
Task Space Motion Planning Using Reactive Control

Matthias Behnisch, Robert Haschke and Michael Gienger

Abstract— In this paper we present an approach to reduce
the effort for planning robot motions by shifting the planning
problem to a high-level representation. We combine classical
sampling-based random tree planning with a reactive controller
connecting sampling points with nontrivial trajectories, uti-
lizing redundant DOFs to locally avoid obstacles. While the
reactive planner operates locally on a short time scale, the
complementary sampling-based method is able to find globally
feasible solutions due to its larger preview horizon. Additionally,
planning is done in a low-dimensional task space instead of the
high-dimensional joint space. Comparing the average planning
time and number of tree extensions for several scenarios and
planning methods, we demonstrate that this hybrid planning
approach is capable of solving a large fraction of planning
queries while saving considerable planning time.

I. INTRODUCTION

The idea of generating movements by reacting to the
environment was addressed by potential field methods since
the early days of motion planning [1], emphasizing real-
time path generation and obstacle avoidance. Recent work
on humanoid robot control picks up the idea of incorporating
environmental reactive behavior into the domain of trajectory
generation within redundant whole body motion control
frameworks [2]–[4]. However, these potential field methods
suffer from the problem of operating in a local scope only,
unable to find global solutions in the presence of local min-
ima due to complex environments. This weakness originally
led to the development of planning algorithms that globally
search the configuration space, like complete combinatorial
planning or probabilistic complete sampling-based planning.
For an overview of motion planning techniques see [5], [6].

Sampling-based planning methods are particularly suc-
cessful in solving complicated problems in high-dimensional
configuration spaces, even under presence of non-holonomic
or kinodynamic constraints. Nevertheless, the computing
time of those methods scales exponentially with the number
of degrees of freedom. Modern humanoid robot platforms
possess a large number of joints, typically resulting in a
highly redundant kinematic structure. To keep the computing
time bounded and thus meet the real-time requirements
of robots operating in dynamic human environments, more
efficient search methods or pruning techniques are needed.
Several heuristics were developed to reduce the search space
and to handle redundancy.

The work in [7] specifies goals in the lower-dimensional
workspace and a heuristic, estimating the workspace dis-

M. Behnisch and R. Haschke are with the Research Institute
for Cognition and Robotics, Bielefeld University, Bielefeld, Germany
{mbehnisc,rhaschke}@cor-lab.uni-bielefeld.de

M. Gienger is with the Honda Research Institute Europe, Offenbach,
Germany michael.gienger@honda-ri.de

Fig. 1. Sampling-based planning in the task space with the Honda
humanoid research robot. The solution trajectory is shown in green/yellow.

tances of the robot to the goal and to obstacles, is used to
bias the configuration space search of a Rapidly Exploring
Random Tree (RRT) [8]. JT-RRT builds upon the same
principle, but imposes a stronger goal bias by randomly
performing direct movements towards the goal, employing
the Jacobian transpose as a approximate mapping between
end-effector poses and configuration space postures [9]. In
[10] (BiSpace) two search trees are used: one in configuration
space starting at the current posture and another one in the
workspace originating from the workspace target. The search
of the RRT based algorithm is focused on connecting both
trees, again utilizing a workspace metric.

While the aforementioned planners add different
workspace heuristics to a configuration space search, it is
also possible to perform the entire search in the workspace,
or more generally in the task space [11]. Here a Jacobian
pseudo-inverse feedback controller generates configuration
space trajectories for a highly redundant robot arm based
on a low dimensional task specification. It is shown that
searching the space of task positions with a modified
RRT algorithm can lead to an enormous performance
improvement in contrast to high-dimensional configuration
space search. However not all possible solutions can be
found, since the set of exploreable trajectories is restricted.

