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Universidade Federal do Rio Grande do Sul
Porto Alegre - RS - Brazil

{rsilveira,prestes,nedel}@inf.ufrgs.br

Abstract— BVP Path Planners generate potential fields
through a differential equation whose gradient descent rep-
resents navigation routes from any point of the environment
to a goal position. Resulting paths are smooth and free from
local minima. In spite of these advantages, this kind of planners
consumes a lot of time to produce a solution. In this paper, we
present a new approach that combines our BVP Path Planner
with the Full Multigrid Method, which solves elliptic partial
differential equations using a hierarchical strategy. Our new
approach, called Hierarchical BVP Path Planner, enables real-
time performance on large environments. Results show that our
proposal spends less than1% of the time needed to compute a
solution using our original planner in several environments.

I. I NTRODUCTION

One of the main goals of robotics is to create robots
that can act autonomously in the environment. This goal
is very complex and requires advances in several domains,
as localization, mapping, and planning. This paper focuses
on the path planning problem which consist of finding
a viable collision-free path for a robot to reach a goal.
The path planner should produce a fast answer, particularly
in problems that involve risk to human life, like rescue
operations during natural disasters, for instance. In these
cases, robots are expected to act efficiently and spending
a minimum time in path planning.

Most path planners are generally based on graph searching
algorithms, as theA∗ [5] and D∗ [15]. The A∗ algorithm
operates in an environment represented as a regular grid and
finds the least-cost path from a given initial cell to a target
cell using a heuristic function.D∗ behaves likeA∗ except
that, if the costs change during the execution, the algorithm
adds the information to its map and replans a new path
efficiently. Due to the environment discretization, in both
algorithms the path generated is not smooth and the robot
may have to pass close to obstacles, requiring thus some
post-processing to smooth the path and ensure a high quality
navigation.

A solution to improve the performance of path planners
is to reduce the complexity of the problem by means of a
hierarchical approach [9], [18], [6], [7]. The environment is
represented in different resolutions and used as input to the
path planners, that will decide what is the best resolution
to be used for a given situation using criteria such as time
restriction or memory limitations. A common hierarchical
representation is the quadtree decomposition [8], where the
environment is first represented using a coarse grid which is

then subdivided generating patches with different resolutions.
After that, any graph search algorithm may be used to obtain
the path. The combination ofA∗ or D∗ with a hierarchical
decomposition gives rise to algorithms like Hierarchical
A∗ [4] or HierarchicalD∗ [2]. Another way to generate paths
hierarchically is using wavelet functions for environment
decomposition [17]. The wavelet transform is a very fast
approach that allows the decomposition of the environment
at different levels of resolution. The smooth path is achieved
using the information provided by the coefficients in the
wavelet expansion.

In this work we extend our Path Planner on Boundary
Value Problem, called BVP Path Planner (or BVP PP) [16],
using the numeric solution of a multi-resolution BVP. The
original BVP PP allows the control of the steering behavior
of robots in dynamic environments using a potential field for-
malism. The resulting paths represent a compromise between
length and safety, since the paths reduce the obstacle hitting
probability[3]. The new path planner, called Hierarchical
BVP Plath Planner (or HBVP PP), inherits all properties
of the original BVP, but is much more efficient, usually
spending less than1% of the time needed for the original
method to compute a solution. Like the original planner,
the new approach can be adapted and used in mapping
and localization problems [10], [14], [16], [13], and in path
planning in non-homogeneous terrains[11]. In the latter, the
planning considers the traveling preference to guide the robot
towards the goal.

The paper is divided as follows. Section II describes the
theoretic aspects of BVP PP. In Section III, we introduce
the HBVP PP. In Section IV, we present some results in 2D
environments and compare the performance of the HBVP
PP with the original BVP PP andA∗ algorithm. Section V
discusses some aspects of our approach and Section VI
presents our conclusions.

