The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

Motion Estimation Based on Predator/Prey Vision

D. van der Lijn, G.A.D. Lopes and R. Babuska

Abstract— We present an unscented Kalman filter based state
estimator for a fast moving rigid body (such as a mobile
robot) endowed with two video cameras. We focus on forward
velocity estimation towards the computation of standard energy
cost functions for legged locomotion. Points are chosen as
image features and the model of each camera is based on
the traditional pinhole projection. The resulting filter’s state
is composed of the rigid body pose and velocities, together
with a measure of depth for each tracked point. By taking
inspiration from nature’s large predatory and grazing mammals
eye configuration, we suggest, via simulation results, a solution
for the question of finding the best orientation of two cameras,
between side and frontal facing, for velocity estimation in a
forward moving robot.

I. INTRODUCTION

Knowledge of full-state information is fundamental for
most contemporary control techniques. In mobile robotics,
in particular, rigid body full-state information enables navi-
gation, manipulation, and motion optimization [1]. Full-state
observers are typically implemented by means of sensor fu-
sion data [2]-[6], each compromising in terms of complexity,
accuracy, and cost.

A very useful non-dimensional parameter, denoted specific
resistance €, accepted as the standard measure for energy
efficiency in both biology and in robotics, was originally
proposed by Gabrielli and von Karman in 1950 [7]:

where P is the average power expenditure, m is the total
mass, g is the gravitational acceleration, and v is the forward
velocity. The specific resistance has been calculated in the
literature for many types of animals, including mammals,
arthropods, reptiles [8], and machines, including cars, air-
planes, bicycles, etc. [7]. For legged robots, this measure is
typically used as a cost function that is minimized towards
more efficient walking or running gaits [1]. The fundamental
parameters required for the computation of the specific resis-
tance are the average power consumption, readily measurable
in hardware for robot systems that use electrical motors, and
the forward velocity. Unfortunately, without implementing a
sensor fusion observer, there exists no standard hardware-
based linear velocity sensor that can be purchased for a
legged robot. Moreover, traditional off-the-shelf sensors bear
various types of limitations that complicate the develop-
ment of linear velocity estimators. Dead reckoning, used in
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Fig. 1. Configuration of two cameras that can swivel o degrees from facing
forward to facing sideways. The pyramid shapes represent the field of view
aperture of the cameras. The frames ey, e.1, and e.2 are attached to the
body, camera 1 and camera 2 respectively.

wheeled robots, suffers inevitably from slipping and requires
elaborate implementations for legged robots [9]. Modern
solid-state Inertial Measurement Units (IMU) [10] supply
angular velocities and linear accelerations. Linear velocity
information must be obtained via filtering and can result in
large drifting errors after a few minutes [6]. GPS sensors
suffer from low update rate and lack of indoor usability that
hinder their deployment on fast walking robots.

Video cameras offer an alternative to traditional proprio-
ceptive sensors, but due to their high bandwidth throughput
and generality, complex algorithms are typically required to
reduce the dimensionally of the video data and extract body
pose and velocity estimations from it (for a survey on vision-
based methods for robot navigation please see [11]). We
take this approach in this paper by expanding the work of
Chiuso et al. [12] to multiple cameras that can, but do not
require to, have overlapping fields of view, with the goal of
developing a low-cost, low-complexity velocity estimator for
legged robots.

One less explicitly researched topic is how to optimally
place various video cameras to improve the estimation task
at hand. Chen et al. [13] addressed the problem of automatic
camera motion for locating features of interest in an object
and Burschka et al. [14] addressed the dual problem of opti-
mal landmark configuration. In this paper we take inspiration
from nature to seek for the configuration of two cameras that
minimize the estimation error of the forward velocity of a
legged robot. Typical predatory mammals have eyes facing
forward. This evolutionary outcome sustain the hypothesis
that stereoscopic vision is beneficial for object tracking and
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3D manipulation. Grazing mammals (prey) however, have
evolved to possess side facing eyes with wide field of views.
This is expected since it is of their advantage to be able
to detect predators as fast as possible, which is facilitated
by wide field of view eyes. This evolutionary difference
in nature poses the question (although not directly related
from the behavioral point of view) of what is the best
camera configuration (from a specific set of orientations,
as illustrated in Figure 1) for forward velocity estimation.
We denote this as the predator/prey camera configuration
hypothesis.

