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Abstract— For a wide range of telerobotic applications, the
slave device needs to be a large, powerful, industrial type robot
in order to achieve the desired tasks. Due to the large frictional
forces within the gearing of such robots, a force-feedback
controller is necessary to precisely control the forces the robot
applies when manipulating its environment. This paper proves
passivity, and therefore guarantees stability, of a model-based
force controller in one degree of freedom (DOF) when subject to
viscous and Coulomb friction. The controller is then expanded
to muli-DOF systems.

In addition to maintaining the robustness of the 1-DOF con-
troller, the multi-DOF controller provides additional freedom
to design the closed loop dynamics of the robot. This freedom
allows the control designer the ability to shape and optimize
how the system feels from a users perspective. The robustness
of the controller is experimentally validated and the freedom
to modify the closed loop dynamics is explored using a 2-DOF
device.

I. INTRODUCTION

The real strength of telerobotics is the notion that for any

possible environment we would like to manipulate, a robot

can be built and inserted into that environment providing a

portal from which we can explore. In particular, telerobotics

really proves beneficial when the environment of interest is at

the extreme, be it too small and delicate, too large and heavy,

too far away, or just too dangerous for normal unassisted

human interaction.

Of particular interest to us is the case when the envi-

ronment is very large and heavy. For example, space based

construction and maintenance requires large industrial type

slave robots such as Ranger pictured in Fig. 1. In order

to produce the necessary strength to perform the desired

tasks, industrial robots typically have a significant amount

of gearing within their actuators resulting in large internal

frictional forces. Without any compensation, the user can

not distinguish between the forces arising from contact with

the environment and the internal friction forces in the slave.

In order to achieve precise dexterous manipulation of the

remote environment, the user must be able to see through

the friction in the system to develop a true understanding

of the interaction dynamics between robot and environment.

Typically this requires the use of a force-feedback loop using

measurements from a force sensor at the end-effector [1] or

open-loop compensation based on a friction model [2].
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Fig. 1. The University of Maryland Space Systems Lab’s Ranger slave
robot designed for servicing of satellites in orbit.

Directly feeding the measured force back to the user

has proven to be of limited benefit [3], so many control

architectures include a local force control loop around the

slave robot [4], [5]. In addition to focusing control effort at

the source of the friction disturbances, local force control

produces cleaner and more ideal closed loop robot dynamics

making it easier to design and implement the telerobotic

system.

Unfortunately force control loops are notoriously difficult

to design. It is well known that force controllers have

difficulty maintaining stability when interacting with stiff

environments. Since, in the case of telerobotics, the environ-

ment is largely unknown it is very important to make sure any

force control loops around the slave device are stable for all

possible environments. One method to ensure stability is to

design the force controller such that the resulting closed loop

robot is passive. By maintaining passivity we can be certain

that there will not be any energy leaks within the controller

that can cause the robot to act uncontrollably regardless of

the environment it is in contact with.

Using passivity analysis, studies have shown that force

controllers that try to hide some of the robot’s inertia are

not passive once we account for higher order dynamics such

as structural compliance [6]. In response natural admittance

control (NAC) was developed as a passive means of force

control for autonomous robots [7], [8]. NAC effectively

trades off the ability to hide inertial forces for enhanced

stability and friction rejection.

Expanding upon NAC, we have introduced a telerobotic

model-based force control for 1-DOF systems designed to
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passively reject friction forces and maintain a high level of

robustness to unmodeled dynamics [9]. When implemented

within a bilateral telerobotic system, model-based force

control effectively cleans up the slave dynamics such that

the user feels like they are interacting with the remote

environment through an ideal frictionless robot.

In this paper, we present a passivity analysis for model-

based force control showing the resulting system to be

passive when subject to both viscous and coulomb friction

forces. The model-based control algorithm is then expanded

to multiple degree of freedom devices. The resulting muli-

DOF algorithm provides the ability to shape the closed

loop dynamics of the robot, and therefore the feel of the

telerobotic system. The stability of multi-DOF model-based

force control is validated experimentally, and the ability to

modify the feel of the system is explored.

