The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

Stiffness Control of a Continuum Manipulator in Contact with a Soft
Environment

Mohsen Mahvash and Pierre E. Dupont, Senior Member, IEEE

Abstract— Stiffness control of a continuum robot can pre-
vent excessive contact forces during robot navigation inside
delicate, uncertain and confined environments. Furthermore, it
enables the selection of tip stiffnesses that match varying task
requirements. This paper introduces a computationally-efficient
approach to continuum-robot stiffness control that is based on
writing the forward kinematic model as the product of two
transformations. The first transformation calculates the non-
contact kinematics of the robot and can be formulated based
on the specific type of continuum robot under consideration.
The second transformation calculates the tip deflection due to
applied forces and is efficiently computed using the special
Cosserat rod model. To implement a desired tip stiffness, the
two transformations are used to solve for the actuator positions
that deform the manipulator so as to generate the required tip
force at the measured tip position. The efficacy of the proposed
controller is demonstrated experimentally on a concentric-tube
continuum robot.

I. INTRODUCTION

Historically, the study of robot-environment interaction
has focused on industrial robots interacting with stiff en-
vironments in assembly operations and other manufacturing
tasks [1]. In these applications, robot position control is in-
feasible since uncertainties in both the position and stiffness
of the environment lead to excessive contact forces as well
as to the jamming and wedging of parts. To avoid these
problems, a variety of solutions have been introduced. These
include the introduction of passive compliance in the robot,
e.g., an RCC wrist [2], as well as hybrid force / motion
control [1] and stiffness control [3].

A continuum robot is a manipulator whose curvature
can be controlled by adjusting the internal deformation of
mechanically coupled elastic components of the body of
robot [4]. Continuum robots include steerable catheters [5],
multi-backbone snake-like robots [6], [7] and concentric tube
robots [8], [9]. Two examples are shown in Figure 1. Since
robot shape is controlled by the storage and release of elastic
energy in the robot’s component parts, continuum robots are
flexible by design.

The resulting robot stiffness may, however, be large
enough to generate excessive and damaging contact forces
during interactions with soft surgical environments. While it
is possible to avoid this problem by building the robot from
extremely low stiffness components, e.g., as is done with

This work was supported by the National Institutes of Health under grants
ROIHL073647 and ROIHLO087797.

M. Mahvash is with Harvard Medical School, Boston, MA email
mahvash@bu.edu. P. Dupont is with Cardiovascular Surgery, Chil-
dren’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
email Pierre.Dupont@childrens.harvard.edu.

978-1-4244-6676-4/10/$25.00 ©2010 IEEE

Delivery
Cannula

==

q9,-9, 4,
Tube 3

(fixed curvatu7
Tubes 1&2

(variable curvature) TUbES 4&5
(a) (variable curvature)

central backbone 4

tendon wires/tubes
(b)

Fig. 1. Schematics of two types of continuum robots. (a) concentric-tube
robot, (b) tendon-driven robot with flexible backbone.

catheters, such a robot cannot generate the forces required
for doing many surgical manipulation tasks such as tissue
penetration and suturing. An alternate approach that produces
the safety of low stiffness during robot navigation, but also
enables high stiffness during tissue manipulation is to employ
stiffness control. In this approach, the robot operator can
select and modify the robot’s contact stiffness during a
procedure. The desired stiffness can be set lower than the
inherent stiffness of the manipulator to safely navigate inside
confined surgical environments.

This paper introduces a stiffness controller for a continuum
robot in the context of the kinematic mapping rather than
the force mapping generally used for rigid robots. The
kinematic model of the robot in contact is used to map the
tip force and tip position to joint positions of the robot. Real-
time measurement of tip position is used to calculate robot
deflection. The kinematic model is considered as the product
of two transformations: the first transformation calculates the
unloaded kinematics of the robot while the second calculates
the tip deformation due to applied forces. It is assumed
that an unloaded forward kinematic model of the specific
continuum robot is available, i.e., a model that calculates tip
configuration from actuator positions assuming no external
forces are applied. These models are readily available in the
literature [6], [8], [9].

