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Abstract— Motivated by functional interpretations of spatial
language terms, and the need for cognitively plausible and prac-
tical abstractions for mobile service robots, we present a spatial
representation based on the physical support of one object by
another, corresponding to the preposition “on”. A perceptual
model for evaluating this relation is suggested, and experiments
– simulated as well as using a real robot – are presented. We
indicate how this model can be used for important tasks such
as communication of spatial knowledge, abstract reasoning and
learning, taking as an example direct and indirect visual search.
We also demonstrate the model experimentally and show that
it produces intuitively feasible results from visual scene analysis
as well as synthetic distributions that can be put to a number
of uses.

I. INTRODUCTION

The field of service robotics is, at its core, directed toward
the creation of systems that are as versatile, adaptive and
powerful in everyday environments as human beings are.
Only when this becomes true will we be able to depend
on robots in the same way as on people around us.

The human machine is superbly adapted to this kind
of environment; not just physically (such as having legs
for negotiating stairs and thresholds, and arms for opening
doors and using appliances), but mentally as well. Human
cognition, language, and civilisation have all evolved, and
are evolving, in inextricable conjunction with each other. Any
cultural or linguistic concept, whether it is the function of
a piece of furniture or the meaning of a word, needs the
support of cognitive mechanisms; individuals are driven to
acquire such mechanisms by reinforcement pressures from
their surroundings [8] – while at the same time, the minds
of individuals, embodied in the real world, shape and bring
forth that same cultural or linguistic concept in turn.

This all suggests the following:
1) Adopting human-like cognitive patterns will help robots

approach human-like performance in the context of
homes, offices or other environments that are the prod-
ucts of human inclinations, activities and thought.

2) Linguistic concepts can provide insights into cognition
that can help understand the nature of those cognitive
patterns.

These are the principles on which this work is based.
Our research addresses spatial concepts specifically. Spatial
concepts are of great importance to robotic agents, especially
mobile ones:
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• They are a necessary part of linguistic interaction with
human beings, both when interpreting utterances with a
spatial content and when formulating such utterances.

• They allow knowledge transfer between systems,
whether different robots, or databases such as the Open
Mind Indoor Common Sense database (OMICS) [2]
(which contains “commonsense” information about in-
door environments provided by humans, such as where
objects may be found), as long as those concepts are
shared.

• They provide qualitative abstractions that facilitate
learning and reasoning.

• They can be used to guide top-down processes such as
e.g. visual object search.

Drawing inspiration from results in psycholinguistics, in
this paper we examine the functional spatial relation of
mechanical support, which in English corresponds to the
preposition “on”. We contribute a novel and general percep-
tual measure that allows a robot to analyze a scene in terms of
this relation in practice. We implement this perceptual model
showing it to produce results in accord with human intuitions
of “on”; we also perform simulated sampling experiments to
show how it can be used in a top-down fashion to generate
a conditional probability distribution over object poses given
that the relation is known or assumed to hold.

Other work has examined ways to quantify spatial rela-
tions. Inspired by findings on spatial information encoded
in the hippocampus, [11] suggests a number of geometrical
factors, e.g. coordinate inequalities, that play a part in
defining relations such as “below”, “near” or “behind”, but
does not attempt to provide exact formulas.

In [13] the Attention Vector Sum is proposed as a practical
numerical measure of how acceptable a particular spatial
relation is for describing a scene, and this model is compared
to actual human responses. The scenes used in this work are
2-dimensional and the trajector (mobile object) is treated as
a single point.

[10] presents a system where a user can sketch images
of basic figures, and which learns to distinguish between ex-
amples of “in”, “on”, “above”, “below” and “left”. However,
the domain used in the work is strictly 2-dimensional.

Topological relations specifically are surveyed in [3]. Re-
gion connection calculus and its variants provide a language
for expressing qualitative relationships between regions, such
as containment, tangential contact etc. Relations are of an all-
or nothing nature; and they represent objective, geometrical
as opposed to perceptual or functional attributes.