The contributions of this paper are two fold: i) we augment
a current filtering technique developed for a single camera to
multiple cameras, with additional constraint equations result-
ing from overlapping fields of view. ii) We elaborate on the
Predator/Prey camera configuration hypothesis concluding
that side facing cameras improve forward velocity estima-
tion. Section II revises the single camera filter presented in
[12], Section III presents the extension to multiple cameras,
Section IV formulates the estimation problem from a filtering
perspective, and Section V presents the simulations results.

II. SINGLE CAMERA MODEL

For the remainder of this paper the following assumptions
hold:

Al A point tracker is available that returns a vector of
projections of points in time.

A2 Points remain in the camera’s field of view throughout
the entire length of the experiment.

A3 Points are assumed to be static in the environment.

These assumptions limit the direct applicability of the pre-
sented algorithmic extension, but allow for the answering
of the predator/prey hypothesis in a straightforward manner.
Assumption Al avoids the computational cost incurred by
feature trackers. By choosing the simplest possible feature, a
point, we implicitly consider that problem. For our forthcom-
ing experimental implementation we are currently utilizing
the Kanade-Lucas-Tomasi point tracker [15], capable of run-
ning in real-time in modern hardware. Assumption A2 can be
relaxed by running two parallel filters as mentioned in [12]:
the first filter’s state contains the robot’s pose, velocities and
depths of tracked points (has we describe in Section III). The
purpose of the second filter, whose state consists solely in
the depths of points and uses the robot’s pose and velocities
as parameters, is to allow for new points to have its depth
estimated before they are added to the first filter. This avoids
transients in the estimation of the robot’s state. Points that
never go below a pre-defined threshold of the back projection
error' are not added to the first filter, removing this way
undesirable outliers. Points that are lost are simply removed
from the filter’s states. Finally, assumption A3 can be dealt
by moving object detection [16]. Under these assumptions,
we consider the agent to be a rigid body endowed with
a video camera observing collections of points while in

IThe difference from the observed output to the estimated output.

motion. The camera is modeled by the traditional pinhole
projection with added radial lens distortion. The model for
the measured observations of the points is the composition of
three classes of maps: rigid body transformations, projection,
and “distortion” maps. We keep emphasis on the first two,
by assuming that the lens distortion is known, i.e. the camera
is calibrated a priori. Let p be a three-dimensional point
described in generic coordinates. Let ¢ : SE(3) x R? — R3
be a rigid body transformation

#(R,q,p) = Rp+q,

with R and ¢ the traditional rotation matrix and translation
vector, respectively. The camera pinhole projection model is
realized by a projection map 7 : R3 — R2,

W(p)—l{zy

where z,y,z are the coordinates of the vector p. The
composition of the maps is described graphically by the
informal commutative diagram

¢
Pw < Pec
world camera

Y1 Ps

— P —
plane lens

T
> Dp DPs
sensor

were s o iy = 1 describe lens distortions, always present
in real camera setups. The full sensor model is described by:

ps =Y omod(R,q,puw) (1)

For the ease of notation, for the remainder of the paper we
use the simpler “undistorted” camera model?, where pp are
points in the image projection plane:

Pp(t) = mo G(R(t), (), pu)- ()

Here we consider that the camera’s motion in time is
described by the group parameters (R(t),q(t)) € SE(3).
Without loss of generality, assume that at the initial time
instance ¢t = 0 the camera frame aligns with the world frame,
ie. R(0) =1, ¢ =[00 0] implying that ¢ is the identity
map. Let v*,vY be the homogeneous form for 2D points,
and & be a measure of depth. Points in the camera frame are
represented at the initial state ¢ = 0 by:

2 (0)
2 (0) ok
Pe(0) = ¢(pw(0)) = 2w(0) | yu(0) | =& | 7 ©)
2 (0) 1
1
In the image plane these reduce to:
pl0) = wp.0) = | 7, | @

III. MULTI-CAMERA MODEL

We expand on the previous section by considering two
cameras with partially overlapping fields of view. We start

2Note that for the real implementation it is useful to include all the maps
in the observation’s model since noise distributions get “deformed” by each
map. If the noise model is known for the camera’s CCD sensor and very
wide lens are used, then very different filtered results can be obtained using
models (1) or (2).
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Fig. 2. Dual camera configuration observing collections of points in the
environment. The frames ey, e.1, and e.2 are attached to the body, camera
1 and camera 2 respectively.

by introducing sets of points observed by each camera
separately or by both cameras simultaneously. Let:

P1 be the set of points visible only by camera 1,
P2 be the set of points visible only by camera 2,
P12 be the set of points visible by both cameras in camera
1 coordinates, and
P21 be the set of points visible by both cameras in camera
2 coordinates.