General applicability to all types of continuum robots is
achieved by assuming that, in any given configuration, any
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continuum robot can be approximated by a single Cosserat
rod (of varying mechanical properties along its length)
for the purpose of computing deformation due to external
loading [10], [11]. The special Cosserat rod model enables
computationally efficient calculation of robot deflection due
to external forces [10]. Stiffness control is implemented
using an iterative method to solve for the actuator positions
that achieve the desired tip force. Efficacy of the proposed
controller is demonstrated experimentally for a 3 degree of
freedom (DOF) concentric-tube robot.

The paper is arranged as follows. Related work is de-
scribed in the following section. Section III presents the
general kinematic and force mappings of continuum robots.
The deflection model using the special Cosserat rod model
is presented in Section IV. The stiffness controller is pre-
sented in Section V and its experimental implementation
is described in Section VI. Conclusions appear in the final
section.

II. RELATED WORK

Unloaded kinematic models have been developed for a
variety of continuum robots. Schematics of two types are
shown in Figure 1. Figure 1(a) shows a concentric tube robot
which is constructed by telescopically extending concentri-
cally combined pre-curved superelastic tubes. The robot’s
shape and tip location are controlled via the kinematic inputs
consisting of the relative rotations and translations of the
tubes at their proximal ends (qy,...,qs). The unloaded kine-
matic models for this type of robot depend on the modeling
assumptions. When the tubes are considered torsionally rigid,
the kinematics are described by algebraic equations. For
long or highly curved tubes, torsional compliance can be
important and the kinematics take the form of differential
equations in arc length with split boundary conditions [9].

Figure 1(b) depicts a tendon-driven continuum robot of
the type often used in steerable catheters and for distal
dexterity enhancement in minimally invasive surgery. These
robots possess a central flexible backbone that is deflected
by symmetrically arranged wires [6], [5] or tubes [12], [7].
As shown in the schematic, spacer disks are attached to the
central backbone. The wires or tubes slide through holes in
all disks except for the most distal one to which they are
attached. Unloaded kinematic models are developed by re-
lating central backbone shape to tendon length, ¢1,92,¢43 [6],
[5]. While wire tendons are limited to tensile forces, tubes
can also be used in compression and their bending stiffness
must be accounted for in the kinematics [12], [13]. For this
type of continuum robot, the mapping between forces in the
actuating tubes and tip forces has also been derived [12].
Using this model, tube forces were used to infer tip forces.

III. KINEMATIC AND FORCE MAPPINGS OF CONTINUUM
ROBOTS

All continuum robots can be modeled by a space curve,
r(g,s) € R3, that is a function of the n kinematic input
variables, ¢ € R", and the arc length, s, together with
coordinate frames defined at the robot’s base (frame B)

and tip (frames 7 and T). These are shown in Figure 2.
Referring back to Figure 1, the space curve corresponds to
the common tube centerline of (a) and the curve of the central
backbone in (b). In contrast to rigid robots, two tip frames,
T and T, are defined. The former corresponds to the tip
configuration when no external loads are applied while the
latter includes the deformation arising from a wrench F € R®
applied externally at the tip. The first three components of
F correspond to the tip force while the latter three are those
of the torque applied to the tip [14].

Fig. 2. Continuum robot represented as a space curve. W is world
coordinate frame while B, P, T and T are robot body frames. 7' and T are
tip frames without and with the application of tip wrench, F, respectively.

The configuration of frame C relative to frame B is a rigid
body transformation that can be written in homogeneous
coordinates as

where Ry, € SO(3) is the rotation matrix, and p,. € R> is
the translation vector between frames B and C [14]. This
expression also represents a mapping from kinematic input
space g € Q to the special Euclidean group SE(3).

For the continuum robot of Figure 2, the configuration of
the frame T relative to the frame B, g, can be written as
the product of two transformations:

gn(a:F) = gi(q) gu(q.F) (2)

where g,; is the configuration of frame T relative to B
and g;, is the configuration of T relative to 7 . The first
transformation, g,;(¢q), corresponds to the unloaded robot
kinematic models cited in Section II. The second transfor-
mation, g; (g, F ), represents the displacement associated with
the deformation of the robot due to the applied loading. Thus,
the overall kinematic map, g, (g, F), is a function of both the
kinematic variables and the external loading.

