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Abstract— We present an unscented Kalman filter based state
estimator for a fast moving rigid body (such as a mobile
robot) endowed with two video cameras. We focus on forward
velocity estimation towards the computation of standard energy
cost functions for legged locomotion. Points are chosen as
image features and the model of each camera is based on
the traditional pinhole projection. The resulting filter’s state
is composed of the rigid body pose and velocities, together
with a measure of depth for each tracked point. By taking
inspiration from nature’s large predatory and grazing mammals
eye configuration, we suggest, via simulation results, a solution
for the question of finding the best orientation of two cameras,
between side and frontal facing, for velocity estimation in a
forward moving robot.

I. INTRODUCTION

Knowledge of full-state information is fundamental for

most contemporary control techniques. In mobile robotics,

in particular, rigid body full-state information enables navi-

gation, manipulation, and motion optimization [1]. Full-state

observers are typically implemented by means of sensor fu-

sion data [2]–[6], each compromising in terms of complexity,

accuracy, and cost.

A very useful non-dimensional parameter, denoted specific

resistance ǫ, accepted as the standard measure for energy

efficiency in both biology and in robotics, was originally

proposed by Gabrielli and von Karman in 1950 [7]:

ǫ =
P

mgv
,

where P is the average power expenditure, m is the total

mass, g is the gravitational acceleration, and v is the forward

velocity. The specific resistance has been calculated in the

literature for many types of animals, including mammals,

arthropods, reptiles [8], and machines, including cars, air-

planes, bicycles, etc. [7]. For legged robots, this measure is

typically used as a cost function that is minimized towards

more efficient walking or running gaits [1]. The fundamental

parameters required for the computation of the specific resis-

tance are the average power consumption, readily measurable

in hardware for robot systems that use electrical motors, and

the forward velocity. Unfortunately, without implementing a

sensor fusion observer, there exists no standard hardware-

based linear velocity sensor that can be purchased for a

legged robot. Moreover, traditional off-the-shelf sensors bear

various types of limitations that complicate the develop-

ment of linear velocity estimators. Dead reckoning, used in
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Fig. 1. Configuration of two cameras that can swivel α degrees from facing
forward to facing sideways. The pyramid shapes represent the field of view
aperture of the cameras. The frames eb, ec1, and ec2 are attached to the
body, camera 1 and camera 2 respectively.

wheeled robots, suffers inevitably from slipping and requires

elaborate implementations for legged robots [9]. Modern

solid-state Inertial Measurement Units (IMU) [10] supply

angular velocities and linear accelerations. Linear velocity

information must be obtained via filtering and can result in

large drifting errors after a few minutes [6]. GPS sensors

suffer from low update rate and lack of indoor usability that

hinder their deployment on fast walking robots.

Video cameras offer an alternative to traditional proprio-

ceptive sensors, but due to their high bandwidth throughput

and generality, complex algorithms are typically required to

reduce the dimensionally of the video data and extract body

pose and velocity estimations from it (for a survey on vision-

based methods for robot navigation please see [11]). We

take this approach in this paper by expanding the work of

Chiuso et al. [12] to multiple cameras that can, but do not

require to, have overlapping fields of view, with the goal of

developing a low-cost, low-complexity velocity estimator for

legged robots.

One less explicitly researched topic is how to optimally

place various video cameras to improve the estimation task

at hand. Chen et al. [13] addressed the problem of automatic

camera motion for locating features of interest in an object

and Burschka et al. [14] addressed the dual problem of opti-

mal landmark configuration. In this paper we take inspiration

from nature to seek for the configuration of two cameras that

minimize the estimation error of the forward velocity of a

legged robot. Typical predatory mammals have eyes facing

forward. This evolutionary outcome sustain the hypothesis

that stereoscopic vision is beneficial for object tracking and
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3D manipulation. Grazing mammals (prey) however, have

evolved to possess side facing eyes with wide field of views.

This is expected since it is of their advantage to be able

to detect predators as fast as possible, which is facilitated

by wide field of view eyes. This evolutionary difference

in nature poses the question (although not directly related

from the behavioral point of view) of what is the best

camera configuration (from a specific set of orientations,

as illustrated in Figure 1) for forward velocity estimation.