II. 1-DOF PASSIVITY ANALYSIS

The model-based force control algorithm is extremely ro-

bust due to its ability to accommodate the large force spikes

that occur upon impact with stiff environments. Traditional

force controllers see the force spikes as a large force error

causing the controller to produce a large control effort in the

opposite direction. Unfortunately, this control effort always

lags at least slightly behind the impact force. Combining

this lag in the control effort with the hard non-linearity of

making and breaking contact the robot motion deteriorates

into contact instability.

To avoid contact instability, the model-based force con-

troller uses a model of the robot to provide the controller

with information on how the robot will react to the forces

seen at the end-effector. In the 1-DOF case, as shown in

Fig. 2, the model consist of an ideal frictionless reference

mass Mr representing the robot which is subject to both the

desired force Fd and measured environmental force Fe.

Mrẍm = Fd − Fe (1)

Since the model velocity ẋm represents the ideal velocity

of the robot in the absence of internal friction and other

disturbance forces, a velocity controller is implemented to

make the robot follow the model velocity.

Fc = Kv(ẋm − ẋ) (2)

The resulting equation of motion for the robot then becomes

Mẍ = (Fd − Fe) + (Fc − Ff ) (3)

where Ff is the internal friction force in the system. Breaking

up the forces acting on the robot, (Fd−Fe) = Fext is the net

external force acting on the robot and (Fc − Ff ) represents

the residual disturbance after the force control is applied.

To show passivity of this model reference force controller

we must verify the residual disturbance is passive. First

we examine the dynamics of Fc. Subtracting (3) from (1)

followed by subtracting Mrẋ from both sides of the equation

Model

Robot

M
Fe

Ff

Fd

Mr

Fd Fe

Fc

Fig. 2. 1-DOF model and robot

results in the following linear time-invariant (LTI) differential

equation for the control force Fc.

Mr

Kv

Ḟc + Fc = Ff − (Mr − M)ẍ (4)

The above expression shows the control force is simply a

low-passed version of the internal friction force Ff and an

inertial force (Mr − M)ẍ arising from the difference in the

model and robot masses.

Assuming the friction forces on the robot consist of

viscous and Coulomb friction forces the friction force Ff

can be expressed as:

Ff = Ffv + Ffc where

Ffv = bẋ and Ffc = Csgn(ẋ) (5)

Since (4) is LTI, superposition holds and the control force

can be viewed as the summation of three separate control

forces arising to compensate for each type of friction and

the inertial force arising from the mass difference.

Fc = Fcv + Fcc + Fcm (6)

where

Mr

Kv

Ḟcv + Fcv = Ffv (7)

Mr

Kv

Ḟcc + Fcc = Ffc (8)

Mr

Kv

Ḟcm + Fcm = −(Mr − M)ẍ (9)

Since the control forces are low-pass filtered versions of the

friction forces the above expressions can be thought of as

disturbance estimators for the friction forces. After applying

our estimate of the disturbances the residual friction forces,

Ffv − Fcv and Ffc − Fcc, become high-passed versions of

the friction forces.

Ff(v,c) − Fc(v,c) =
[

1 −
Kv

Mrs + Kv

]

Ff(v,c) =
Mrs

Mrs + Kv

Ff(v,c) (10)

Using these expressions combined with (9) the system can

now be expressed by the block diagram of fig. 3.

Since the block diagram representation of the closed-loop

robot consist of the robot connected in feedback with three

systems representing the friction and control forces on the

5283



ẋ+
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Fig. 3. Block diagram showing passivity of 1-DOF model-based force
control.

robot, we need only show the robot and each of the feedback

systems is passive to show the entire system is passive.