The force mapping equation for continuum robots can be
derived from the principle of virtual work as was done in [12]
to obtain

JdE(q,F)

T = JLF+
bt aq

3)
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Here, T € R" is the vector of actuator forces and torques,
E(q,F) € R is the elastic energy of the manipulator, and
Jpe(q,F) is the Jacobian matrix mapping actuator velocities
to tip velocity [14]. Of course, for rigid robots, the elastic
energy term drops out and this equation reduces to the
standard form, T = JthF .

To implement stiffness control in a rigid robot, the force
mapping equation must be used to relate desired tip wrenches
to actuator forces and torques. For continuum robots, how-
ever, it is also possible to implement stiffness control using
the kinematic mapping (2). In this approach, (2) is solved
for the actuator positions corresponding to the desired tip
wrench, F9, and the actual measured tip configuration, gy;.

Comparing the two approaches, stiffness control based on
the force mapping becomes an actuator force / torque control
problem while stiffness control using the kinematic map is an
actuator position control problem. Use of the force mapping
requires the use of joint force /torque sensors [12] or actuator
currents [15]. In contrast, actuator position control can be
performed accurately using the existing actuator encoders.

Thus, it may be advantageous to employ (2) if it can be
solved efficiently. To explore this question, assume that it is
desired to apply a wrench Fy at the tip of a 6 DOF continuum
robot that has 6 independent joint variables while its tip is
held rigidly fixed at configuration gy;. Equation (2) can be
rewritten in terms of its inputs, measured tip configuration,
gp» and desired tip wrench, F4, and its output, desired
actuator positions, g¢

g = gilg”) gulq" . F?) 4)

Driving the actuator displacements to g¢ produces defor-
mations of the continuum robot that produce the desired
tip wrench F; at the measured tip configuration of the
robot. Note that for the general case of contact with a soft
environment, producing a desired tip wrench will also cause
the tip configuration to change.

The root finding problem of solving (4) for ¢ can be
performed efficiently if its right hand side can be computed
quickly. The term g;(-) is the unloaded forward kinematic
model for which numerically efficient formulations are avail-
able [6], [5], [12], [9]. The second term, g(-,-), is the tip
displacement produced by application of tip wrench on the
unloaded robot.

As described below, given g,;(¢?), an efficiently computed
estimate of the product g5, (¢¢,F%) = g,i(q?) g1 (q%,F?) can
be obtained using the special Cosserat rod model.

IV. DEFLECTION MODEL

To obtain gu(q,F) = g(q) 8 (q,F), we approximate
any continuum manipulator as a single elastic rod whose
curvature and elastic properties match those of the robot for
actuator values ¢ and tip wrench F = 0. Thus, the curvature
is selected to match the robot’s backbone curve, r(g,s), and
its stiffness is selected to match the composite stiffness of
all elastic components that comprise the robot.

Deflection of the robot is computed as deflection of the
rod in response to tip wrench, F. This model is approximate

in that it does not account for relative motions of the
robot’s elastic components in response to the tip wrench.
As demonstrated in our experiments, the error associated
with this approximation is often negligible. It is also assumed
that the cross sectional shear and longitudinal extension of
the rod are negligible. This assumption is often made in
developing unloaded kinematic models for continuum robots;
see, e.g., [9].

The special Cosserat rod model is well known in the
mechanics literature [11] and has also been employed in the
robotics and computer graphics literatures [10], [16], [9].
Here, a concise overview of the model and its numerical
solution are presented.

A. Strain and Curvature of a Rod

As shown in Figure 2, coordinate frames can be defined
along the backbone curve, r(g,s). In the following, actuator
values, ¢, are assumed constant and are omitted as argu-
ments. Since these frames are intended to track material
deformations of the rod’s cross sections, a natural choice
for frame orientation is to choose a base frame, B with one
axis (i.e., the z axis) aligned with the curve’s tangent and
then to slide this frame without rotation about the local z
axis along r(s) [17].

The resulting Bishop frame P at arc length s can be written
as gpp(s), s € [0,1] where [ is the length of the robot. Its origin
lies on r(s) and experiences a rate of change with respect to
arc length, v(s) € R3, given by

dr(s)
=—= 5
Ws) = )
The rate of change of frame P’s coordinate axis unit vectors,
{ex(s),ey(s),e;(s)}, with respect to arc length satisfy the
body-frame equations

dey(s) dey(s)
I = u(s) X ex(s), le =u(s) x ey(s),
d%is) = u(s) X ey(s) (6)

in which u(s) € ®3.