We denote this as the predator/prey camera configuration

hypothesis.

The contributions of this paper are two fold: i) we augment

a current filtering technique developed for a single camera to

multiple cameras, with additional constraint equations result-

ing from overlapping fields of view. ii) We elaborate on the

Predator/Prey camera configuration hypothesis concluding

that side facing cameras improve forward velocity estima-

tion. Section II revises the single camera filter presented in

[12], Section III presents the extension to multiple cameras,

Section IV formulates the estimation problem from a filtering

perspective, and Section V presents the simulations results.

II. SINGLE CAMERA MODEL

For the remainder of this paper the following assumptions

hold:

A1 A point tracker is available that returns a vector of

projections of points in time.

A2 Points remain in the camera’s field of view throughout

the entire length of the experiment.

A3 Points are assumed to be static in the environment.

These assumptions limit the direct applicability of the pre-

sented algorithmic extension, but allow for the answering

of the predator/prey hypothesis in a straightforward manner.

Assumption A1 avoids the computational cost incurred by

feature trackers. By choosing the simplest possible feature, a

point, we implicitly consider that problem. For our forthcom-

ing experimental implementation we are currently utilizing

the Kanade-Lucas-Tomasi point tracker [15], capable of run-

ning in real-time in modern hardware. Assumption A2 can be

relaxed by running two parallel filters as mentioned in [12]:

the first filter’s state contains the robot’s pose, velocities and

depths of tracked points (has we describe in Section III). The

purpose of the second filter, whose state consists solely in

the depths of points and uses the robot’s pose and velocities

as parameters, is to allow for new points to have its depth

estimated before they are added to the first filter. This avoids

transients in the estimation of the robot’s state. Points that

never go below a pre-defined threshold of the back projection

error1 are not added to the first filter, removing this way

undesirable outliers. Points that are lost are simply removed

from the filter’s states. Finally, assumption A3 can be dealt

by moving object detection [16]. Under these assumptions,

we consider the agent to be a rigid body endowed with

a video camera observing collections of points while in

1The difference from the observed output to the estimated output.

motion. The camera is modeled by the traditional pinhole

projection with added radial lens distortion. The model for

the measured observations of the points is the composition of

three classes of maps: rigid body transformations, projection,

and “distortion” maps. We keep emphasis on the first two,

by assuming that the lens distortion is known, i.e. the camera

is calibrated a priori. Let p be a three-dimensional point

described in generic coordinates. Let φ : SE(3)× R
3 → R

3

be a rigid body transformation

φ(R, q, p) = Rp+ q,

with R and q the traditional rotation matrix and translation

vector, respectively. The camera pinhole projection model is

realized by a projection map π : R
3 → R

2,

π(p) =
1

z

[
x
y

]

,

where x, y, z are the coordinates of the vector p. The

composition of the maps is described graphically by the

informal commutative diagram

pw
world

φ
←→ pc

camera

π
−→ pp

plane

ψl←→ pl
lens

ψs
←→ ps

sensor

,

were ψs ◦ ψl = ψ describe lens distortions, always present

in real camera setups. The full sensor model is described by:

ps = ψ ◦ π ◦ φ(R, q, pw) (1)

For the ease of notation, for the remainder of the paper we

use the simpler “undistorted” camera model2, where pp are

points in the image projection plane:

pp(t) = π ◦ φ(R(t), q(t), pw). (2)

Here we consider that the camera’s motion in time is

described by the group parameters (R(t), q(t)) ∈ SE(3).
Without loss of generality, assume that at the initial time

instance t = 0 the camera frame aligns with the world frame,

i.e. R(0) = I , q = [0 0 0]T implying that φ is the identity

map. Let γx, γy be the homogeneous form for 2D points,

and ξ be a measure of depth. Points in the camera frame are

represented at the initial state t = 0 by:

pc(0) = φ(pw(0)) = zw(0)









xw(0)

zw(0)
yw(0)

zw(0)
1









= ξ





γx

γy

1



 (3)

