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Abstract— In many mobile robotic manipulation tasks it is
desirable to interact with the robots surroundings without
actually grasping the object being manipulated. Non-prehensile
manipulation allows a robot to interact in situations which
would otherwise be impossible due to size or weight. This
paper presents the derivation of a mathematical model of an
object pushed by a single point and sliding in the presence
of friction where the dynamic effects of mass and inertia are
significant. This model is validated using numerical simulation.
The derived dynamic model is also compared with a kinematic
approximation from literature, showing that under certain con-
ditions, the motion of a pushed object is similar to the motion
of a non-holonomic vehicle. Finally, the results of experimental
investigations are discussed and promising directions for further
work are proposed.

I. INTRODUCTION

The ability to manipulate the human environment is an

essential competency for “social” robots in the home that can

ubiquitously help in everyday living. While the fundamental

issues associated with mobile robotics such as localization

and mapping have received significant attention in the past

decade [1] and are now well understood, manipulation in

unstructured environments is still seen as a significantly

challenging task. This paper considers one of the simplest

tasks one could imagine, “to push a piece of furniture with

a mobile robot”. Despite the apparent simplicity, there are

many challenges that need to be overcome to accomplish

this task.

The ability to manipulate its surroundings enables a robot

to achieve some meaningful work in a human environment,

however, different manipulation tasks will require different

strategies. Many tasks which require fine manipulation and/or

transfer between different support surfaces will require the

object to be grasped and then repositioned using a pick and

place operation. However, there are a number of benefits that

make non-prehensile manipulation preferable to grasping in

certain situations. Since the robot does not need to grasp the

object, the system can make use of simpler manipulators or

can continue to operate in a limited fashion if a gripper fails.

It also allows a robot to manipulate objects which are too

heavy, large or awkward to grasp and lift such as furniture.

Another benefit provided by non prehensile manipulation is
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the ability to control objects with more degrees of freedom

than are available to the robot. As an example, a 2DOF robot

(point translating in plane) is able to control the position and

orientation of an object sliding on the plane in the presence

of friction.

In the proposed scenario the aim is not to grasp the object,

hence, manipulation needs to be achieved by controlling the

magnitude and direction of the force between the robot and

the object. The primary difficulty faced when utilizing non-

prehensile manipulation is that the motion of the object is

usually a complex function of both the environment and

manipulator actions. Coupled with the irreversibility of the

pushing action, as we cannot simply reverse the motion and

pull the object in the opposite direction, it is necessary to

apply some form of trajectory planning to the activity to

ensure that it is possible to reach the desired goal. As a result,

it is essential that the motion planning algorithm take into

account the constraints of the non-prehensile “grasp” when

developing the robot trajectories [2]. In particular computing

the object rotation requires the planner to deal with the

dynamic motion of the object unless one is simply interested

in the direction of rotation [3].

It is clear that non-prehensile manipulation requires solv-

ing a number of research challenges. This paper focusses

on one of them; developing a dynamic model for an object

being pushed with a single point contact.

II. RELATED WORK

There has been significant activity on non-prehensile ma-

nipulation, particularly in relation to part feeding in the

manufacturing domain. Mason [3] was the first to propose

a simple rule for determining the direction of rotation of an

object when pushed by a flat fence. This requires knowledge

of the object geometry, the pushing location and the center of

friction of the support surface. Akella, Mason and Lynch [4],

[5] went on to develop open loop pushing plans to reduce

the orientation and position uncertainty of a sliding part, in

order to guarantee that a part may be fed into the system in

any orientation and will exit in a known configuration. This

is particularly suited to the task of parts feeding in industrial

applications [6], [7]. The strength of this methodology is that

suitable margins of error may be included so that the effect

of support uncertainty is not significant in the determination

of the object motion. This allows open loop plans which are

guaranteed to produce a successful result to be generated.

These systems, however, have to be designed for a specific

task and rely on a fixed object geometry which must be

polygonal. If a different part needs to be manipulated then
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an entirely new sequence of pushes needs to be developed.

Another feature of these open loop pushing plans is that they

are usually far from optimal.

To overcome the problem of predicting the part orienta-

tion, most early applications in the manufacturing domain

focused on using a flat fence to manipulate polygonal parts.