The aforementioned work, because of its emphasis on
pure geometry – typically in 2 dimensions – is not directly
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suited for applications in a practical mobile robotic scenario.
This paper, in contrast, takes a novel, functional approach
by basing a relation on a single fundamental, objective
mechanical property. Another contribution lies in treating
all the objects as entire bodies rather than simplifying them
into points, a simplification which ignores the importance
of physical contact in the “on” relation. We also show how
the method can be used to generate probability distributions,
such as might be used for visual search.

This paper is organized in the following way: Section II
introduces the spatial relation we are examining and our
suggested perceptual model for it; Section III presents the
implementation of the model that we have carried out and
the experiments performed – on real image data as well as
simulated. Section IV discusses the results and directions for
future research, followed by conclusions in Section V.

II. THE ON RELATION

Spatial predicates in language come in different categories.
Projective spatial relations constrain the trajector’s1 location
within an essentially directed region relative to the landmark.
Examples in English include “to the left of”, “behind” and
“past”. Topological relations, in contrast, locate the trajector
in some manner that is independent of direction. Typical
examples are “on”, “at” and “inside”. Topological relations
seem to be among the first to be learned in humans [12].
In this work, we are concerned with “on”, an important
English word implying an equally important underlying
spatial concept.

Research suggests that verbal descriptions of space do not,
in general, correspond one-to-one to cognitive representa-
tions [9]. Instead, it seems conceptualization forms around
kernels of functional criteria, such as “physical attachment”,
“superposition” (an object being located in the space ver-
tically above another) or “containment” (an object being
enclosed by another). As has been noted by e.g. Talmy [15]
and Herskovits [6], English’ “on” carries a central meaning
also represented in many other languages: that of support
against gravity; i.e., a trajector is “on” a landmark if it would,
were the landmark to be removed, begin to fall or move under
the influence of gravity. This sense of “on” is an idealized
cognitive model or ICM [7], around which other, less central
and more idiomatic senses of “on” form in a way specific to
each language.

A. The importance of support in robotics

We observe that the notion of support is highly related
to the functional aspects of space as designed, constructed
and lived in by human beings. Such space is full of entities
specifically made to support others, both statically – such
as tables, shelves, counters, chairs, hooks and desks – and
dynamically – such as trays, trolleys, and dishes. This
functional aspect is emphasized by Coventry and Garrod [4]:

1The trajector is the entity whose location (and/or motion) is being
denoted explicitly, in relation to the landmark. Thus, in the sentence “A
is above B”, A is the trajector and B the landmark.

Describing where an object is located goes
beyond the description of a geometric position of
objects as a snapshot in time. Understanding spatial
language is also about the purpose that location
serves for the users of that language.

As for “on”, it is the 14th most common English word [1]
which indicates the importance that humans attach to support
in representing the spatial location of an object2.

Apart from the evidence given by its prominent role in
language (and thus in the minds of people), support is
an intuitively useful abstraction in the following way: If a
support is moved, then supported objects will tend to move
with it, maintaining the relation (Coventry and Garrod refer
to this as “Location control” [4]), and it makes the relation
inherently hierarchical, which is a useful property in spatial
organization.

Also, the fact that artifacts in the environment are ex-
plicitly designed to provide support surfaces for objects
means that often, when an object is “on” another, it belongs
there functionally to some degree and is thus likely to be
replaced on the same surface even after a human picks up,
manipulates, or moves it – notwithstanding that the exact
position may have changed. For example, a desk may be
shifted or moved, or worked at by its owner, and its set of
supported objects yet be unchanged.

It thus is of interest to robotics to use a spatial representa-
tion that encodes this functional relationship between objects.
Although this work is inspired by linguistic clues, giving a
robot additional linguistic capabilities is only an incidental
outcome. It is also necessary to point out that the word
“on” spans far more meanings than the core physical support
relation: it may entail indirect rather than direct support,
adhesion or suspension, as well as metaphorical meanings.
Here, we are not attempting to cover that complexity.