In the image plane these reduce to:

pp(0) = π(pc(0)) =

[
γx

γy

]

(4)

III. MULTI-CAMERA MODEL

We expand on the previous section by considering two

cameras with partially overlapping fields of view. We start

2Note that for the real implementation it is useful to include all the maps
in the observation’s model since noise distributions get “deformed” by each
map. If the noise model is known for the camera’s CCD sensor and very
wide lens are used, then very different filtered results can be obtained using
models (1) or (2).
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Fig. 2. Dual camera configuration observing collections of points in the
environment. The frames eb, ec1, and ec2 are attached to the body, camera
1 and camera 2 respectively.

by introducing sets of points observed by each camera

separately or by both cameras simultaneously. Let:

P1 be the set of points visible only by camera 1,

P2 be the set of points visible only by camera 2,

P12 be the set of points visible by both cameras in camera

1 coordinates, and

P21 be the set of points visible by both cameras in camera

2 coordinates.

Two new assumptions are added for the multi-camera case:

A4 The correspondence problem is assumed solved for the

points in P12 (and P21).

A5 The relative position of the cameras to the robot’s

body is known and remains fixed throughout the

entire motion.

Assumption A4 sidesteps a potentially computational costly

procedure that for a real experimental implementation favors

the prey camera configuration: since the field of views

are non-overlapping no point correspondence is required.

Assumption A5 can be relaxed by including the rigid body

transformations for each camera as time-varying parameters

in the output equations.

The multi-camera model is similar to the one in Section

II, differing by an additional body-to-camera transformation.

Let

φb(p) = φ(R(t), q(t), p), (5a)

φc1(p) = φ(Rc1, qc1, p), (5b)

φc2(p) = φ(Rc2, qc2, p). (5c)

Function (5a) maps points from world to body reference and

functions (5b),(5c) map body to cameras 1 and 2 references

respectively. For both cameras, the maps φc1, φc2 are as-

sumed to be fixed throughout time. Using the previously

defined depth and homogeneous representation, equation (5a)

is written as:

φb(p) = φ(R(t), q(t), ξ[γx γy 1]T )

= φh(R(t), q(t), ξ, γx, γy)

The sensor model for two cameras is described by:

pp1 = π ◦ φc1 ◦ φb(pw)

pp2 = π ◦ φc2 ◦ φb(pw)

The following informal commutative diagram illustrates the

composition of the maps:

pw

world

pb

body

pc1

camera 1

pc2

camera 2

pp1

plane 1

pp2

plane 2

...............................................................
..........

..
φb .........

.........
.........
.........
.........
..........
.................
............φc1

........................................................................ .......
.....

φc2

...............................................................
..........

..π

...............................................................
..........

..π

We utilize again the initial time assumption described in

the previous section by considering that the group variables

R and q are at the origin for t = 0. However, due to the

extra body-to-camera transformation, equations (3) and (4)

take a different form. Denote by

y1 = pp1 = π ◦ φc1 ◦ φb(pw1), pw1 ∈ P1

the projection of a point observed solely by camera 1.

Likewise, denote by y2 the projection of a point observed

solely by camera 2, y12 observed by both cameras in camera

1 coordinates, and y21 observed by both cameras in camera

2 coordinates. The equation of y12 at initial time is described

by:

y12(0) = π ◦ φc1 ◦ φh
(
R−1
c1 R(0), q(0)−R−1

c1 qc1,

ξ12, γ
x
12, γ

y
12) (6)

The “shifting” terms R−1
c1 and −R−1

c1 qc1 are added such that

y12(0) = π ◦ φc1



ξ12R
−1
c1





γx12
γy12
1



−R−1
c1 qc1





= π



ξ12





γx12
γy12
1







 =

[
γx12
γy12

]

For the equation of y21 one uses the same point representa-

tion as in (6), resulting in a nonlinear expression in terms of

the point parameters ξ12, γ
x
12, γ

y
12:

y21(0) = π ◦ φc2 ◦ φ
−1
c1 ◦ φc1 ◦ φh

(
R−1
c1 R(0),

q(0)−R−1
c1 qc1, ξ12, γ

x
12, γ

y
12

)