This allows certain ‘stable pushes’ [8] where the frictional

mechanics of the system will cause a face of the object to

align with the pushing fence thereby controlling its orien-

tation. It is possible to string together a number of stable

pushes to perform open loop control. An analysis of the part

geometry allows the reachable regions to be determined [9].

This method is limited by the need to have flat surfaces which

are suitable for pushing and does not make use of the relative

rotation between the robot and object for object positioning.

Later work extended the flat fence idea to using a number

of point contacts which create a virtual fence between the

contact points and allows objects with curved or irregular

surfaces to be manipulated.

Another technique which enables the system to compen-

sate for angular rotation uncertainty is the manipulation of

obstacles by coordinated teams of robots [10]. This also

creates a “virtual fence” between the contacts and kine-

matically constrains the motion of the sliding object. Once

again a series of stable pushing commands can be generated

to manipulate an object to a desired goal configuration.

The significant challenges in this field are related to the

task of coordinating and communicating between the robots

involved, deciding how decentralized control strategies can

be derived and the extent of the information that needs to

be communicated between the robots to accomplish desired

behavior.

When the inertial effects are negligible and hence the mo-

tion of the object is dominated by the support friction, Kurisu

and Yoshikawa [11] hypothesized that an object pushed at a

single point will eventually reach a limiting angular velocity

which is a function of the pushing angle, making the object

behave in a manner similar to a non-holonomic vehicle. A

validation that the kinematic model approximates well to

the real behavior was not presented, however, in [12], the

utility of this approximation was demonstrated through an

experimental evaluation of a trajectory following technique

for single point pushing. This is a surprising result, given

that the notion of constant angular velocity under pushing is

somewhat counter-intuitive. Furthermore Mason [3] observed

that without a dynamic analysis, only the direction of rotation

can be computed.

Recently Igarshi et.al. [13] presented a simple method for

pushing an object to a desired goal location. Knowing the

global position of both the object and goal they generate a

set of paths, based on a simple dipole model, for the robot to

follow. The nature of these paths is such that the robot will

tend to push the object towards the goal location regardless

of the relative size robot and object. While this methodology

does not require knowledge of the size, mass or friction

properties of the pushed object, it is only applicable to

slow motions where the quasistatic assumption is valid. The

authors indicate that while this algorithm has the potential

to be improved to be applicable in situations where rapid

manipulation is required as well as situations where the

object is pushed by a non-holonimic robot further work is

required to achieve this.

In the following sections a complete dynamic model of an

object being pushed using a single point contact is derived. It

is demonstrated that under some conditions the assumptions

of Kurisu and Yoshikawa can be justified, potentially paving

the way to developing simple trajectory planning techniques

and control algorithms for single point pushing. The results

of numerical simulations and experimental evaluation are

presented and possible directions for the application of this

model and other further extensions are discussed.

III. ANALYSIS

A. Dynamic Model

To model the behavior of the moving system shown in

Figure 1 as accurately as possible the dynamics of the system

must be considered. A list of notations used in the derivation

is given in Table I. As in [11], it is assumed that the support

distribution can be approximated to a finite set of known

support points and that the magnitude of the friction force,

the support geometry, mass and inertia are known and fixed.

It is assumed throughout the analysis that all support points

are in motion at all times and that the friction conforms to

Coulomb friction. If there are more than three support points

the problem becomes statically indeterminate and hence it

is impossible to calculate the normal reaction forces and

associated friction forces. In these situations the pressure

distribution is assumed to approximate a constant distribution

allowing the friction forces to be calculated. It is further

assumed that the object is being pushed by a robot with suf-

ficient power to impart the required force while maintaining

constant velocity along a piecewise constant velocity profile.

Given the motion controllers present in commonly available

mobile robot systems, this is a reasonable assumption. The

pushing force will be determined by the motion of the body

and the friction forces imparted by the object environment

interface. The final assumption is that the contact is a single

point and that the contact friction is sufficient such that

the contact point does not slide along the perimeter of the

body. We acknowledge that some of the assumptions are

unreasonable in a practical situation. However, the focus of

this paper is on the understanding of the behavior of an

object being pushed. Our long term intention is to develop

control strategies that are robust to the violation of these

assumptions.