II. BVP PATH PLANNER

The original BVP path planner [16] generates paths using
the potential information computed from the numeric solu-
tion of

∇2 p(r) = εv · ∇p(r) , (1)

with Dirichlet boundary conditions, wherev ∈ <2 and
|v| = 1 corresponds to a vector that inserts a perturbation
in the potential field;ε ∈ < corresponds to the intensity of
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Fig. 1. Hierarchical environment representation. (a) the environment is represented by a hierarchy of 4 gridsMk with different resolution. Red and blue
cells correspond to obstacles and goals, respectively, while the arrows illustrate the vector field. (b) and (c) show the coarsest and finest mesh, respectively.

the perturbation produced byv; and p(r) is the potential
at position r ∈ <2, respectively. Bothv and ε must be
defined before computing this equation. The gradient descent
on these potentials represents navigational routes from any
point of the environment to the goal position. Trevisan et al.
[16] shows that this equation does not produce local minima
and generates smooth paths.

To solve numerically a BVP, we can consider that the
solution space is discretized in a regular grid. Each cell(i, j)
is associated to a squared region of the real environment
and stores a potential valuep(i, j). Using the Dirichlet
boundary conditions, the cells associated to obstacles in the
real environment store a potential value of 1 (high potential)
whereas cells containing the target store a potential value of
0 (low potential).

A high potential value prevents the robot from running
into obstacles whereas a low value generates an attraction
basin that pulls the robot. The relaxation methods usually
employed to compute the potentials of free space cells are
Gauss-Seidel (GS) and SOR (successive over-relaxation).
The GS method updates the potential of a cellc through:

pc =
pb + pt + pr + pl

4
+

ε((pr − pl)vx + (pb − pt)vy)

8
(2)

wherev = (vx, vy), andpc, pb, pt, pr andpl are illustrated
in Figure 2.

Fig. 2. Representation ofpc, pb, pt, pr and pl on the grid.

The SOR method updates the potential of a cellc is
hrough:

pc = ptc + ω(
pb + pt + pr + pl − 4ptc

4
+

+
ε[(pr − pl)vx + (pb − pt)vy]

8
) (3)

whereω = 4

2+
√
4−c2

with c = cos π
m

+ cos π
n

wherem and
n are the grid dimensions.

SOR is an extension of the GS method with an accelerator
factor, which usually makes the potential convergence using
SOR faster than GS. However, the error produced by SOR
often grows before the convergence sets in, resulting in os-
cillatory potential fields during the calculation. On the other
hand, the error produced by the GS method monotonically
decays during the computation of the potential. This makes
the GS more useful in tasks like robotic exploration, since
the robot can use partial results as an approximation of the
potential field [12].

III. H IERARCHICAL BVP PATH PLANNER

Our proposal, the Hierarchical BVP Path Planner, uses
as core the combination of the BVP Path planner and the
Full Multigrid Method (FMG), proposed by Brandt [1]. This
method solves elliptic PDEs efficiently through a combina-
tion of solutions at several resolution levels. Basically, it
takes an instance of the problem on a grid of pre-specified
fineness and generates coarser grids containing a cruder
problem representation. The method solves the problem in
the coarsest grid, which is easy and cheaper, and obtains
successive solutions on finer and finer grids.

The HBVP PP works as follows. The entire environment is
represented by a hierarchy of homogeneous meshes,{Mk},
where each meshMk hasLk

x×Lk
y cells, denoted by{cki,j}.

Each cellcki,j corresponds to a squared region centered in
environment coordinatesr = (ri, rj) and stores a particular
potential valuepki,j and an error valueeki,j . Figure 1(a)
shows the hierarchy of grids, where red and blue cells are
associated to obstacles and targets, respectively, and the
arrows represent the vector field. The potential fields in all
grids were computed using the FMG method. Figure 1(b)

4711



and (c) show the vector field on the coarsest grid and on the
finest grid, respectively.