B. A perceptual model

The “support” relation proposed above constitutes an
idealized model, but is as such not possible to evaluate
directly from perceptual data. Neither robots nor humans can
ascertain degree of mechanical support merely by visually
regarding a scene, and so it becomes necessary to introduce
a perceptual model to estimate the ideal relation.

Humans use context, experience with specific objects and
generalizations, as well as schemata, to decide whether an
object is “on” another. For robots, we model this with a
simplified 3-dimensional geometric predicate, termed ON,
such that ON(A,B) corresponds to “A is supported by B”.
The relation is graded and can attain values in the range
[0, 1].

The following are our criteria and their justification. O
denotes the trajector object, and S the support object or
landmark. The criteria are illustrated in Figure 1.

2Though many usages of “on” in English are not about support directly,
or even about physical space, the fact that “on” is the word used still
underscores the cognitive centrality of its core meaning.
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Fig. 1. Key features used in computation of ON: Separation d, COM offset l, contact angle θ and contact threshold δ. The gray area represents the
contact.

1) Separation between objects, d. d can be positive or
negative, negative values meaning that objects seem to
be interpenetrating.
In order for an object to mechanically support another,
they must be in contact. Due to imperfect visual input
and other errors, however, contact may be difficult to
ascertain precisely. Hence, the apparent separation is
used as a penalty.

2) Horizontal distance between COM and contact, l. It
is well known that a body O is statically stable if its
center of mass (COM) is above its area of contact with
another object S; the latter object can then take up the
full weight of the former. Conversely, the greater the
horizontal distance between the COM and the contact,
the less of the weight S can account for, as the torque
gravity imposes on O increases, and this torque must
be countered by contact with some other object.
Thus we impose a penalty on ON(O,S) that increases
with the horizontal distance from the contact to the
COM of O. The contact is taken to be that portion of
S’s surface that is within a threshold, δ, of O, in order
to deal with the uncertainties described above. If d > δ,
the point on S closest to O is used instead. l is the
positive distance to the outer edge of the contact area
if outside it, and the negative distance if inside.

3) Inclination of normal force, θ – the angle between the
normal of the contact between O and S on the one hand,
and the vertical on the other. The reason for including
this is that mutatis mutandis, the normal force decreases
as the cosine of θ, meaning the weight of O must be
either supported by another object or by friction (or
adhesion).

All these values can be computed from visual perception
in principle. Unless otherwise known in advance, the position
of the COM is taken as the geometrical centroid of the object
(since density cannot be determined by vision).

In order to allow a measurable value to be computed, the
agreement with each of the three above criteria is represented
as a continuous function, with a maximum at the point of

best agreement with the criterion. This provides robustness
against error. Criterion 1 is represented by an exponential
distance factor:

ONdistance(O,S) , exp
(
− d

d0(d)
ln 2
)

(1)

where d0 is the falloff distance at which ON drops by half.

d0 =
{
−d−0 , d < 0
d+
0 , d >= 0

The constants d−0 and d+
0 are both greater than 0 and

can have different values (representing the penetrating and
nonpenetrating cases, respectively).

Criteria 2 and 3 make up the sigmoid-shaped contact
factor:

ONcontact(O,S) , cos θ · 1 + exp(−(1− b))

1 + exp
(
−
(
−l
lmax
− b
)) (2)

Here, lmax is the maximum possible distance an internal
point can have within the contact area, and b is an offset
parameter.

The values are combined by choosing whichever factor is
smaller, indicating the greater violation of the conditions for
support:

ON(O,S) , min(ONcontact,ONdistance) (3)

Note that the resultant value of ON, although in the range
[0, 1], is not a probability. Rather, it represents the degree of
resemblance of the visual scene to the prototypical ON case.
It can be thresholded to produce a true/false judgement,
which may in turn be utilised in a qualitative reasoning
framework, or for learning – such as learning relationships
between object types in an environment. Alternatively, the
ON measure could be compared with similar measures for
other relations or other objects, to determine which linguistic
description of the scene is the most apt. It can also be used
to weight samples to produce a distribution over poses of O,
as discussed below.