= ζ(ξ12, γ
x
12, γ

y
12)

The extra inverse map φ−1
c1 in the equation above arrises

from the fact that points are represented first in camera 1

coordinates, and then are translated back to camera 2 coor-

dinates by the map φc2 ◦φ
−1
c1 . Following the same reasoning,
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projection points uniquely observed by either camera 1 or 2

at t = 0 are represented by:

y1(0) = π ◦ φc1 ◦ φh
(
R−1
c1 R(0),

q(0)−R−1
c1 qc1, ξ1, γ

x
1 , γ

y
1

)
=

[
γx1
γy1

]

y2(0) = π ◦ φc2 ◦ φh
(
R−1
c2 R(0),

q(0)−R−1
c2 qc2, ξ2, γ

x
2 , γ

y
2

)
=

[
γx2
γy2

]

Let φ1, φ2 be defined by:

φ1(R, q, ξ, γ
x, γy) = φh

(
R−1
c1 R, q −R

−1
c1 qc1, ξ, γ

x, γy
)

φ2(R, q, ξ, γ
x, γy) = φh

(
R−1
c2 R, q −R

−1
c2 qc2, ξ, γ

x, γy
)

The equations of projected points for an arbitrary time t are:

y1(t) = π ◦ φc1 ◦ φ1(R(t), q(t), ξ1, γ
x
1 , γ

y
1 )

y2(t) = π ◦ φc2 ◦ φ2(R(t), q(t), ξ2, γ
x
2 , γ

y
2 )

y12(t) = π ◦ φc1 ◦ φ1(R(t), q(t), ξ12, γ
x
12, γ

y
12)

y21(t) = π ◦ φc2 ◦ φ1(R(t), q(t), ξ12, γ
x
12, γ

y
12)

which simplify to:

y1(t) = π ◦ φh(R(t), q(t), ξ1, γ
x
1 , γ

y
1 ) (7a)

y2(t) = π ◦ φh(R(t), q(t), ξ2, γ
x
2 , γ

y
2 ) (7b)

y12(t) = π ◦ φh(R(t), q(t), ξ12, γ
x
12, γ

y
12) (7c)

y21(t) = π ◦ φc2 ◦ φ1(R(t), q(t), ξ12, γ
x
12, γ

y
12) (7d)

Although not formally demonstrated here, the state is ob-

servable when motion is present (up to some pathological

cases [17]) due to the known relative position between both

cameras, represented by Rc1, qc1, Rc2, qc2. These known

quantities, together with the assumption of the world frame

matching the body frame for the initial condition, eliminate

the requirement of fixing some of the state variables as in

Chiuso’s [12] implementation.

IV. FILTER DESIGN

The estimation of the robot velocity can be transformed

into a filtering problem by utilizing the previously described

multi-camera model. For this implementation we choose the

unscented Kalman filter [18] since it avoids the computation

of the Jacobians of the process and observation models as

in the extended Kalman filter case. This is useful for the

upcoming experimental implementation where the dimension

of the state in the filter changes dynamically as new points

are tracked or others leave the camera’s field of views. We

start by vectorizing the rotation matrix R into Ω by utilizing

the standard inverse Rodrigue’s formula:

Ω = Rod−1(R)

Since there is no a priori knowledge of the absolute location

of the observed points in the world, these are added to the

state being estimated. Let n = |P1|, m = |P2| and l = |P12|.

For each point ξi,j , γ
x
i,j , γ

y
i,j indexed by j, with i ∈ {1, 2, 12}

belonging to the sets P1,P2,P12 let:

Ξ1 = [ξ1,1 . . . ξ1,n] (8a)

Γx1 = [γx1,1 . . . γx1,n] (8b)

...