To use the FMG method in our planner, we consider that
the Eq. 1 is solved in an uniform grid with cell sizeh. Then,
Eq. 1 becomes

∇2 ph(r) + εv.∇ph(r) = fh (4)

with fh = 0, for better understanding the algorithm.
Let the linear elliptical operator

(

∇2 + εv.∇
)

beAh and
Eq. 1 becomes

Ahph = fh. (5)

Assuming that̃ph is an approximate solution to Eq. 5 and
ph is the exact solution, we can define the erroreh = ph− p̃h

and the residualrh = Ahp̃h−fh. With this information, we
can rewrite Eq. 5 as

Ah(p̃h + eh) = 0 (6)

which means that

Aheh = −Ahp̃h.

Using the residualrh, we obtain the Residual Equation

Aheh = −rh (7)

and the Correction Equation

ph = p̃h + eh (8)

which are the fundamental equations of the FMG method.
To propagate the information in the grid hierarchy, we

must define two operators: the restriction operatorR, and
the prolongation operatorP .

R =
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The operatorR takes the information in the fine grid, level
i in the hierarchy, and restricts it to the coarse grid, level
i + 1 in the hierarchy. The leveli represents the grid with
discretizationh while the leveli+1 represents the grid with
discretization2h. The operatorP takes the information in the
coarse grid, leveli + 1, and interpolates it to the fine grid,
level i. Figure 1(a) illustrates the direction of information
propagation of these operators on the grid hierarchy.

The HBVP Path Planner algorithm, shown in Algorithm 1
works as follows. Initially, all grids{M1,M2, ..,MN} will
represent the environment in a specific resolution, where the
MN is the coarsest representation. The algorithm receives
as input the hierarchy of grids, and then it computes the
potential in the gridMN (Line 2) using any relaxation
method (GS or SOR). That results in a coarse representation
of the potential field.

The potential of the other gridsMi is prolongated to
Mi−1, with N ≥ i ≥ 2 (Line 5). This initial approximation
is smoothenedα1 times using only GS method (Line 7).
SOR method can not be used since it eliminates the smooth

components of the error what is crucial to the algorithm
convergence. After, we compute the residual of the grid
Mi−1 and restrict it to the gridMi (Line 8). The error
of this grid is reseted (Line 9) and the V-cycle, illustrated in
Algorithm 2, is executed (Line 10). The potential of the fine
gridMi−1 is corrected through the error computed from the
execution of V-cycle (Line 11), and smoothenedα1 times
(Line 12). The gridMi−1 is then ready to be used in the
navigation process. The steps in the lines 7-12 are executedη

times or until the error of the potential convergence reaches
a desired value.

The V-cycle algorithm receives as input the gridMi and
acts in the error of the potential convergence for each grid
Mk, with i ≤ k ≤ N . Initially, the V-cycle minimizes
the error associated to the gridMk through the relaxation
process that is executedα1 times, not necessarily until the
potential convergence (Line 1). If the current grid is the
coarsest gridMN (Line 2) then the algorithm updates the
potential using the residual (Line 11). Otherwise, the residual
is computed in the gridMk (Line 5) and restricted to the grid
Mk+1 (Line 6). The error from the gridMk+1 is reseted
(Line 7) and the V-cycle algorithm is recursively called
receiving as input the gridMk+1 (Line 8). The potential
of the gridMk+1 is updated with the error computed from
the coarse grid (Line 10) and smoothenedα2 times.

Observe that the restriction and the prolongation operators
are applied only to the free space cells. Besides, when the
potential converges on the coarse grids the robot can use its
vector field to navigate.

Algorithm 1 HBVP
1: {Make sure all the grids have the correct environment

representation.}

2: Solve exactly the coarsest gridMN . {GS or SOR}

3: SetMN as the finer grid ready to use.
4: for i← N to 2 do

5: Set initial guess̃pi−1 ← I.p̃i

6: for j ← 1 to η do
7: Relaxα1 times onAi−1p̃i−1 = 0.