The vectors u(s) and v(s) are the angular and linear strains,
respectively, experienced by the cross section. Thus, u(s) has
the units of curvature and its x and y components correspond
to bending of the rod while its z component corresponds to
twisting of the rod. Similarly, the x and y components of v are
the shear strain components of the cross section while the z
component is v, = 1 + €, in which &, is the longitudinal strain.
Given the assumptions of negligible shear and longitudinal
strain,

vs)=[0 0 1]", sefo,] 7

Angular and linear strains, u and v, provide body frame
descriptions of the curved shape of the rod. It can be helpful
to note that # and v are analogous to body-frame angular and
linear velocities if time is substituted for arc length. Thus,
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coordinate frames, gp, (s), are obtained as the solution to the
differential equation

i(gbp(s»—gbp(s){ o) 3] (®)

in which the square bracket on the vector u indicates the
skew-symmetric matrix form

0 —Uus3 up
[u(s)] = | us —u 9)
—uy Uy 0

This differential equation can be integrated numerically from
base to tip or tip to base using a method that preserves the
group structure of SE(3). A variety of numerical integration
methods are available for this purpose [18], [19].

The initial curvature of the robot prior to the application
of external loads is denoted by #(s). Given an unloaded
kinematic model that computes g, (s), the unloaded shape
of the rod used to model robot deflection can be computed
as

[A(s)] = R, (5) Ry, (s) (10)

in which Ry, (s) is the rotation matrix of g, (s).

B. Rod Deformation Due to Applied Loads

To compute rod deformations, two equations are needed.
The first is a constitutive model that relates cross-section
strains u and v to the bending moment, m € R3, and force,
neR3, acting on the cross section. Since shear of the cross
section and rod extension are neglected, only the relationship
between u and m is needed. The second equation relates
cross-section bending moment and force to the external
loads. Both are described below.

When a rod with initial curvature i(s) is deformed to a
new curvature u(s), a bending moment, m(s), is generated.
Assuming linear elastic behavior, the bending moment at any
point s along the rod is given by

m(s) = K(s) (u(s) —a(s))

where K(s) is the frame-invariant stiffness tensor. For a large
class of rods, K(s) is given by

Y

E(s)I(s) 0 0
K(s) = 0 Ey(s)L(s) 0 (12)
0 0 J(s)G(s)

and E((s), Ey(s) are moduli of elasticity, I.(s) and I,(s)
are area moments of inertia, J(s) is the polar moment of
inertia and G(s) is the shear modulus. These values should
be selected so that the rod stiffness matches the overall
continuum robot stiffness as a function of arc length.

To relate cross-section bending moment and force to the
external loads, we employ the equilibrium equation of the
special Cosserat rod model [11]. Written in the body frame
coordinates of Figure 2, the differential equation governing

bending moment m and force n as a function of arc length
s is given by

dm(s)

") ) o) - b (3)
P g5)~ (s n(s)

where ¢(s) and 7(s) are the applied force and torque per
unit length of the rod and the bracket notation is as defined
in (9).

For simplicity of exposition, it is assumed that only tip
loads are applied to the robot and so 7(s) = ¢(s) =0, s €
[0,{]. Combining (11) and (13) results in equations for
curvature u and force n,

du(s)  di(s) A )
ds  ds [u(s)] (u(s) —a(s)) + K1 (s)[V]n(s)
dr;(:) = —[u(s)]n(s) (14)

The boundary conditions for these equations, u(l), n(l), can
be specified from the body-frame wrench, F,, applied at the
robot’s tip

) ")) = F
w(ll) = K 'm(l)+a(l)

and (14) can be solved numerically by integrating backward
in arc length from s =/ — 0 [10]. Since (13) is written in
body coordinates, the body-frame twist velocity, [v7,u’]"
must be simultaneously integrated such that the equations
evolve on SE(3). As detailed in [10], a first-order Crouch-
Grossman method [18] provides computational efficiency.
The result of this integration is the desired estimate of
the transformation between the base and tip of the robot,
8bt = 8bit it