The technique in [12] reduces the search effort by de-
composing the problem into two subproblems. First sub-
problem is to find a workspace tunnel of free space, that
is assumed to contain the swept workspace volume of the
robot following a solution path. The second subproblem
is to find a collision-free path inside this tunnel, where a
redundant control scheme is employed, utilizing distance
based potential functions to repel the robots links from
obstacles and to attract the end-effector through the tunnel.
The Elastic Strips method [13] takes the same approach
of refining a predetermined workspace path to obtain the

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5934



final configuration space trajectory. Since the refinement
of a given path fails in situations where local minima or
topological changes occur, Elastic Roadmaps [14] add a
global search method. A sampling-based planning approach
is taken to create a roadmap in workspace and individual
nodes are allowed to move in response to obstacles while the
connections between them are constantly updated. However,
since the roadmap is computed in the workspace, there is
no guarantee that a motion between nodes is possible in all
cases.

In the present paper we follow the approach of searching
the task space directly with a sampling-based random tree
planner, while a feedback control scheme is used to exploit
the redundant space in order to reactively avoid obstacles
by computing distance based potential functions. Section
II gives an overview of the concept of hybrid planning,
followed by a description of the planning algorithm and the
reactive whole body motion control framework. Section III
outlines the simulation experiments conducted to compare
the performance, whose results are presented in section IV,
followed by a discussion in section V and conclusions in
section VI.

II. HYBRID PLANNING

The motion planning approach presented in this paper
builds on the concept of shifting the planning problem to a
high-level representation. The task of the planner is reduced
to specify sub-goals for a reactive control framework, able
to avoid obstacles autonomously. This way, our method is
hybrid in the sense of dividing the search into a global com-
ponent, based on a sampling-based planning algorithm, and
a local component, which exploits the robot’s redundancy to
avoid obstacles with distance based potential functions.

The main idea of sampling-based planning is to abandon
an explicit representation of the state space and instead only
use an implicit representation of sub-paths between randomly
sampled positions (e.g. see [5], [6]). How these samples are
created and how the search for a solution path is organized
depends on the algorithm used, while the underlying process
of generating motions between sampled positions is handled
by a local planner. The local planner is responsible to ensure
that the sub-paths are valid movements and collision free. It
can be shown that sampling-based planning is probabilis-
tically complete, i.e. in the limit of an infinite number of
samples, the probability to find a solution – if there is one –
converges to one, provided the sampling is done in a uniform
random fashion.

Figure 2 illustrates how hybrid planning differs from clas-
sic sampling-based planning. The left side shows the classic
approach, where sampling and local planning is directly done
in the configuration space of the robot. In our hybrid planning
method, the simple local planner, generating straight-line
motions between nodes, is replaced by a more powerful
planner that builds upon the reactive control framework. This
is shown on the right side of figure 2. Sampling is now
reduced to the lower-dimensional task space and it is the

Task space

Configuration space

(1)

Configuration space

Sampling

(2)

(3)

(4)

Fig. 2. LEFT: Sampling-based planning in the configuration space. RIGHT:
Hybrid planning reduces sampling to the task space. Starting at some task
space and corresponding configuration space position (1), a sub-trajectory
towards a target (2) in task space is created. The reactive local planner
adjusts the configuration space trajectory based on a distance based potential
function (3) without changing the task space trajectory (4).

duty of the reactive local planner to generate a corresponding
trajectory in the configuration space.

To get a better understanding on how the reactive local
planner creates motions, it is useful to examine some prop-
erties of the underlying control framework. It is based on the
well known principle of resolved motion rate control (e.g. see
[15]), as a way to control robotic manipulators by specifying
end-effector velocities. A differential kinematic mapping
between joint and end-effector velocities, or more generally
task velocities, is computed. For redundant manipulators, this
mapping is not unique, that is a given task velocity can be
realized by a continuum of joint velocities. For this case
the mapping can be decomposed into the space of realizable
task space movements and the space of redundant joint
movements, containing self-motions of the manipulator that
do not affect task execution. While the movement in the task
space is determined by the target position, the movement in
the redundant space can be arbitrarily chosen.