8: ri ← R.ri−1

9: ẽi ← 0

10: calls V-cycle(Mi)

11: Correctp̃i−1 ← p̃i−1 + P.ẽi

12: Relaxα2 times onAi−1p̃i−1 = 0.
13: end for

14: SetMi−1 as the finer grid ready to use.
15: end for

IV. RESULTS

This section presents several results that compare the
HBVP PP with the original BVP PP, as well as with
the A∗ algorithm. These results have been obtained in10
different environments with arbitrary obstacles and goal
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Algorithm 2 V-cycle

1: Relaxα1 times onAiẽi = −ri.

2: if Mi is the coarsest gridthen
3: Go to line 11.
4: else
5: ri ← −Aiẽi.
6: ri+1 ← R.ri

7: ẽi+1 ← 0

8: calls V-cycle(Mi+1)

9: end if

10: Correctp̃i ← p̃i + P.ẽi+1

11: Relaxα2 times onAip̃i = ri.

configurations. In all cases, the parametersα1 and α2 used
in Algorithm 1 and 2, were set as3 and 4, respectively.
Whereas, the parameterη was calculated based on the error
‖e‖∞ ≤ 10−3.

A. Performance evaluation

Table I shows the performance of HBVP PP, original BVP
PP (using GS and SOR), and theA∗ algorithm in an Intel
Quad Core 2.4 GHz with 4 GB RAM. The environments
have different sizes and were represented using grids with
17× 17, 33× 33, 65× 65, 129× 129 and257× 257 cells.
We can observe that the HBVP PP far surpasses the original
BVP using GS and SOR. It is also important to stress that the
time spent by the HBVP PP is the time required to compute
the potential plus the time to generate all the maps from a
given resolution. For a map with129 × 129 cells, we need
to generate all the maps in the hierarchy, i.e., the maps with
9× 9, 17× 17, 33× 33, 65× 65, and129× 129 cells.

Most experiments show that the HBVP PP performance is
about100 to 700 times faster than the original BVP PP. As
the HBVP is computationally efficient, any changes in the
environment can be mapped into the grids and the potential
field is quickly recomputed. Despite the time required to
compute the potential field in a large environment (as the
grid with 513 × 513 cells) is not acceptable for real-time
simulation, the HBVP guarantees the real-time property.
Since, the robot can move immediately when the potential
field in coarsest grid converges. The potential field in this
grid is always generated in real-time.

In the most cases, for a single robot, theA∗ algorithm
is faster than the HBVP PP. However, for very small maps,
the HBVP PP is faster. The reason is that theA∗ computes
only one path from the robot current position to its goal,
while the HBVP computes all paths from any free position
of the environment to the goal. This allows the planning of
different paths for many robots simultaneously and with no
additional cost. Moreover, in the HBVP PP the robot starts
moving immediately when the coarsest grid is computed.
In other words, we can say that the coarsest grid would be
computed while theA∗ was being processed. Furthermore,
the HBVP PP always generates smooth paths, whereasA∗

needs a post-processing step to smooth the path generated in
order to ensure a high quality navigation.

B. Path quality

We compared the paths produced by the HBVP PP with
those produced by the BVP PP using a hierarchy of grids
with resolution17 × 17, 33 × 33, 65 × 65 and 129 × 129
cells. In all experiments we used the parameters(α1 = 4,
α2 = 4), andη, allowing the error‖e‖∞ ≤ 10−3.

Figure 3(a)-(l) shows the quality of the path produced by
the BVP PP. In this example, we generate3 arbitrary en-
vironments with different obstacles and goal configurations.
Each line of the Figure 3 presents one of these environments.
In low resolution grids – with17× 17 or 33× 33 cells – the
potential field converges quickly but the path produced has
low-quality. In high resolution grids –65× 65 or 129× 129
cells – we achieved high-quality paths.

Figure 4 shows the path produced by 3 levels in the
hierarchy of grids in the HBVP PP in 3 different environ-
ments. These environments are the same of the Figure 3.
Green, blue and black illustrate the path segments followed
by the robot using the grids with33 × 33, 65 × 65 and
129 × 129 cells, respectively. When the potential field of a
coarse map converges, it becomes available to be used by the
robot. Meanwhile, the potential field in other grids are being
calculated and, when it converges, the robot can use it. The
better the resolution of the grid, the better the path quality.
We can see that this path combination is smooth, continuous
and has almost the same quality of the path computed using
the finest grid resolution (Figure 3(d,h,l)).