In stiffness control, the desired tip wrench is often cal-
culated in a local frame at the tip of the robot whose
axes always remain parallel to the axes of the world frame,
FZ [20]. In this case, the boundary condition is a function
of the rotation of the rod tip. Specifically, if the base of the
rod is positioned at the origin of the world frame then g,
in Figure 2 is the identity matrix and the desired body-frame
tip wrench, F, 4 to be used in (15) is related to the desired
frame tip wrench by

RT 0
F = { b }Fd, (16)
b 0 th tw

5)

where, following (1), Ry, is the rotation matrix of gy (¢¢, F).
While the integral must now be solved iteratively, conver-
gence is rapid when the tip wrench varies smoothly and
the solution is seeded using the desired rod shape from the
previous time step.

V. STIFFNESS CONTROLLER USING A MODIFIED
PoOSITION CONTROLLER

The task of the controller is to create a user-defined
stiffness at the tip of the continuum manipulator. If the
stiffness is specified for all degrees of freedom of the robot
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tip, a pure stiffness controller can be implemented. In many
medical applications, however, it is desirable to control
the stiffness in certain directions, e.g., tip position, and to
control the motion in other directions, e.g., tip orientation.
Because of its practical importance, this latter case of hybrid
stiffness / motion control is considered here. The framework
described below can be easily adapted to other combinations
of stiffness- and motion-controlled coordinates.

The desired tip force, f¢ € R3, is computed using the user-
defined diagonal stiffness matrix, K¢ € ®3*3, based on the
difference between measured robot tip position, pj. € R3,
and a reference tip position, p}, € R3 as follows

1= KNP~ ply)

The desired tip orientation of the robot is given as RZ, €
S0(3).

As shown in Figure 3, the stiffness equation (17) can be

pictured as a virtual spring of stiffness K¢ that connects

the reference position pj, to the current tip position of the
manipulator.

a7

Fig. 3. Controller implements a virtual linear spring at the tip of the
manipulator. Desired actuator positions are such that when robot is deflected
from unloaded tip configuration, 7', to configuration 7', the desired tip spring
force is generated and the desired tip orientation is achieved.

The desired force, fd, and desired tip orientation, Rﬂt,
must be mapped to the actuator positions, ¢?, such that
the deflected robot will generate the force f¢ at the tip
configuration
(18)

8t 0 1

The desired actuator positions are implicitly defined by (4),
re-written for g¢"

dm __ Rz[ pzlt
8t = 0 1

In this equation, py, is directly measured by a tip sensor while
gp:(¢?,EZL) is computed for values of ¢? and f¢ from the rod
deformation model (14)-(16) using the wrench boundary

condition
d
Fd _ f
=] woor |

and the initial shape (10) obtained from the unloaded kine-
matic model

li(q”,9)] = Ry, (¢°,5) R, (q",9)

dm _ |: R;,lz P?[ :|

} = on(q" ) = gi(a?) saa” FL) (19)

(20)

2n

in which Ry, (g,s) is the rotation matrix of g;,(g?,s).

Using an efficient numerical implementation, e.g., Gauss-
Newton, (19) can be solved iteratively at each time step of
the controller for the actuator positions, ¢, that produce the
desired combination of tip force and orientation. By driving
the actuator variables to qd , the manipulator is deformed so
as to produce the desired tip force at Rzl. Position tracking
controllers, e.g., PD, can be used to drive and maintain the
actuators of the manipulator at their desired values. The gains
of the actuator controllers should be selected so that steady-
state tip position error due to actuator error is small compared
to the deflection of the manipulator.

Since position controllers already exist for a variety of
continuum robots [6], [5], [9], it can be advantageous to
leverage the existing controller implementation to achieve
stiffness control. This can be accomplished as follows.

A position controller solves the inverse kinematic problem
and drives the actuators to the positions given by

¢ =7 (gh)

where . (-) represents a multi-dimensional inverse kinematic
function for the unloaded robot that calculates either numer-
ically or analytically the actuator positions corresponding to
the user-defined configuration, ng.