Γy12 = [γy12,1 . . . γy12,l] (8c)

The full state x of dimension 12+3(n+m+ l) is described

by:

x =
[
qT ΩT vT ωT Ξ1 Γx1 Γy1 Ξ2 Γx2 Γy2 Ξ12 Γx12 Γy12

]T
,

where v represents linear velocity and ω angular velocity,

with its associated dynamical model

x(k + 1) = f(x(k)) + σx(k), (9)

and process noise assumed zero mean Gaussian with covari-

ant matrix Q:

σx(k) ∼ N (0, Q).

Equation (9) is described in detail by:

q(k + 1) = eTsω̃(k)q(k) + Tsv(k) + σq(k) (10a)

Ω(k + 1) = Rod−1(eTsω̃(k)eΩ̃(k)) + σΩ(k) (10b)

v(k + 1) = v(k) + σv(k) (10c)

ω(k + 1) = ω(k) + σω(k) (10d)

Ξ1(k + 1) = Ξ1(k) + σΞ,1(k) (10e)

Γx1(k + 1) = Γx1(k) + σΓ,1(k) (10f)

...

Γy12(k + 1) = Γy12(k) + σΓ,·(k) (10g)

where “∼” is the standard skew operator (ãb = a× b). The

parameter Ts is the sampling time and equations (10a)-(10d)

are obtained by integrating constant accelerations over a time

step Ts.
This model can be reduced by assuming a perfect measure

of the 2D point coordinates Γx1 , . . . ,Γ
y
12 in the image plane

at the initial instance. These do not change throughout the

motion since they are defined in the fixed world frame

that matches the camera frame for the initial instance. The

reduced state of dimension 12 + n+m+ l is then:

x =
[
qT ΩT vT ωT Ξ1 Ξ2 Ξ12

]T
, (11)

The observations vector of dimension 2(n + m) + 4l is

represented by:

y =
[
yT1 yT2 yT12 yT21

]T
,

with the associated observation equations

y(k) = h(x(k)) + σy(k), (12)

where the observation noise σy(k) is assumed zero mean

Gaussian with covariant matrix R:

σy(k) ∼ N (0, R).
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The observation model (12) is described by:

y1(k) = π̄ ◦ φ̄h (Rod(Ω(k)), q(k),Ξ1(k),Γ
x
1(k),Γy1(k))

y2(k) = π̄ ◦ φ̄h (Rod(Ω(k)), q(k),Ξ2(k),Γ
x
2(k),Γy2(k))

y12(k) = π̄ ◦ φ̄h (Rod(Ω(k)), q(k),Ξ12(k),Γ
x
12(k),Γ

y
12(k))

y21(k) = π̄ ◦ φ̄c2 ◦ φ̄1 (Rod(Ω(k)), q(k),

Ξ12(k),Γ
x
12(k),Γ

y
12(k)) , (13)

where the maps π̄, φ̄h, φ̄c2, and φ̄1 are the multidimensional

versions of their counterparts in equations (7a) to (7d). For

the simulations presented in this paper the process noise

covariance matrix is initialized as a diagonal matrix

Q = diag (σq, σΩ, σv, σω, σΞ) , (14)

where

σq = σΩ = σv = σω = 10−3I3×3

σΞ = 10−2I(n+m+l)×(n+m+l)

The observations noise covariance matrix is assumed to be

R = 10−4I(2(n+m)+4l)×(2(n+m)+4l) (15)

The dynamical model (9) with the reduced state (11),

together with the observation model (12),(13), (using the

simplified notations xk = x(k) and yk = y(k)), and the

corresponding covariant matrices Q and R, are utilized in

the standard UKF algorithm revisited next:

1. Initialization

x̂0 = E[x0]; P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

2. Calculate 2N + 1 sigma points and weights (with N =
12 + n+m+ l)

Xk−1 =
[

x̂k−1 x̂k−1 + η
√

Pk−1 x̂k−1 − η
√

Pk−1

]

w = [λ/η 1/(2η) · · · 1/(2η)
︸ ︷︷ ︸

×2N

]T

3. Prediction step

Xk|k−1 = f(Xk−1)

x̂−
k = Xk|k−1w

P−
k = Q+

2N∑

i=0

wi
((
Xk|k−1

)

i
− x̂−

k

)((
Xk|k−1

)

i
− x̂−

k

)T

Yk|k−1 = h(Xk|k−1)