An inertial reference frame is defined relative to the

ground plane and an object coordinate frame is fixed at the

center of mass and rotates with the object. The motion of the

object coordinate frame and hence the motion of the object

center of mass relative to the global frame is given by

pu
o = pu

c − Ru
opo

c (1)

where Ru
o is the rotation matrix given by
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Fig. 1. A sliding object subject to an input velocity at a single point vc

Ru
o =

[

cos θ − sin θ
sin θ cos θ

]

(2)

Differentiating (1) we get

ṗu
o = ṗu

c − θ̇Ru
oDpo

c (3)

with

D =

[

0 −1
1 0

]

(4)

If no contact slip occurs between the pusher and the object

ṗu
c = Ru

o ṗo
c = v̄cR

u
ono

φ (5)

where no
φ is the direction vector of the pushing force given

by

no
φ =

[

cos φ
sin φ

]

(6)

Combining (3) and (5) we obtain the velocity of the center

of mass

ṗu
o = v̄cR

u
ono

φ − θ̇Ru
oDpo

c (7)

Differentiating (7) we obtain the acceleration of the center

of mass

p̈u
o = v̄cθ̇R

u
oDno

φ − θ̈Ru
oDpo

c − θ̇2Ru
oD2po

c (8)

While the angular velocity cannot be computed directly, it

is possible to calculate the angular acceleration and integrate

over time to obtain the angular velocity. Considering the

friction forces, inertial forces, and the inertial moment, taking

a moment balance about the contact point and rearranging

we obtain

0 =

n
∑

i=1

(Ru
o (po

i − po
c) × fu

i ) + mRu
opo

c × p̈u
o − θ̈Ic (9)

TABLE I

NOTATIONS USED IN DYNAMIC AND KINEMATIC MODELS

pu
c position of the contact point in the global frame

pu
o origin of the object coordinate frame in the global frame

θ rotation angle of the object coordinate frame in the global frame

po
c position of the contact point in the object frame

po
i

position of the ith support point in the object frame

f̄i magnitude of the friction force at the ith support point

v̄c magnitude of the pushing velocity

φ direction of the pushing velocity in the object frame

no
φ

direction vector of the pushing velocity

m mass of the sliding object

Ic moment of inertia about the pushing contact point

fu
i

friction force vector at ith support point in the global frame

vu
i

velocity vector at ith support point in the global frame

µi co-efficient of friction at ith support point

Ni normal reaction force at ith support point

ω angular velocity of the sliding object

fu
c pushing force vector in the global frame

n number of support points

where Ic is the moment of inertia about the contact point

and fU
i is the friction force at the ith support point given by

fu
i =

−vu
i

‖vu
i ‖

µiNi (10)

where vu
i is the velocity of the ith support point in the

global frame given by

vu
i = v̄cR

u
ono

φ + ωRu
oD(po

i − po
c) (11)

and

ω = θ̇ (12)

Combining (8 - 12) provides a complex function for θ̈
which we will denote simply as

θ̈ = ω̇ = F (φ, ω, θ) (13)

If we denote pu
o = [x y]T , po

c = [xo
c yo

c ]T , then the dynamic

equations of the system can be written as















ẋ = v̄c cos(θ + φ) + ω(xo
c sin θ + yo

c cos θ)
ẏ = v̄c sin(θ + φ) − ω(xo

c cos θ − yo
c sin θ)

θ̇ = ω
ω̇ = F (φ, ω, θ)

(14)

To ensure that trajectories generated do not violate the

capabilities of the pushing robot, the pushing force vector

can be calculated from

fu
c = mp̈u

o −
n

∑

i=1

fu
i (15)

Combining (8) and (15) yields

fu
c = m(v̄cθ̇R

u
oDno

φ−θ̈Ru
oDpo

c−θ̇2Ru
oD2po

c)−

n
∑

i=1

fu
i (16)
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This equation can be used to compute pushing force and

determine if the capabilities of the robot or the pushing angle

limits have been exceeded allowing contact slip to occur,

making it possible to test whether the relevant assumptions

hold.

B. Kinematic Model

In this section we re-present the kinematic equations

obtained by Kurisu and Yoshikawa [11] for comparison.