To include the tip-applied wrench, the argument of .# can
be rewritten using (19) to obtain

d d -1/ d rd
¢ =7 (s & (4" F))
where Cosserat deflection model is used to compute
8ir (7Fvg))
Since the deflection model computes g (¢?,F) rather
than g;(¢%,F%), (23) can be rewritten using (2) to arrive at

q' =7 (8" 8 (@ F) 20ia"))

This equation can be solved for g¢¢ using fixed point
iteration [21],

gl =7 (gl g, (af FL) giilal)), i=1,2,...

where index i is the iteration number.

In this way, the stiffness controller can be implemented
by the on-line iteration of (25). The controller computations
for each iteration consist of a single evaluation of (i) the un-
loaded kinematic model, g,7(¢¢), (ii) the deformation model,
gn(q?,F%), and (iii) the unloaded inverse kinematic model,
J(+). Assuming that the pre-existing position controller runs
at a sufficiently high rate, the changes in controller inputs
(p}, and Rzl) and robot tip position (pf;) are small from one
controller cycle to the next and it is sufficient to evaluate the
iteration equation (25) once per cycle.

(22)

(23)

(24)

(25)

VI. EXPERIMENTAL IMPLEMENTATION

The stiffness controller was implemented to produce a
desired positional tip stiffness on a three DOF concentric
tube robot. This is a case of pure stiffness control since
the stiffness is specified for each degree of freedom. The
robot was comprised of the two 150 mm long tubes shown in
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Figure 4. Relative rotation of the tubes varies their combined
curvature, u(s), from the initial constant pre-curvature value
of u(s) = [1/240 0 0] mm~!, s € [0,150] mm, when the
curvatures are aligned (¢1 = q2), to u(s) =[0 0 07, s €
[0,150] mm (robot is straight) when the curvatures are anti-
aligned (g1 = g2+ 7). The robot can also be translated in the
z direction by actuator displacement g3. Varying {q1,q2} €
SO(2) x SO(2) and g3 € R produces a cylindrical workspace
at the robot’s tip of radius 48 mm and length 254 mm.

Fig. 4. Concentric tube manipulator and drive system. Electromagnetic
sensor is shown attached to robot tip. Actuator variables ¢; and ¢, control
rotation of tubes and g3 controls translation of tube pair. Curvature is varied
by relative rotation of tubes. Environment motion is produced by manual
loading of robot tip through cord attached to load cell.

An existing position control architecture [9] was modi-
fied to implement stiffness control. The existing controller
consists of a master-slave system in which the concentric
tube manipulator is the slave arm and a PHANTOM Omni
haptic device (Sensable Technologies, Inc.) is employed as
the master arm. The position controller is implemented as
a multithreaded process under Windows 2000. The process
includes two time-critical user mode threads running at 1 kHz
that implement the kinematic model and PD joint controllers
and an application thread that updates a GUL

The stiffness controller requires real-time measurement of
the robot’s tip configuration. This was accomplished using an
electromagnetic tracking sensor (3D Guidance trakSTARTY,
Ascension Technology Corporation). The 2 x 9.7 mm cylin-
drical sensor (model 180) was attached to the robot’s tip
as shown in Figure 4. Sensor accuracy is 1.4 mm RMS in
translation and 0.5 degree RMS in rotation with a resolution
of 0.5 mm and 0.1 degrees. The update rate of the sensor
was set to 100 Hz. The sensor’s electrical leads produced
negligible deformation of the robot.

To calibrate the deflection model used in the stiffness
controller and to evaluate the controller’s performance, a
22 N tension/compression load cell (Sensotec model 31)
was used to measure environment force. The load cell was
connected to the tip of the manipulator through a long thin
cord to prevent the metal components of the load cell from
distorting the magnetic field of the tip tracking system. This

loading configuration is depicted in Figure 4.

To evaluate the controller, experiments were performed
with a moving environment shown in Figure 4. The envi-
ronment is produced by manually pulling on the robot tip
in a desired direction through a cord attached to a load cell.
During these tests, the desired reference tip position, py,,
of (17) was held constant by fixing the position of the master.

Implementation of the proposed stiffness controller re-
quires an unloaded kinematic model and a calibrated deflec-
tion model. Each is described below followed by the results
of the control experiments.