ŷk = Yk|k−1w

4. Filtering step

Pyy,k = R+
2N∑

i=0

wi
((
Yk|k−1

)

i
− ŷk

)((
Yk|k−1

)

i
− ŷk

)T

Pxy,k =
2N∑

i=0

wi
((
Xk|k−1

)

i
− x̂−

k

)((
Yk|k−1

)

i
− ŷk

)T

Kk = Pxy,kP
−1
yy,k

x̂k = x̂−
k +Kk(yk − ŷk)

Pk = P−
k −KkPyy,kK

T
k
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Fig. 3. Mean absolute linear velocity error plots for predator/prey camera
configuration. Zero degrees corresponds to forward pointing eyes as in
mammal predators, and 90 degrees corresponds to side pointing eyes as
in typical grazing mammals.

The parameter η = N + λ, with λ = N(α2 − 1); 10−1 ≤
α ≤ 1. The notation (·)i represents the i-th column of the

enclosed matrix or the i-th element of a vector.

V. SIMULATIONS

A simulation environment was designed following as-

sumptions A1-A5. A set of z points is generated according to

a uniform distribution in a 3-dimensional box enclosing the

agent’s desired motion domain. Next, a reference trajectory is

produced and a simple controller is designed to follow such

trajectory. The solution of the differential equations for the

rigid body motion is computed in continuous time and stored.

All z points are then projected into the simulated camera

plane, and the sets P1, P2 and P12 are filled with points

that verify each appropriate field of view constraints for all

time instances. A fixed number of points is then chosen from

each set. Figure 3 compiles the results for the mean error in

the velocity estimation for various camera orientation angles,

averaged over 50 simulations per angle. The mean absolute

linear velocity error measure is computed as:

error = meani,k|v̂i(k)− vi(k)|

where v̂i(k) is the estimated linear velocity for simulation i
indexed by time k and vi(k) is the stored velocity solution.

The results suggest that for forward motion, the prey camera

configuration fares better. Figures 4 and 5 illustrate sample

world motion plots of simulations for predator and prey

configurations respectively.

VI. CONCLUSIONS AND FUTURE WORK

Simulation results suggest that the prey configuration is

beneficial for linear velocity estimation when the robot is

moving forward. Moreover, in the prey configuration no point

correspondence is required as in the predator case, since the
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5

4
3

2

1

Fig. 4. Predator camera configuration. The trajectory of the rigid body is
illustrated by the small black dots (1) that are surrounded by the field of view
of each camera, represented by the pyramidal shapes (2). The large black
dots (3) represent the real location of the feature points in the environment,
the large white dots (5) represent the initial condition estimate of the world
points based on unknown depths and the remaining small black points
represent the various estimates of depth over time. A point ray is illustrated
by the dashed line (4). Only a small number of positions of the camera field
of view are plotted for illustration purposes.

1
2

3

5

4

Fig. 5. Prey camera configuration. Properties are the same as in Figure 4.

cameras field of view do not overlap. For the angular velocity

estimation no clear optimal camera configuration was found.

The simulation results additionally suggest that different

types of motion benefit from different camera configurations,

so it is useful to dynamically actuate the camera mounts.

The presented unscented Kalman filter for state estimation

using two cameras offers a few advantages over a single

camera setup. For non-overlapping fields of view, as in the

prey configuration, there exists no depth ambiguity as long

as the cameras are not mounted in such a way that the

focal points coincide. For overlapping fields of view, points

observed by two cameras have depth convergence without

motion. The filtering technique utilized is invariant to the

geometry of the environment, assuming a rich could of

features. If the point tracking algorithms can be efficiently

implemented, then the additional Kalman filter does not

dramatically increase the computation complexity.

Parallels to this formulation can be found in nature,

in particular in insect vision, where compound eyes track

feature contrasts in a similar way to tracking points. We

are currently working on the experimental validation on a

legged robotic platform fitted with two synchronized cameras

mounted on servo motors for dynamic actuation.
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