In the case of LTI systems passivity is equivalent to

requiring the transfer function from input to output to be

positive real, which is equivalent to requiring the phase of

the transfer function to always be between ±90◦. From this

we see that the robot and the system representing the viscous

friction and its compensation are passive.

Grobot(s) =
1

Ms
(11)

Gviscous(s) = b
Mrs

Mrs + Kv

(12)

Furthermore if we stipulate that Mr ≥ M the system

representing the control force arising from the difference in

the model and robot masses is also passive.

Ginertia(s) = (Mr − M)
Kvs

Mrs + Kv

(13)

This leaves only the system which describes the Coulomb

friction and its compensation. Since Coulomb friction is

inherently non-linear we explicitly examine the net power

flow into the system.
∫

ẋ(Ffc − Fcc) dt (14)

For any given non-zero velocity ẋ the Coulomb friction force

Ffc must be either C or −C corresponding to the sign of

the velocity. Since Fcc is a low-passed version of Ffc we

can bound Fcc.

|Fcc| ≤ C (15)

Combining the two forces we see that

0 ≤ Ffc − Fcc ≤ 2C for ẋ > 0 (16)

−2C ≤ Ffc − Fcc ≤ 0 for ẋ < 0 (17)

which implies

(Ffc − Fcc)ẋ ≥ 0 (18)

This ensures the integral of (14) is always positive indicating

a passive system and therefore completing the analysis

showing model-based force control to be passive in 1-DOF.

While friction in general may include other nonlinear

terms which have been neglected in the above analysis, we

feel confident that viscous and Coulomb friction represent

the majority of the disturbance forces. As such, showing

passivity with respect to these two friction forces indicates

model-based force control will be very robust in practice.

III. MULTI-DOF IMPLEMENTATION

Working in joint space, the model-based force controller

can be expanded to multi-DOF robots resulting in the control

algorithm depicted in Fig. 4. Here the robot equations of

motion are:

M (q)q̈ + C(q, q̇)q̇ = τd + τc − τf − τe (19)

Since the reference model needs to capture the inertial

behavior of the robot, which changes as it moves across the

workspace, the model mass matrix Mr and centripetal and

Coriolis matrix Cr must be defined based on the robot’s

position q and velocity q̇.

Mr(q)q̈m + Cr(q, q̇)q̇m = τd + τe (20)

Simulating the model, using the τd and τe as the inputs,

provides the model velocity vector q̇m. This velocity vector

represents the ideal joint velocities the robot would have at

any given moment based on its position, velocity, and applied

external torques if friction forces were not present.

To get the model to follow this ideal velocity vector the

control torques are given by:

τc = Kv(q̇m − q̇) (21)

where Kv is a positive definite gain matrix. For the purpose

of this study we have chosen to directly control the robot’s

joint velocities about the joint velocities of the model making

Kv a diagonal matrix with the diagonal elements set to the

control gain Kv.

IV. MODEL SELECTION

Similar to the 1-DOF case, we are constrained to using

models with larger inertial forces than the robot indicating

Mr−M should be positive definite. Unlike the 1-DOF case

however there is now much more freedom to select and shape

the model dynamics to get closed loop systems that feel very

different to the user.

Realizing that, at least at low-frequencies, the resulting

closed loop system will feel like the model to a telerobotic

user we have focused on two particular models. The first

model, in an effort to minimize the inertia the user feels,

tries to make the model match the actual robot as close as

possible while still having slightly more mass.

Mr = (1+ǫ)M and Cr = (1+ǫ)C for ǫ > 0 (22)

While the resulting system will have the lowest inertial forces

possible, the user will feel the centripetal and Coriolis terms

as well as the variation in mass with respect to the robots

orientation.
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Fig. 4. Multi-DOF model-based force controller.

The second model, in the interest of simplifying the

dynamics the user feels, is a point mass model in Cartesian

space.