Hybrid planning now proceeds by sampling a task space
target position as an input to the control system. While the
task space trajectory is fully determined, the trajectory in the
redundant space can be chosen in order to avoid obstacles.
For this a potential function, encoding the distance to ob-
stacles, is minimized by gradient descent. If this potential
function is properly defined, it can prevent local collisions
sufficiently well to enable the sampling-based planner to find
global solutions in the lower-dimensional task space on a
coarser spatial scale.

While this hybrid planning approach can solve many
planning problems, its success is dependent on the ability of
the control framework of finding suitable configuration space
trajectories. This can not be guaranteed, since the redundant
motion is determined with local search only. Thus the
probabilistically completeness of sampling-based planning is
only applicable to the task space search. If a configuration
can not be created with any task space position, it is not
considered during the search, thus hybrid planning is not
complete concerning the space of all possible configurations.

Another limitation is that the search can only be performed

5935



in a directed manner. Although the iteration of the control
system could be reversed in principle, it has to be initialized
with a starting configuration. If the desired posture at the
goal is not known, this information is missing.

Because the task space state does not represent the whole
motion in the configuration space, storing the configuration
space position together with the task space position during
the search is advantageous. Else the recreation of the corre-
sponding configuration space position would need a complete
traversal of the search tree, beginning at the starting point.

To summarize, the key features of our hybrid planning
method are as follows:
• The space that is searched by sampling is reduced to

the lower-dimensional task space.
• The ambiguity of redundant manipulators is resolved

during planning, thus it is sufficient to specify a single
task space goal instead of a whole set of possible joint
postures at the goal.

• By adding a local obstacle avoidance method in the
redundant space, the set of collision free trajectories
that can be produced is enlarged.

• Planning and reactive obstacle avoidance occur simul-
taneously in a one-shot fashion, no preprocessing is
necessary.

• Planning is done in the space of control inputs, hence
resulting movements can be directly executed with the
controller in the same way as they are planned. No
postprocessing is necessary to modify a plan to be
executable on a controller that moves real hardware.

• The task space used is not restricted to be the cartesian
workspace with sampling-based planning. Instead every
input to a control system can be used as task space,
even if this input is of high dimension and exhibits non-
holonomic or kinodynamic constraints.

A. Planning Algorithm

The global search component in our hybrid planning
approach is based on the Expansive Space Tree (EST)
algorithm [16], a probabilistic single-query sampling-based
random tree planner. A key point that distinguishes the EST
algorithm from others is how tree nodes are selected for
extension and in which direction the extension is performed.
While the Rapidly Exploring Random Tree (RRT) [8] first
determines an exploration direction and then picks the closest
tree node to expand towards this direction, the EST algorithm
reverses this process by first selecting a node and than
choosing the direction independently. This way EST does not
depend on state space metrics to determine the exploration
direction, thus omitting the challenging problem of designing
a suitable metric [17]. Also EST is specifically designed
for problems that involve kinodynamic constraints. If local
motions are generated in terms of a control system, the tree
extension proceeds by sampling in the space of control inputs
and by integrating the control system forward. This way
constraints are satisfied by construction. Guided Expansive
Space Trees [18] and Utility-guided Random Trees [19]
further refine the concept of EST, in order to exploit as

Algorithm 1 Task space EST
T ← ∅
x← xstart

while d(xgoal, x) > goalregion do
(xcur, ẋcur, qcur)← SELECT (T )
if random([0..1]) ≤ goalbias then
xtarget ← xgoal

else
xtarget ← SAMPLE(xcur, σ)

(x, ẋ, q, tvalid)← EXTEND(ẋcur, qcur, xtarget, tmax)
if tmin ≤ tvalid ≤ tmax then
T ← ADD(T, x, ẋ, q)

Algorithm 2 Configuration space EST with task space bias
T ← ∅
x← xstart

while d(xgoal, x) > goalregion do
qcur ← SELECT (T )
if random([0..1]) ≤ goalbias then
xtarget ← xgoal

(q, tvalid)← EXTEND(qcur, xtarget, tmax)
if tmin ≤ tvalid ≤ tmax then
T ← ADD(T, q)

else
qtarget ← SAMPLE(qtree, σ)
if q ← CONNECT (qcur, qtarget) then
T ← ADD(T, q)

much information as possible during the search process and
to avoid inefficient exploration behavior. Since we want to
focus on the impact of redundant obstacle avoidance here,
the plain EST algorithm is used.