A. Unloaded Kinematic Model

To implement stiffness control by modification of a posi-
tion controller as given by (25), it is assumed that forward
and inverse kinematic solutions are already implemented for
the non-contact case. Such models have been presented in [9]
for concentric tube continuum robots. Modified versions of
these models, appropriate to the pair of tubes used in the
experiments, are presented here.

While, in general, the combined curvature of two tubes
of constant pre-curvature varies along their length due to
torsional twisting of the tubes [9], this effect is negligible
for the tubes used in the experiments. Thus, it is appropriate
to model the combined curvature as a function of actuator
values, {q1,¢2}, that is independent of arc length. It can be
written in the world frame of Figure 4 as u",

cos ((q1+g2)/2+ ¢x(q1 — q2))

sin ((q1 -I-qz)/%)-l- Ox(q1 —q2))

" =Ax (g1 = q2) (26)

Here, Ax(-) and ¢ () compute the magnitude and phase of

curvature as functions of the relative tube rotation angle,

q1 — q2. For curve fitting, A(-) and ¢i(-) are interpreted

as the magnitude and phase of a complex function x(-).
The tip position, assuming no contact forces, is obtained

from the curvature, u", as [9]

uy (1—cos(I[u"])

Ju |2
—u (1—cos(Iu”])

‘MW 2
sin(!]u”])

q3+ 0]

Pii(q) = 27)

in which [ is the arc length of the manipulator. To obtain the
most accurate kinematic model, the complex function x(-)
was calculated from (26) and (27) as a truncated Fourier
series using position measurements obtained with the tip
tracking sensor over two complete revolutions of the tubes.

B. Deflection Model Calibration

To calculate robot deflection due to tip loading, the deflec-
tion model requires the unloaded body-frame curvature of the
robot, @(s), as well its composite stiffness, K(s). While (10)
provides a general expression for unloaded curvature, in this
case, it can be directly obtained from (26). Due to the choice
of Bishop body frames and since the unloaded kinematic
model is of constant curvature,

a(s) =u" (28)
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The deflection model approximates the composite stiffness
of all elastic elements of the robot by the matrix of bending
and torsional stiffnesses, K(s), defined in (12). Since the
robot is composed of NiTi tubes, K(s) reduces to

K(s) =K =diag(E.l., Ecl., El./(1+V)) (29)

in which E. and I, are the composite values for elastic
modulus and area moment of inertia, respectively, and Vv is
Poisson’s ratio.

Using the value of v = 0.3 that is appropriate for NiTi, E I,
was estimated experimentally using the testing configuration
of Figure 4 and the maximum possible value of initial
curvature #(s) = [1/240 0 0]” mm~!. An iterative method
was used to solve for the stiffness matrix that minimized
the error between the force-displacement response predicted
by the model and that obtained by measurement in x and y
directions. The resulting calibrated stiffness of

K(s) = diag(0.049 0.049 0.038)N-m> (30)

was used to compare the deflection model and experimental
robot tip stiffnesses as shown in Figure 5. (See Figure 4
for the coordinate directions.) The depicted experimental
data was collected for cyclic displacements in the x, y and
z coordinate directions while holding the robot actuators
fixed. While the experimental data reveals a small amount
of hysteresis, the deflection model provides a good fit with
the loop average in the x and y directions while the high
stiffness in the z direction reduces the accuracy of the model
fit.

2'5'z(zero) 2(max)

y-model(max)

<~—z-model(max)

y(zero)
y(max)

force (N)

x-model(max)

x(max)
X(zero)

0 10 20 30
displacement (mm)

Fig. 5. Force versus displacement of the robot tip in coordinate directions
{x,y,z}. Both experimental data and predictions from the calibrated deflec-
tion model are shown for the maximum curvature configuration, labeled
(max), and zero curvature configuration, labeled (zero).

C. Stiffness Controller

Stiffness control was implemented for the three DOF con-
tinuum robot depicted in Figure 4 by modifying an existing
position controller. The position controller uses Newton’s
method to solve (26)-(27) at each time step for the actuator
positions associated with the desired unloaded tip position,
pi;’

¢ =7 (o) (3D

PD controllers are used to drive the actuators to the values
computed in (31).