MrIẍ = Fd − Fe (23)

where I is the identity matrix. Converting to joint space and

substituting ẋ = Jq̇ and ẍ = J̇ q̇+Jq̈ this model is equivalent

to choosing

Mr = MrJ
T J and Cr = MrJ

T J̇ (24)

This model can be viewed as having the exact same kine-

matics as the robot, but with massless links and a point mass

at the end-effector.

The trade-off of using a point mass model is the resulting

system will only be passive within a reduced portion of the

robot’s workspace. As the robot approaches singular posi-

tions, its effective Cartesian space mass begins to increases

drastically while the model Cartesian space mass remains

constant by design. Eventually the effective mass of the robot

will become greater then Mr in certain directions and the

system will no longer be passive.

V. EXPERIMENTAL VALIDATION

To explore how model selection effects the performance

of model-based force control and to compare the resulting

controllers with more traditional force controllers, we im-

plemented two model-based controllers and a standard pro-

portional force controller on the 2-DOF planar mechanism

shown in Fig. 5. The mechanism has 35cm long links, and

in order to approximate an industrial-like robot, the motors

have a gear ratio of 113 : 1. The force control algorithms

were implemented using a real-time servo loop running at

1kHz.

We implemented the model-based force controllers using

both of the models discussed above. For the matched model

case (20) ǫ was set to be 0.01 while M and C where our best

estimates of the mass and centripetal/Coriolis matrices of

the real robot obtained from a system identification analysis

conducted during construction of the robot.

Fig. 5. 2-DOF planar robot used for controller validation.

For the point mass model (24), the model had a uniform

mass of Mr = 5.5kg designed to be safely above the

maximum effective Cartesian space mass of the robot over

the anticipated range of motion. For both models the control

gain Kv was set to 30Nms/rad which provided good force

tracking without excessive sensitivity to the noise in the force

sensor.

The proportional force controller was implemented using

τa = JT Fd + JT
KP (Fd − Fe) (25)

where τa is the torque applied to the motors. For the

experiments shown here, the gain matrix Kp was a diagonal

matrix where the two diagonal elements were both set to

the same gain Kp to achieve the same control on force error

in all directions. The proportional force controller treats both

inertial and frictional forces as disturbances which it attempts

to reject with a factor of 1
1+Kp

. For the results given below

we used two proportional force controllers with Kp values

of 1.0 and 2.0 respectively.

A. Telerobotic Force Tracking

The first experiment was designed to compare how the

various force controllers would feel to a user of a telerobotic

system. A simulated master trajectory was developed where
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Fig. 6. Desired and measured environmental force responses in the negative x-direction for absolutely stable model-based force controllers (top), and
potentially unstable proportional force controllers following a simulated master motion (bottom).

the master accelerated smoothly up to a velocity of 0.20m/s
in the negative x-direction, maintained this velocity for

one second, and then decelerated back to zero velocity by

the time the master had traveled 30cm in the negative x-

direction.

A standard position-position telerobotic controller con-

nected the 2-DOF slave to this simulated master robot using:

Fd = kp(xmaster − xslave) + kd(ẋmaster − ẋslave) (26)

where xmaster is the simulated master position and xslave is

the position of 2-DOF robot’s end-effector. For this study the

control gains were set to kp = 100N/m and kd = 30Ns/m.

Note that in addition to being the desired force provided to

the force controllers, Fd also represents the force a human

operator would feel at the master device.

After moving approximately 23.5cm the slave end-effector

impacted an aluminum block mounted rigidly to ground. The

impact resulted in a large spike in the measured environment

force of about 60N for all four force controllers and a

position error of about 6.5cm corresponding to a steady-state

desired force of Fd ≈ 6.5N .

Fig. 6 gives the desired force and the measured envi-

ronment force for each force controller in the negative x-

direction. As the master begins to accelerate the magnitude

of the desired force increases in order to accelerate the 2-

DOF robot. This increase in Fd is most pronounced for the

point mass model-based controller since it has the largest

effective closed-loop mass. The proportional force controllers

in contrast are able to hide a portion of the mass at low-

frequencies resulting in a smaller Fd in this acceleration

regime.