The key assumptions used in their analysis are that the net

moment about the contact point is zero and effect of inertial

forces due to the mass and the moment of inertia of object

are negligible in comparison to support friction forces.

Writing an equation for moment balance about C, re-

arranging and simplifying yields

0 = Mo
fc

=
∑n

i=1

Bi + ψAi
√

1 + 2ψBi + ψ2Ai

f̄i

with

Ai = (po
i − po

c)
T (po

i − po
c)

Bi = {D(po
i − po

c)}
T no

φ

(17)

Since Ai and f̄i are known and Bi is a function of φ, we

can see from above equation that ψ is a function of φ. If we

denote this function as ψ(φ), then we have

θ̇ = v̄cψ(φ) (18)

If we again denote pu
o = [x y]T , po

c = [xo
c yo

c ]T , then from

(7) and (18) we can get the equations of motion







ẋ = v̄c cos(θ + φ) + v̄cψ(φ)(xo
c sin θ + yo

c cos θ)
ẏ = v̄c sin(θ + φ) − v̄cψ(φ)(xo

c cos θ − yo
c sin θ)

θ̇ = v̄cψ(φ)
(19)

It is clear that the above equation is strikingly similar to

the full dynamic equation given by (14). The real difference

is that the dynamic equations demonstrate that the object

angular velocity will evolve as a function of time as expected,

while the kinematic equations state that angular velocity

is only a function of the pushing angle. The question we

aim to answer in the following section is whether the latter,

exploited by Kusisu and Yoshikawa in their motion planning

and control algorithms, is reasonable and if so under what

conditions.

IV. NUMERICAL SIMULATION

Matlab was used to implement and solve the equations of

motion derived in the previous section. The simulated object

is a flat square plate, 250mm along the side with a support

in each corner. The object is pushed at one of the object

corners at a constant velocity. With the mass selected to be

1kg, assuming a uniform mass distribution, the moment of

inertia about the pushing point is 0.1667kg/m2. The ground

reaction force is assumed to be equally distributed between

the support points and a co-efficient of friction of 0.5 is

assumed. Several input velocities with a constant magnitude

varying from 0.2m/s to 1.0m/s are used. The object motion

is simulated for piecewise constant input shown in Fig.

2. Note that the input of π/4 radians directs the pushing

vector through the center of friction and hence produces pure

translation.
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Fig. 2. Pushing velocity input angle φ

Simulation results shown in Figure 3 demonstrate that the

angular velocity of the body indeed reaches a limiting value,

although the steady state angular velocity is lower than that

predicted by the kinematic approximation. The effect can be

understood by considering the interaction of forces which

cause the system to reach a steady state. If we make the as-

sumptions listed earlier, the direction of a particular support

friction force will be opposite to the instantaneous velocity of

the support point while the magnitude will remain constant.

As the instantaneous velocity of a support point is composed

of the constant linear pushing velocity and the cross product

between the angular velocity and the position vector for

the support point, the support friction vector is actually a

function of the angular velocity. If the angular velocity is

momentarily lower than the steady state angular velocity then

the direction of the friction reaction forces will change such

that the resulting moment about the pushing point will act

to increase the angular velocity. Conversely, if the angular

velocity is momentarily higher the shift in the friction forces

will act to reduce the angular velocity towards the steady

state value. Hence, it can be seen that the system will reach

a stable equilibrium motion if the input is kept constant and

the locations of the support points do not change. In the

kinematic approximation, only the support friction forces

are considered in the moment balance equation. However,

for the dynamic case an additional component, the so called

centripetal force due to the accelerating center of mass, is

present in the moment balance. The nature of the centripetal

force is such that its presence will always act to reduce the

steady state angular velocity of the system. The centripetal

force increases as the pushing velocity increases resulting in

an greater deviation from the kinematic approximation as the

pushing velocity increases.