Algorithm 1 shows the EST algorithm adapted for plan-
ning in the task space. The selection of tree nodes remains
the same. As the first step in each iteration, SELECT picks
a node from the tree for expansion. A weight is assigned
to each node that determines the probability of choosing the
node. It is defined in terms of how densely the neighborhood
of the node is sampled and is higher for nodes with few
neighbors, thus steering the exploration towards less explored
regions of the space.

A common method to focus the growth of the tree is to do
a direct attempt to reach the goal with a certain probability
goalbias. Without goal biasing, the function SAMPLE
creates a new target sample from a Gaussian distribution,
centered at the selected node and using a fixed standard
deviation σ.

Given the desired target position, the next step differs
for planning in the task space. The local planner is called
with the EXTEND function with the objective of creating
a movement towards a given task space target position
xtarget with maximum duration tmax, while simultaneously
checking for collisions and returning the largest possible
collision free duration tvalid. The task space target position

5936



Fig. 3. Top view of a simulation of the Honda humanoid research robot
doing a forward movement with one hand in presence of an obstacle, using
reactive obstacle avoidance (left) and without obstacle avoidance (right).

is treated as the input to the underlying control system and
by integrating the system forward in time, trajectories are
created. When the iteration of the control system is done,
EXTEND returns not only the last task space position
reached, but also the task space velocity at this point and
the corresponding configuration space position. Thus more
data has to be stored in the tree, appended by the ADD
function, if the valid duration of the trajectory is between a
minimum and maximum value. The loop is repeated, until
the distance towards the goal gets smaller than a threshold.

As mentioned before, pure task space planning only
considers a subset of possible motions and is not able to
find solutions to all problems that are solvable. To get an
impression of the fraction of solutions that can be found by
task space planning, we compare task space planning against
a planner that searches the configuration space, shown as
algorithm 2. It follows the methodology of JT-RRT [9] by in-
terleaving configuration space search with direct connection
attempts in task space. In the goal biasing case the algorithm
proceeds similar as task space EST, with the difference that
the extension is always done towards the goal. Instead of
utilizing the Jacobian transpose like JT-RRT, the EXTEND
function, i.e. our control system, is used here. The Jacobian
transpose represents task space movements that decrease the
distance to the target in every iteration, but not in an optimal
way of taking the best direction possible to get closer to the
target. Our control system does create an optimal movement
towards the target by using the Jacobian pseudo-inverse and
thus results in a stronger, more directed bias towards the
goal. If no goal biasing is done, a classic configuration
space search is carried out following the EST algorithm. The
CONNECT function performs direct connections in the
configuration space.

B. Reactive Control

The local planner of the planning algorithm, is based
upon the whole body motion control framework for the
Honda humanoid research robot [2]. The framework solves
the inverse kinematics problem for the upper body of the
robot, following the resolved motion rate control principle,
with the redundancy resolved with the gradient projection
method, i.e. it generates joint velocities given a desired task
position while utilizing the robots redundancy to optimize
secondary motion objectives. Secondary motions objectives

employed within this framework are joint limit avoidance [2],
self-collision avoidance [4] and external collision avoidance
[3]. Here all three criteria are used, following the formulation
in [2], [3].

Tasks are encoded with task space attractor points as a
compact movement representation. Possible task modalities
are the left or right hand position x ∈ R3, as well as the
so called hand-attitude description. Instead of specifying the
complete orientation of the hand, the position of the grasp
axis is given to which the hand aligns. The orientation around
that axis is kept unconstrained. Thus the task attractor x
representing the combined position and orientation lies on
the 5 dimensional manifold R3 × S2 embedded in R6.

Once a target task position x is set, an attractor point is
continuously moved on a linear trajectory towards the target,
with a simple second-order attractor dynamic generating
suitable task velocities ẋ. This approach leads to a smooth
bell shaped velocity profile with a limited acceleration. Due
to this process, our task space model exhibits second-order
differential constraints, i.e. the allowable accelerations at
each point are restricted.