Two new assumptions are added for the multi-camera case:

A4 The correspondence problem is assumed solved for the
points in Pjo (and Pay).

A5 The relative position of the cameras to the robot’s
body is known and remains fixed throughout the
entire motion.

Assumption A4 sidesteps a potentially computational costly
procedure that for a real experimental implementation favors
the prey camera configuration: since the field of views
are non-overlapping no point correspondence is required.
Assumption A5 can be relaxed by including the rigid body
transformations for each camera as time-varying parameters
in the output equations.

The multi-camera model is similar to the one in Section
I1, differing by an additional body-to-camera transformation.
Let

¢b(p) = (b(R(t)v(I(t)ap)v (5a)
¢cl (p) = ¢(R017QC17p)7 (Sb)
¢02(p) — ¢(Rc27QC27p)' (SC)

Function (5a) maps points from world to body reference and
functions (5b),(5¢) map body to cameras 1 and 2 references

respectively. For both cameras, the maps ¢.1, ¢.2 are as-
sumed to be fixed throughout time. Using the previously
defined depth and homogeneous representation, equation (5a)
is written as:

(bb(p) ¢ R(ﬂvQ(t)vg[’yw ’Yy 1]T)

d)h (R(t)v Q(t)a 57 Vma ’Yy)

The sensor model for two cameras is described by:

Pp1r = TO (bcl o ¢b(pw)
Pp2 = TO ¢c2 o ¢b(pw)

The following informal commutative diagram illustrates the
composition of the maps:

Pw 5
world body < oo

We utilize again the initial time assumption described in
the previous section by considering that the group variables
R and ¢ are at the origin for ¢ = 0. However, due to the
extra body-to-camera transformation, equations (3) and (4)
take a different form. Denote by

Y1 = DPp1 = T O Pe1 © Gp(Pw1), Pwi € P1

the projection of a point observed solely by camera 1.
Likewise, denote by o the projection of a point observed
solely by camera 2, y;2 observed by both cameras in camera
1 coordinates, and y2; observed by both cameras in camera
2 coordinates. The equation of y;5 at initial time is described
by:

y12(0) =To ¢Cl o (bh (RgllR(O)v Q(O) - R511QC15
12,7195 112) (6)

The “shifting” terms R_;' and —R_;'q.; are added such that

V2
y12(0) = To b1 | 2R | e | — Ra'da
1
71m2 x
=7 &2 | 7 Z[’Y.}f ]
1 712

For the equation of y5; one uses the same point representa-
tion as in (6), resulting in a nonlinear expression in terms of
the point parameters &12, 77, Vig:

Y21(0) = o ¢e2 0 ¢ 0 der 0 (R R(0),
q(0) — Rc_11CIc17 £12, V12> 7%2)
= ((&12, 712, V12)
The extra inverse map ¢_,' in the equation above arrises
from the fact that points are represented first in camera 1

coordinates, and then are translated back to camera 2 coor-
dinates by the map ¢.2 0 qsgll. Following the same reasoning,
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projection points uniquely observed by either camera 1 or 2
at t = 0 are represented by:

y1(0) = mo¢e1 0 ¢y (Rc_llR(O),

q(0) = R3'qe1, &1,98,7Y) = | 7}
L 71 ]
y2(0) = mo ¢e2 0 Op, (Rc_glR(O),
q(0) — Ry qe2, 2,75, 74) = %

Let ¢1, @2 be defined by:

¢l (R7 q, 57 va ’7y) = (bh (RgllRa q— RJ11Q<:17 57 va ’7y)
$2(R,q,£,7",7) = ¢n (R R, q — R3'qe2, €,7%,7Y)

The equations of projected points for an arbitrary time ¢ are:

y1(t) = mo der 0 P1(R(t),q(t),61,77,77)

Y2(t) = mo e 0 P2(R(1),q(t), 62,75, 73)
Y12(t) = 7o ge1 0 p1(R(t), q(t), 12, V12, V12)
Y21(t) = 7o dez 0 p1(R(t), q(t), 12, V12, V12)

yi(t) = 7o on(R(t),q(t), &,71,7) (7a)
y2(t) = 7o on(R(t),q(t),€2,72,73) (7b)
y12(t) = 7o du(R(1), q(t), E12, 712, V1o) (7c)
Y21(t) = o gez 0 P1(R(t), q(t), &12,712,712)  (7d)

Although not formally demonstrated here, the state is ob-
servable when motion is present (up to some pathological
cases [17]) due to the known relative position between both
cameras, represented by R.i,qc1, Rc2,qc2. These known
quantities, together with the assumption of the world frame
matching the body frame for the initial condition, eliminate
the requirement of fixing some of the state variables as in
Chiuso’s [12] implementation.