Another effect which can be observed is a period of

transient response as the angular velocity reaches the steady

state value. This effect can be readily explained by the

presence of inertia in the dynamic model which precludes

instantaneous changes in the angular velocity. Instead, the

moment imbalance about the pushing point creates a torque

which acts to accelerate the object towards the steady state

angular velocity. The steady state velocity increases as the

pushing velocity increases and hence the period of transient
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response increases in duration. Once the transient period has

expired and the system has reached a steady state it may

still be possible to use a non-holonomic vehicle model to

approximate the motion of the object if a suitable scaling

factor is selected.
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Fig. 3. Angular velocity response for the Kinematic approximation and a
range of input velocities for the Dynamic model

For slow pushing speeds such as the one shown in Figure 4

the trajectories predicted by both the kinematic and dynamic

models correspond quite closely. This confirms that the

kinematic approximation can successfully be applied when

the quasistatic assumption is valid. As the pushing velocity

increases the kinematic and dynamic responses begin to

diverge. Exactly when the kinematic approximation will

cease to be suitable will depend on the application and on

the controllers ability to correct for errors. Figure 5 shows

the response of the sliding object when pushed at 1m/s
which approximates a comfortable walking pace. Clearly at

this speed the dynamic effects are significant for the system

under simulation.
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Similar behavior is seen when the co-efficient of friction is
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Fig. 5. X and Y displacements of the center of mass for Dynamic and
Kinematic models with v̄c = 1.0

reduced to simulate the object sliding on a slippery surface

such as a smooth concrete floor. By reducing the friction

co-efficient the friction reaction forces are in turn reduced,

increasing the influence of the inertial effects of the object

mass. From these results it is clear that both pushing velocity

and the object ground interface must be considered when

determining the validity of the kinematic approximation.

It is also observed that increasing the mass of the object

does not change the behavior of the system allowing control

strategies to be developed which are robust to changes in

object mass.

V. EXPERIMENTAL EVALUATION

To further investigate the dynamic model presented in this

paper an instrumented test rig was developed. The test rig,

shown in Figure 6, takes the form of a square plate with four

lacquered wooden feet as support points. It has a variety of

force torque sensors which allow the pushing force as well

as the friction and normal forces at each support point to

be measured. An overhead camera is used to track test rig

motion and provides position and orientation information.

Preliminary experiments have been conducted to date and the

results are promising. The development of a online feedback

system to fully validate the model is planned for the near

future.

The first set of experiments was performed pushing the test

rig by hand. This was done so that the input could be kept at

a roughly constant angle without requiring a feedback control

system. The limitation of pushing by hand is that the input

was neither constant velocity or repeatable. However, some

insight can still be gained by computing the ratio between the

linear and angular velocities to normalize the results, shown

in Figure 7. The points to note are that the rise time for the

higher input velocity is longer than the smaller input as is

expected. Also note that the average velocity ratio is lower

for the rapid motion as predicted by the dynamic model.
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Fig. 6. Instrumented Test Apparatus

Fig. 7. Relative velocity for slow and rapid pushing motions

VI. DISCUSSION AND FUTURE WORK

This paper presents a dynamic model for an object sliding

in the presence of friction which is validated by numerical

simulation and evaluated experimentally. It is demonstrated

that under quasistatic conditions it is indeed possible to use a

simple kinematic approximation similar to a non-holonomic

vehicle model to describe the motion of an object pushed by

a single point contact. It is also demonstrated however, that

the kinematic approximation is not sufficient under situations

where the dynamics of the system have a significant effect

on the system response. In these situations it was found that

the angular velocity will reach a steady state lower than is

predicted by the kinematic model. The general character of

the system response, when the pushing angle is constant

relative to the object, appears to follow the behavior of

a first order system. This may explain why people find it

relatively easy to manipulate objects by pushing even when

the object ground conditions such as friction and the load

distributions rapidly change. This hypothesis needs to be

further investigated.

A model of the dynamic behavior of a rapidly pushed

object can be used in a number of future research directions.

One potential application is to enhance existing path planning

algorithms to allow feasible trajectories for both the robot

and object to be developed for rapid manipulations. It may

also be incorporated into more efficient control strategies

such as model predictive control. Another related area which

may be interesting for future investigation is the task of

performing online friction estimation to predict the magni-

tude and location of a resultant friction force in real time,

which could be passed through to an improved feedback

controller. The next step we are planning to take is to

undertake further investigation of the dynamic behavior of

the system. It is expected that an algorithm for calculating

the appropriate scaling factors to relate the dynamic and

quasistatic conditions, as well as methods for calculating

them from a minimal data set will be developed.
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