated in

1: Relax o times onA‘é? = —rt, order to ensure a high quality navigation.

2: if M; is the coarsest grithen

3. Go to line 11. B. Path quality

4: else

5 i — Aigt, We compared the paths produced by the HBVP PP with

6 pitl o Rt those produced by the BVP PP using a hierarchy of grids

2 s+ with resolution17 x 17, 33 x 33, 65 x 65 and 129 x 129
cells. In all experiments we used the parameters = 4,

8 calls V-cyclg M) ag = 4), andn, allowing the errorje|| s < 1073.

9: end if Figure 3(a)-(I) shows the quality of the path produced by

10: Correctp® < p' + P.ét! the BVP PP. In this example, we generdtarbitrary en-

vironments with different obstacles and goal configurations.
Each line of the Figure 3 presents one of these environments.
In low resolution grids — withl'7 x 17 or 33 x 33 cells — the

. . potential field converges quickly but the path produced has
ponﬁgurguons. In all cases, the parametersand a l_Jsed low-quality. In high resolution grids 65 x 65 or 129 x 129
in Algorithm 1 and 2, were set as3 and 4, respectively. 45— we achieved high-quality paths.

Whereas, the parametgrwas calculated based on the error Figure 4 shows the path produced by 3 levels in the

lefloc < 1075 hierarchy of grids in the HBVP PP in 3 different environ-

A. Performance evaluation ments. These environments are the same of the Figure 3.
. Green, blue and black illustrate the path segments followed

Table | shows the performance of HBVP PP, original BVFby the robot using the grids with3 x 33, 65 x 65 and

PP (using GS and SOR)’ and the' algorithm in an Intel 129 x 129 cells, respectively. When the potential field of a

Quad (;ore 2'4,GHZ with 4 GB RAM. The ef“"ron,mer"[s,coarse map converges, it becomes available to be used by the

have different sizes and were represented using grids wifgy, Meanwhile, the potential field in other grids are being

L1717, 33 % 33, 65 x 65, 129 x 129 and257 x 257 cells. * acjated and, when it converges, the robot can use it. The

We can observe that the HBVP PP far surpasses the origingler the resolution of the grid, the better the path quality.

BVP using GS and SOR. Itis also important to stress that tRge o see that this path combination is smooth, continuous

time spent_ by the HBV'_D PP is the time required to COMPUlg 4 has almost the same quality of the path computed using
the potential plus the time to generate all the maps from @ finest grid resolution (Figure 3(d,h,1)).
given resolution. For a map with29 x 129 cells, we need v

to generate all the maps in the hierarchy, i.e., the maps with
9 x 9,17 x 17, 33 x 33, 65 x 65, and129 x 129 cells. V. DiscussioN

Most experiments show that the HBVP PP performance is ] .
about100 to 700 times faster than the original BVP PP. As 1here are three important points that must be commented
the HBVP is computationally efficient, any changes in th@pout the HBVP PP.
environment can be mapped into the grids and the potentialMap size. In this paper, we are only considering maps
field is quickly recomputed. Despite the time required tovith size equal to2" + 1, wherei is the : — th map on
compute the potential field in a large environment (as thée hierarchy. The technique is not restricted to this map
grid with 513 x 513 cells) is not acceptable for real-time Size. However, according to Brandt [1], this size is more
simulation, the HBVP guarantees the real-time propertgonvenient and economic in the prolongation processes and
Since, the robot can move immediately when the potenti@ccelerates the convergence than any other sizes.
field in coarsest grid converges. The potential field in this Obstacle representation The obstacles must be repre-
grid is always generated in real-time. sented in all maps. In our implementation we defined the

In the most cases, for a single robot, tHé algorithm obstacles on the finest map and assumed that the reduction
is faster than the HBVP PP. However, for very small mapgperator will naturally propagate it to other maps during the
the HBVP PP is faster. The reason is that thiecomputes algorithm execution. Itis important to observe that the coarse
only one path from the robot current position to its goalmap has been discretized enough to represent all obstacles,
while the HBVP computes all paths from any free positiorensuring a consistent and smooth path during navigation.
of the environment to the goal. This allows the planning of Borders. The borders of the maps were represented only
different paths for many robots simultaneously and with nto delimit the environment and it is essential to the operation
additional cost. Moreover, in the HBVP PP the robot startef the algorithm. The border on the coarse map occupies
moving immediately when the coarsest grid is computec larger area in the environment than the border on the
In other words, we can say that the coarsest grid would Bmest map. The discretization size of the coarse map has
computed while thed* was being processed. Furthermorefo be chosen, ensuring that the whole environment will be
the HBVP PP always generates smooth paths, whedéas represented within the map.

11: Relax as times onA'p* = r.

4713



TABLE |
Performance evaluation. Comparing the HBVP Path Planner with the BVP Path Planner using SOR, Gauss-Sedel, and the A* algorithm. To compute the
A* performance, we considered the largest path found in each environment simulation.

Resolution Time (seconds)

HBVP PP | BVP PP (SOR)| BVP PP (GS) A"
9%x9 0.00002924| 0.00204756 0.00201016 | 0.00006588

17 x 17 0.00023715| 0.00210896 0.00361216 | 0.00021092

33 x 33 0.00124391| 0.00552464 0.031185 0.00055768

65 X 65 0.0151873 0.0353229 0.488865 0.00170312

129 x 129 0.0264888 0.290752 7.94992 0.0053646
257 x 257 0.23992 2.56322 130.323 0.0195956
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Fig. 3. Paths produced by BVP Path Planner in 3 different environments.

VI. CONCLUSIONS ANDFUTURE WORKS Full Multigrid method. The BVP PP generates paths that
are smooth and free from local minima. The main weakness

This paper proposed a new hierarchical path plannef this planner is the computation cost to find a solution.
(HBVP PP) that combines our BVP Path Planner with th@n the other hand, the Full Multigrid method solves elliptic
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Fig. 4. Paths produced by the HBVP Path Planner on the same environments of Figure 3.

PDEs efficiently — as Laplace’s Equation — through a com{3]
bination of solutions at several resolution levels. Basically,

) ) i ol
this method takes an instance of the problem on a grid o

pre-specified fineness and generates coarser grids containing

a cruder problem representation. The method solves the
problem in the coarsest grid, which is easy and cheaper, ar{a]

obtains successive solutions on finer and finer grids.

This combination improves the efficiency of the BVP Path 6]
Planner expressively. Results in simulation shown that thé
HBVP PP spends less thaf% of the time needed to compute
a solution using the original planner with GS method in
several environments. For instance, in an environment Wit|[|7]

513 x 513 cells, the HBVP PP spends onls to calculate
the potential, while the BVP PP spend&s using SOR

and =~ 2,223s using GS method. On the other hand, the

traditional A* computes the solution i6.07s. However, A*

(8]

computes only the path from the current robot cell towardd®!
the goal cell, whereas the HBVP computes simultaneousjyy
all paths from any environment cell towards the goal cell.

Furthermore, the paths produced by HBVP are alrea

smooth, while the paths produced by #ie need to be

iy

smoothed in post-processing, some of them passing veny]

close to obstacles.

In the same way of the BVP PP, the HBVP PP can bgg
adapted and used efficiently in mapping and localization

problems [10], [14], [16], [13], as well as in path planning

in non-homogeneous terrains[11].
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