IV. FILTER DESIGN

The estimation of the robot velocity can be transformed
into a filtering problem by utilizing the previously described
multi-camera model. For this implementation we choose the
unscented Kalman filter [18] since it avoids the computation
of the Jacobians of the process and observation models as
in the extended Kalman filter case. This is useful for the
upcoming experimental implementation where the dimension
of the state in the filter changes dynamically as new points
are tracked or others leave the camera’s field of views. We
start by vectorizing the rotation matrix R into €2 by utilizing
the standard inverse Rodrigue’s formula:

Q =Rod '(R)

Since there is no a priori knowledge of the absolute location
of the observed points in the world, these are added to the
state being estimated. Let n = |P1|, m = |Pz| and [ = |P12|.

For each point §; ;,7; ;, vgj indexed by j, with ¢ € {1,2,12}
belonging to the sets Py, P, P12 let:

=[&1 - &l (8a)
gf =M1 - Ml (8b)
Ty = [ag -+ Yol (8c)

The full state x of dimension 12+ 3(n+m+1) is described
by:
QT o7 WT = Ty TY 5 T3 TY S T4, T%,] 7

x=[q"

where v represents linear velocity and w angular velocity,
with its associated dynamical model

x(k+1) = f(x(k)) + 0 (k), ©)

and process noise assumed zero mean Gaussian with covari-
ant matrix Q:

Equation (9) is described in detail by:

q(k +1) = M g(k) + Tov(k) + oy(k)  (10a)
Q(k +1) = Rod (740 e20) 1 56(k)  (10b)
v(k+1) = v(k) + o, (k) (10c)
w(k +1) = w(k) + ou(k) (10d)
Ei(k+1) = E1(k) + o=,1(k) (10e)
Ii(k+1) = F”f( )+ or.1(k) (10f)
[y (k +1) = Ty (k) + or,. (k) (10g)

w9
~

where is the standard skew operator (ab = a x b). The
parameter 7 is the sampling time and equations (10a)-(10d)
are obtained by integrating constant accelerations over a time
step Ts.

This model can be reduced by assuming a perfect measure
of the 2D point coordinates I'?, ..., T'{, in the image plane
at the initial instance. These do not change throughout the
motion since they are defined in the fixed world frame
that matches the camera frame for the initial instance. The
reduced state of dimension 12 4+ n 4+ m + [ is then:

T QT UT wT

Y

The observations vector of dimension 2(n + m) + 41 is
represented by:

x=[q E1 B 512]T7

T
y= [ v2 yiayn]
with the associated observation equations
y(k) = h(x(k)) + oy (k),

where the observation noise oy (k) is assumed zero mean
Gaussian with covariant matrix R:

oy(k) ~N(0, R).

12)
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The observation model (12) is described by:

y1(k) = 7 o ¢, (Rod(Q(k)), q(k), E1 (k), T§ (), T (k))
ya(k) = 7 o ér, (Rod(Q(k)), q(k), E2(k), T5 (), T3 (k))
yi2(k) = 7 o ¢ (Rod(Q(K)), q(k), Z12(k), TT5(k), T, (k)
y21(k) = 7 0 ¢pea © @1 (Rod(Qk)), q(k),

E12 (k)v Pf? (k)v l—‘11}2 (k)) ’

where the maps 7, ¢, ¢c2, and ¢, are the multidimensional
versions of their counterparts in equations (7a) to (7d). For
the simulations presented in this paper the process noise
covariance matrix is initialized as a diagonal matrix

(13)

Q = diag (04,00, 04,04,0=), (14)

where
—3713%x3
0qg =00 =0y =0, =10""T

o= = 1072I(n+m+l)><(n+m+l)

The observations noise covariance matrix is assumed to be
(15)

The dynamical model (9) with the reduced state (11),
together with the observation model (12),(13), (using the
simplified notations x; = x(k) and yx = y(k)), and the
corresponding covariant matrices () and R, are utilized in
the standard UKF algorithm revisited next:

R = 10~ 47(n+m)+4l) x (2(n+m)+4l)