Since the two model-based force controllers completely

cancel out friction, Fd goes to zero once both master and

slave reach a steady-state velocity. The proportional con-

trollers on the other hand do not reject friction completely

and Fd settles to a constant value representing the remaining

friction forces a user would feel when moving the robot in

free-space.

Upon impacting the aluminum block the proportional force

controller with Kp = 2 is clearly unstable. The large

spikes in the measured force response represent the robot

continuously bouncing off the aluminum block in a persistent

limit-cycle while the spikes in Fd represent the damping in

the position-position controller. Reducing the proportional

control gain to Kp = 1 stabilizes the system although the

relatively small control gain results in a significant steady-

state force error of about 20%.

The two model-based force controllers on the other hand

achieve perfect steady-state force tracking once the transients

excited by impact settle down. Note the small oscillations in

the force measurement that exist well past the moment of

impact in all three stable controllers are caused by long-

lasting vibrations in the table that both the robot and the

aluminum block are mounted on.

B. Effects of Nonlinear Dynamics

The second test presented here was designed to show the

ability of the point mass model-based force controller to
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Fig. 7. Position trajectories in response to a unit force command in the
negative x-direction for model-based force controllers and proportional force
controller with Kp = 1.

effectively linearize the dynamics of the robot. Instead of

tracking a master device as before, the three stable controllers

from above were given a desired force of Fd = 1 in the

negative x-direction. Fig. 7 gives the resulting trajectories

as the robot moves approximately 20cm in the negative x-

direction and impacts the same aluminum block from before

along with the start and end configuration for the robot when

using the matching model controller.

In order to achieve the lightest possible model-based

controller and to maintain passivity over the entire workspace

the model-based controller using the matching model makes

no attempt to hide the centripetal and Coriolis forces. Quite

on the contrary, by effectively removing the friction forces

the centripetal and Coriolis forces, despite being small, can

now significantly effect the motion of the robot. As the robot

begins to accelerate in response to the desired force Fd the

centripetal and Coriolis forces grow resulting in significant

motion in the y-direction.

The controller using the point mass model on the other

hand trades a larger effective mass and a limited workspace

over which the robot is passive in exchange for linearized

dynamics. As expected for a linear system, when the desired

force is applied to the point mass controller the resulting

motion is almost perfectly aligned with the desired force

vector.

The proportional controller in comparison falls somewhere

between the two extremes. Hiding half the inertial forces,

which include the centripetal and Coriolis forces, and half

the friction, the trajectory followed by the proportional force

controller is mostly aligned with the desired force vector

although there is still motion in the y-direction.

VI. CONCLUSIONS

In designing model-based force control our primary ob-

jective was to produce a force controller for slave devices in

telerobotic systems that would both precisely control contact

forces and maintain safe and stable operation in all situations.

The passivity framework has both provided a means to

explain instability observed in traditional force controllers

and a method to test our designs for the desired level of

robustness.

In 1-DOF, passivity analysis has shown model-based force

control to be stable when interacting with all environments.

Furthermore, having been designed for passivity, model-

based force control has also proven extremely robust to such

typical non-idealities as unmodeled dynamics and non-linear

friction forces.

The experimental results of this paper show that this

extreme robustness of the model-based force control extends

into multi-DOF implementations. Furthermore, in multiple

degree of freedom systems the model reference force control

adds an additional and unique level of flexibility in control-

ling the closed loop dynamics of the robot. For example,

a point mass model effectively linearized the dynamics of

the robot at the cost of a larger effective mass and a

reduced workspace over which the system is passive. This

design freedom allows the control designer to more carefully

determine how the resulting telerobotic system will feel

to the user without worrying about pushing the stability

boundary.
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