4896



C. Probability modelling

The conceptualization above does not explicitly make use
of any probabilities. However, it is obvious that the fact of
an object being ON another is not sufficient to recover the
exact pose of the trajector. A probability distribution over
poses can be produced in the following way:

Given the pose and geometry of the landmark S, and the
geometry (but not the pose) of the trajector O, each possible
pose π for the trajector yields a value of ON(Oπ, S) for that
pose.

It is now possible to introduce probabilities in the follow-
ing way. Introduce a true/false event On(O,S) signifying
that ON(O,S) > t where t is a threshold. Then,

p(π|On(Oπ, S)) = p(On(Oπ,S)|π)p(π)
p(On(Oπ,S)) = (4)

= [ON(Oπ,S)>t]p(π)
p(On(Oπ,S))

Here [] denotes the Iverson bracket:

[X] =
{

1, if X is TRUE
0, otherwise

In other words, the probability is simply proportional to
the prior for the pose π whenever ON(Oπ, S) > t, and 0
elsewhere. Though it may be hard to express this distribution
analytically, by drawing samples randomly from p(π), dis-
carding those failing to reach the threshold, and normalising
over the remainder, an arbitrarily good approximation can be
found.

D. Example: Visual object search

One use for the above probabilistic formulation is the task
of locating an object by searching for it visually [16], [18],
[19]. Visual object search is typically posed as the problem
of selecting a series of views {Vi}, such that the cost of
acquiring and processing those views is minimized while
detecting the sought object at some set probability.

Assume that some algorithm exists that produces a se-
quence of views, given a probability distribution for the
sought object p(πO = x) = fO(x), the views incurring
the total cost CO{fO}. The cost may depend on the actual
object, due to size, saliency et cetera.

In this context, the ON relation can be highly useful. In
many scenarios, the exact position of an object O may be
uncertain or unknown, even while it is known or presumable
that it is ON some other object S. This information can
have several sources: O may have been seen ON S at an
earlier time, and location control implies the relation will
still hold even if S has moved. The connection may also
be statistical in nature, learned through experience from
many analysed scenes (“this type of object is usually located
ON that type”) or from a commonsense knowledge database.
The information may also come from symbolic reasoning or
linguistical utterances.

Using an object’s location to help search for another is
known as indirect search. Indirect search was first investi-
gated in 1976 by Garvey [5]; there, a system looking for a
phone in a room is first tasked with finding the table that

the phone is resting on. Wixson [17] re-visited the idea of
indirect search in the context of mobile robotics; however,
previous work on exploiting spatial relations to guide the
visual search process on mobile robots is non-existant.

If it is known a-priori that On(O,S), and the location of
S is known, then the above distribution may be used as a
prior probability input to a view-selection algorithm, at cost
CO{fO|S}.

If On(O,S) is known to hold but S’ location is not
known, there are two choices: Indirect search can be used,
i.e. locating S first and then locating O given the position
of S. The cost of this will be3:

CS{fS}+ CO{fO|S}

Alternatively, one may use a distribution over O’s location
obtained through chain inference:

CO{fO} = CO

{∫
S

fO|SfS

}
Either approach can be evaluated using the sampling method
suggested above. By comparing the costs, the most beneficial
option can be selected depending on the situation.

III. EXPERIMENTS

To test the feasibility of the concepts described in the
preceding section, we have implemented them on a robotic
system and tested it in a real-world setting.

We also present a series of simulations that illustrate
the potential of the approach using random sampling to
synthesize a distribution over positions in space.

A. Experimental setup

The robot used in our experiments is a Pioneer III wheeled
robot, equipped with a stereo camera mounted on a pan-tilt
unit at 1.4 m above the ground.