To achieve stiffness control, (31) was replaced with the
iteration equation (25) which, for this robot, reduces to an
expression involving only tip positions,

gl =5 (pZ’i — (per(q? L) — pbf(q?)))

Here, py, is the current tip position as measured by the
tip tracking sensor. The unloaded tip position, py:(q?) is
computed using (26) and (27).

The deflected tip position, py(¢?,F4) is calculated from
the deflection model (14) using ql”-l to compute the pre-
deflected curvature, #(s), from (26) and (28). The boundary
conditions (15) are computed using the desired tip wrench,
F", as defined by (17) and (20). This wrench is converted
to body coordinates using (16) with R, computed using the
current tip orientation as measured by the tip sensor. The
integration was carried out with the discrete (in arc length)
formulation detailed in [10] using ten nodes along the 150
mm length of the robot.

(32)

D. Controller Evaluation

The testing configuration of Figure 4 was used to evaluate
the performance of the controller in the three coordinate
directions for various values of robot curvature and tip
stiffness. During these tests, the master manipulator was
held fixed such that the reference tip position, pj,, was
constant and lay in the y-z plane above the line defined
by actuator axis, g3. (See Figure 4.) In each test, the robot
tip was displaced in one of the three coordinate directions.
Each displacement started with the robot tip in the unloaded
configuration and proceeded until an arbitrary maximum
value was obtained. The displacement was then reversed.

Figure 6 depicts the measured tip force and displacement
in the three coordinate directions of Figure 4 for an in-
termediate value of non-contact robot curvature given by
u’ = [3201mm 0 0]7. As is also shown, the desired stiffnesses
of (17) were set to be equal in the three coordinate directions,
K; = diag(0.04 0.04 0.04) N/mm. The maximum applied
displacements in the x and y directions were set to be around
20 mm in order to demonstrate the range of forces over
which the stiffness controller can be applied [20]. For most
surgical applications, however, the forces and displacements
are expected to be smaller than the evaluated range.

It can be seen that the desired stiffness is accurately
achieved in the x and y directions. Stiffness in the z direction
is less accurate, especially at direction reversals where im-
perfect cancellation of friction in the ball screw transmission
of actuator g3 leads to a large amount of hysteresis.

The most difficult configuration for stiffness control cor-
responds to when the robot is straight, i.e., the non-contact
curvature is " = [0 0 0]7. Tip force versus displacement data
for this configuration are shown in Figure 7 for a desired
stiffness of K; = diag(0.02 0.08 0.2) N/mm. Recall that the
natural stiffness in the x and y directions for the straight robot
should be both equal to about 0.048 N/mm as depicted in
Figure 5. The stiffness controller has succeeded in reducing
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2.5 robot is possible as long as the curvature of the entire robot

is not close to zero. A future goal is to evaluate the stiffness

2 controller under surgical conditions.
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Fig. 6. Tip force versus displacement in the three coordinate directions for
a non-contact robot curvature of u" = [m 0 0]” and desired tip stiffness
of K; = diag(0.04 0.04 0.04) N/mm.

the natural robot stiffness by about a factor of two in the
y direction and in increasing the natural stiffness by about
a factor of two in the in the x direction. Not depicted,
the stiffness controller as described is unable to control the
stiffness of robot along the z axis when the robot has zero
curvature, i.e, is straight. A controller modification described
in [20] avoids this limitation and is applicable to backdrivable
continuum manipulators.
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Fig. 7. Tip force versus displacement in the x and y coordinate directions
for a non-contact robot curvature of ¥ = [0 0 0]” and desired tip stiffness
of K; = diag(0.02 0.08 0.2) N/mm.

VII. CONCLUSIONS

The contribution of this paper is to provide an approach for
implementing stiffness control on any continuum robot that
can be modeled under loading as an elastic rod and for which
an unloaded kinematic model is available. Thus, the method
is broadly applicable to continuum robots including steerable
catheters, multi-backbone robots as well as concentric tube
robots.

The efficacy of the proposed stiffness controller was
demonstrated on a 3 DOF concentric tube robot. It was found
that desired tip stiffnesses could be achieved independent of
robot configuration in the lateral or bending directions. Using
tip position sensing, stiffness control along the axis of the
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