V. D ISCUSSION

There are three important points that must be commented
about the HBVP PP.

Map size. In this paper, we are only considering maps
with size equal to2i + 1, where i is the i − th map on
the hierarchy. The technique is not restricted to this map
size. However, according to Brandt [1], this size is more
convenient and economic in the prolongation processes and
accelerates the convergence than any other sizes.

Obstacle representation. The obstacles must be repre-
sented in all maps. In our implementation we defined the
obstacles on the finest map and assumed that the reduction
operator will naturally propagate it to other maps during the
algorithm execution. It is important to observe that the coarse
map has been discretized enough to represent all obstacles,
ensuring a consistent and smooth path during navigation.

Borders. The borders of the maps were represented only
to delimit the environment and it is essential to the operation
of the algorithm. The border on the coarse map occupies
a larger area in the environment than the border on the
finest map. The discretization size of the coarse map has
to be chosen, ensuring that the whole environment will be
represented within the map.
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TABLE I

Performance evaluation. Comparing the HBVP Path Planner with the BVP Path Planner using SOR, Gauss-Siedel, and the A* algorithm. To compute the

A* performance, we considered the largest path found in each environment simulation.

Resolution Time (seconds)

HBVP PP BVP PP (SOR) BVP PP (GS) A
∗

9× 9 0.00002924 0.00204756 0.00201016 0.00006588

17× 17 0.00023715 0.00210896 0.00361216 0.00021092

33× 33 0.00124391 0.00552464 0.031185 0.00055768

65× 65 0.0151873 0.0353229 0.488865 0.00170312

129× 129 0.0264888 0.290752 7.94992 0.0053646

257× 257 0.23992 2.56322 130.323 0.0195956

(a) 17× 17 cells (b) 33× 33 cells (c) 65× 65 cells (d) 129× 129 cells

(e) 17× 17 cells (f) 33× 33 cells (g) 65× 65 cells (h) 129× 129 cells

(i) 17× 17 cells (j) 33 × 33 cells (k) 65× 65 cells (l) 129 × 129 cells

Fig. 3. Paths produced by BVP Path Planner in 3 different environments.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper proposed a new hierarchical path planner
(HBVP PP) that combines our BVP Path Planner with the

Full Multigrid method. The BVP PP generates paths that
are smooth and free from local minima. The main weakness
of this planner is the computation cost to find a solution.
On the other hand, the Full Multigrid method solves elliptic
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Fig. 4. Paths produced by the HBVP Path Planner on the same environments of Figure 3.

PDEs efficiently – as Laplace’s Equation – through a com-
bination of solutions at several resolution levels. Basically,
this method takes an instance of the problem on a grid of
pre-specified fineness and generates coarser grids containing
a cruder problem representation. The method solves the
problem in the coarsest grid, which is easy and cheaper, and
obtains successive solutions on finer and finer grids.

This combination improves the efficiency of the BVP Path
Planner expressively. Results in simulation shown that the
HBVP PP spends less than1% of the time needed to compute
a solution using the original planner with GS method in
several environments. For instance, in an environment with
513 × 513 cells, the HBVP PP spends only2s to calculate
the potential, while the BVP PP spends22s using SOR
and ≈ 2, 223s using GS method. On the other hand, the
traditionalA∗ computes the solution in0.07s. However,A∗

computes only the path from the current robot cell towards
the goal cell, whereas the HBVP computes simultaneously
all paths from any environment cell towards the goal cell.
Furthermore, the paths produced by HBVP are already
smooth, while the paths produced by theA∗ need to be
smoothed in post-processing, some of them passing very
close to obstacles.

In the same way of the BVP PP, the HBVP PP can be
adapted and used efficiently in mapping and localization
problems [10], [14], [16], [13], as well as in path planning
in non-homogeneous terrains[11].
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