Three different box-shaped objects were used for the tests:
A, B and C, as seen in Figs. 2–5. Objects were detected and
an initial pose estimated using SIFT features, and the pose
refined and tracked using particle filtering based on edge
information acquired from the known geometric model of
each object [14]. Furthermore, horizontal plane patches were
extracted from stereo depth information and assembled into
planar objects (table surfaces).

The resulting object poses, along with their known ge-
ometries, were then processed by the ON computation de-
scribed in Section II, using the parameter settings δ =3 cm,
d+
0 =2 cm, d−0 =1.4 cm and b = 0.5. The center-of-mass of

each object was taken to be its geometrical center.

B. Results

Figure 2 shows a simple case (The wireframe contours
show the estimated object poses output by the tracking
algorithm). The values for the support function in this scene
are:

3Although the second term cannot be known exactly without knowing S’
orientation, one can compute an average over orientations or use a typical
orientation; either way, the cost will not vary much for most objects.
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Fig. 2. Typical case: A ON B, B ON table

Fig. 3. Ambiguous case: B partly ON A, B partly ON table

ON(A, x) ON(B, x)
x = A — 0%
x = B 93% —
x =Table 2% 92%

The support relation is unambiguous in this case: A is
supported by B, and B by the table. In Figure 3, the situation
is more ambiguous, with B resting partly on the table,
and also leaning on A. The ambiguity is reflected in the
ON measures:

ON(A, x) ON(B, x)
x = A — 25%
x = B 0% —
x =Table 74% 47%

Figure 4 shows another double support example; the object
is held up approximately equally by the two objects, which
is reflected in the computed function:

Fig. 4. Ambiguous case: C partly ON each of A and B

Fig. 5. An anomalous case

ON(A, x) ON(B, x) ON(C, x)
x = A — 1% 28%
x = B 0% — 30%
x = C 0% 0% —
x =Table 91% 93% 3%

Finally, Figure 5 depicts a situation that is seemingly
physically implausible.

ON(A, x) ON(B, x)
x = A — 0%
x = B 22% —
x =Table 4% 84%

The ON measure here is low, and even though there is no
other object with which to compare it, the low value means
the configuration is far from prototypical and not one that
would be expected by the robot, given only the information
that “A is on B”. The problem here is that the COM has
been modified with an extra weight so as not to be at the
geometrical center of A, but the robot doesn’t know this, and
as stated earlier it cannot be gleaned from vision alone.
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Fig. 6. Objects used in simulation experiments

In summary, we have verified that our approach works in
an implemented real-world system, all the way from sensors
to spatial abstraction, producing outputs that are intuitively
reasonable.

C. Simulation

For the simulated experiments, we used the same object
geometry models as in the real-life experiments, as shown in
Figure 6. One or more objects were fixed to one position in
space (considered “known”), and one or more objects were
assigned variable poses (considered “unknown”). Because of
the lack of noise, we were able to use stricter parameter
settings: δ =2 cm, d+

0 =0.7 cm, d−0 =0.4 cm and b = 0.5.
In accordance with the principles put forth in Section II-

C, we then sampled the distribution of the ON function
by randomly selecting poses for the variable objects and
evaluating the ON function for each. The figures in this
section each show 2500 samples that evaluated to ON > 0.5.
Note that the full 6 DOF pose was variable, although the
figures only show the position of the COM.

Two basic cases are shown in Figures 7 and 8. The former
shows samples of A’s position, given that it is ON the table;
the latter, given that it is ON B. The stratification that can
be observed corresponds to A standing up, and lying on
its side or back, respectively. This arises directly from the
ON function and shows how ON can encapsulate complex
modes of configurations implicitly. Automatic clustering
would allow for the extraction of these modes, which might
then be used in high-level qualitative reasoning.