1. Initialization
Py = E[(x0 — %0) (X0 — %0)”]

2. Calculate 2N + 1 sigma points and weights (with N =
124+n+m+10)

Xy—1 = [fik—l Rp—1 +0vVPoo1 Xp—1—7 Pk—1]

%o = Elxo];

w=[An 1/(2n) 1/2n)"
xX2N
3. Prediction step
KXipk—1 = f( A1)
Xy = Xgp—1w
2N -
P =Q +Z wj ((Xk‘k,l)i - iiz)(()(k\kfl)i — %)
i=0
Vitk—1 = h(Xyjp-1)
Vi = Vijp—1w
4. Filtering step
2N .
Pyyge = R+Y_wi (Ven-1); = ) (Vein-1), = )
i=0
2N T
Pry e = sz ((Xk\kfl)i - X;)((yk\kfl)i - y’f)
i=0
Ky = Py P,y
% = %, + Ki(yr — 5&)
Py, = P, — KyPyy 1 K}

Mean absolute lmear Veloc1ty error (m / s)

0.06 T T
v V Max1mum error
A Minimum error
0.05 | [—195% conf. bound ]
—o— Mean error
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001
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camera direction angles (degrees)

Predator Prey

Fig. 3. Mean absolute linear velocity error plots for predator/prey camera
configuration. Zero degrees corresponds to forward pointing eyes as in
mammal predators, and 90 degrees corresponds to side pointing eyes as
in typical grazing mammals.

The parameter n = N + A, with A = N(a? —1); 107! <
a < 1. The notation (-); represents the i-th column of the
enclosed matrix or the i-th element of a vector.

V. SIMULATIONS

A simulation environment was designed following as-
sumptions A1-AS5. A set of z points is generated according to
a uniform distribution in a 3-dimensional box enclosing the
agent’s desired motion domain. Next, a reference trajectory is
produced and a simple controller is designed to follow such
trajectory. The solution of the differential equations for the
rigid body motion is computed in continuous time and stored.
All z points are then projected into the simulated camera
plane, and the sets P;, Py and Pjo are filled with points
that verify each appropriate field of view constraints for all
time instances. A fixed number of points is then chosen from
each set. Figure 3 compiles the results for the mean error in
the velocity estimation for various camera orientation angles,
averaged over 50 simulations per angle. The mean absolute
linear velocity error measure is computed as:

vi (k)|

where ¥;(k) is the estimated linear velocity for simulation i
indexed by time & and v;(k) is the stored velocity solution.
The results suggest that for forward motion, the prey camera
configuration fares better. Figures 4 and 5 illustrate sample
world motion plots of simulations for predator and prey
configurations respectively.

error = mean, ;|0; (k) —

VI. CONCLUSIONS AND FUTURE WORK

Simulation results suggest that the prey configuration is
beneficial for linear velocity estimation when the robot is
moving forward. Moreover, in the prey configuration no point
correspondence is required as in the predator case, since the
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Fig. 4. Predator camera configuration. The trajectory of the rigid body is
illustrated by the small black dots (1) that are surrounded by the field of view
of each camera, represented by the pyramidal shapes (2). The large black
dots (3) represent the real location of the feature points in the environment,
the large white dots (5) represent the initial condition estimate of the world
points based on unknown depths and the remaining small black points
represent the various estimates of depth over time. A point ray is illustrated
by the dashed line (4). Only a small number of positions of the camera field
of view are plotted for illustration purposes.

Fig. 5. Prey camera configuration. Properties are the same as in Figure 4.

cameras field of view do not overlap. For the angular velocity
estimation no clear optimal camera configuration was found.
The simulation results additionally suggest that different
types of motion benefit from different camera configurations,
so it is useful to dynamically actuate the camera mounts.
The presented unscented Kalman filter for state estimation
using two cameras offers a few advantages over a single
camera setup. For non-overlapping fields of view, as in the
prey configuration, there exists no depth ambiguity as long
as the cameras are not mounted in such a way that the
focal points coincide. For overlapping fields of view, points

observed by two cameras have depth convergence without
motion. The filtering technique utilized is invariant to the
geometry of the environment, assuming a rich could of
features. If the point tracking algorithms can be efficiently
implemented, then the additional Kalman filter does not
dramatically increase the computation complexity.

Parallels to this formulation can be found in nature,
in particular in insect vision, where compound eyes track
feature contrasts in a similar way to tracking points. We
are currently working on the experimental validation on a
legged robotic platform fitted with two synchronized cameras
mounted on servo motors for dynamic actuation.
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