Two other configurations of the object B are shown in
Figure 9. These illustrate how the inclination of the support
object is taken into account in the ON computation. Not all
points “above” B are valued equally, as might be the case in a
purely geometrical approach, but rather points corresponding
to a largely vertical contact normal are considered more
feasible. In the second image, the distribution is concentrated

Fig. 7. Position of A, given “A ON Table”

Fig. 8. Position of A, given “A ON B”

to a narrow region corresponding to A balancing on the
topmost edge of B (which translates to a low ON value in
absolute terms, despite being the global maximum).

The potential uses of these distributions are many. As
explained in Section II-C, they can be translated into prob-
ability distributions. In a search scenario, where it is known
that A ON B, and B’s pose is known, the distribution may be
used to direct the search for A. If the pose of B is not known,
the distribution (as computed by assuming B were known)
can be compared to an uninformed prior on A’s location,
allowing the robot to decide whether it is worth it to search
for B first, or if it is better to look for A directly.

In that vein, Figure 10 contains the result of a chained
sampling, where both objects A and B were allowed to vary
randomly. Only when both B ON Table and A ON B were
greater than 0.5 was the position of A plotted. In other words,
what is represented is the distribution over A’s position,
given that A ON B and B ON Table, but with B’s exact
pose unknown.

This type of chained inference allows for e.g. searching for
A without first locating B, while still utilizing the knowledge
that A ON B. As stated above, the distribution can be
compared to the prior of A, and A given A ON B, to
determine whether it is more beneficial to locate B first or
not.

Fig. 9. Position of A, given “A ON B”
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Fig. 10. Position of A, given “A ON B, B ON Table”

IV. DISCUSSION

This work has only begun to explore the possible uses to
a mobile robot of the conceptualization proposed. We would
like to extend the work in several ways. First, evaluating the
efficiency of object search utilising the results of this paper,
as well as exploring how the principle of using functional
criteria can be generalized through a similar treatment of
other important spatial relations, especially topological ones
such as “in” or “at”. In addition, we hope to integrate this
conceptualization of “on” with information from language
and the OMICS database, and conversely to use it to generate
spatial utterances and generalizations about typical relations
between objects. Furthermore our implementation has been
limited to box and plane shapes; it will readily extend to
any convex 3D shapes, but non-convex shapes require that
further assumptions be made.

The perceptual model described in Section II-B assumes
knowledge of the involved objects’ geometry, poses and
centers of mass. Whereas a human is able to estimate these
quantites, even for novel objects, and/or extrapolate them
based on experience, a robot may not always have access
to good such estimates from its visual system. Vision is not
the focus of this work, however, and the soft nature of the
functions gives some robustness to poor visual information;
moreover, and more importantly: as shown in Section II-
D, when the relation information is used in the “synthesis”
direction, such as in search, poses do not need to be provided.

The descriptors used in this work were selected in an
a priori fashion, and the relevant weights were adjusted
manually. In the future, we hope to achieve a more objec-
tive correspondence between the model and the idealized
conceptualization of support – and other such idealized
conceptualizations – through learning, either based on studies
of human classification or on mechanical simulation. The
choice of which features to use in the first place is a still
more challenging learning goal, which must nevertheless be
tackled in order to allow the approach to be applied to
a far wider set of conceptualizations. A concept such as
mechanical support cannot be acquired from scratch without
learning from experience with manipulating physical bodies,
connecting physical forces that are felt to visual properties
of objects and the effects of actions. More work needs to be

done on using such feedback to build functional spatial
concepts, work that cannot be separated from the larger scope
of imbuing robots with greater intelligence.

V. CONCLUSIONS

We proposed an idealized cognitive model for the core
concept underlying English “on”, viz. mechanical support, in
order to give us a functionally grounded abstraction primitive
to use with qualitative reasoning and learning, top-down
processes such as visual search, and linguistic interaction.
A novel perceptual model was designed and implemented
to approximately analyze real-world scenes in terms of this
model, and results of experiments with real-world data were
presented. Finally, we contributed a method to synthesize
expectations about the metric location of an object to aid in
e.g. efficient search.
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