Now, with the task Jacobian J(q) ∈ Rm×n relating joint
velocities q̇ ∈ Rn to task velocities ẋ ∈ Rm, the inverse
problem of computing q̇ given ẋ can be solved with the
gradient projection method (e.g. see [15]) as

q̇ = J#ẋ−NW−1

(
α
∂H

∂q

)T

. (1)

J# denotes the weighted generalized pseudo-inverse
J# = W−1JT (JW−1JT )−1 and N the null space pro-
jection matrix N = (1 − J#J). The robots redundancy is
exploited by projection of a joint space gradient into the Jaco-
bian null space that minimizes a cost function H by gradient
descent with step width α. Since joint-limit avoidance and
collision-avoidance motion criteria are incorporated into the
framework, the cost function consists of two terms:

∂H

∂q
=
∂Hlimit

∂q
+
∂Hcoll

∂q
(2)

The joint limit avoidance cost function Hlimit penalizes
deviations of individual joints qi from a desired reference
position q0,i, normalized with respect to the range of the
joint [15]:

Hlimit =
n∑

i=1

(
qi − q0,i

qmax,i − qmin,i

)2

(3)

The collision avoidance cost function Hcoll penalizes both
collisions of the robot with itself and collisions with external
objects. To this end, pairs of closest points between robot
segments and between robot segments and external objects
are computed. The costs for each individual pair pi with
associated distance dpi

are given by [3]

gpi
=

{
s(dpi − dB)2 0 ≤ dpi ≤ dB

0 dpi
> dB

(4)

5937



The overall cost function Hcoll, incorporating all distances,
is defined as the sum of individual costs over the set of all
closest point pairs {pi|i = 1..P}:

Hcoll =
P∑

i=1

gpi
(5)

The collision avoidance is only activated if the distance
is below the threshold dB . The parameter s determines the
slope of the cost function gpi

.

III. SIMULATION

The proposed hybrid planning method was tested in a
simulation framework, combining the whole body motion
control for the Honda humanoid research robot, the Vortex
engine [20] for collision checking and OOPSMP [21], [22],
a library implementing various sampling-based planning al-
gorithms. Here a EST variant was used that assigns weights
to nodes based on the number of outgoing edges, in order to
estimate the level of exploration in a neighborhood around
the nodes, as outlined in section II-A. Two setups were used,
as shown in figure 4. In the first, the task is to reach towards
a fixed position, with several obstacles placed in front of the
robot that are randomly displaced vertically. In the second
setup, multiple goals on a table have to be reached. For
each setup and target position four distinct planners were
run: task space EST (algorithm 1) with reactive and non-
reactive control and configuration space EST with task space
bias (algorithm 2), also with both reactive and non-reactive
control. The minimum and maximum duration of extension
paths were set to tmin = 0.1 and tmax = 0.4 and sampling
was done with σ = 0.5 in the task space and σ = 1.5 in the
configuration space. In the table setup a moderate goal bias of
0.25 was used and in the random obstacle setup a stronger
value of 0.4. Task space targets comprise either only the
3D position of the left hand or the position and orientation
(5D), while the configuration space involves 9 joints in a
kinematic chain from the hip to the hand-tip. All simulations
were done on workstations with Intel Core2 CPUs (3 GHz)
and 4GB RAM. The overall runtime and number of tree
extensions were averaged over 30 runs for each target and
in the random obstacle placement task in addition over 100
different displacements.

IV. RESULTS

Figure 5 shows the simulation results for both setups, sep-
arated into the different variants of the planning algorithms
and into the two task spaces used. An important value is the
number of successfully solved positions, visible in the first
column. Here the success rate of direct movement attempts
without planning is also shown. The remaining statistics are
computed for the successful runs only, again separated into
two subsets. For a fair comparison, the first subset contains
the planning queries that can be solved by all planners
(filtered). The second subset contains queries that, in the
task space, are only solved with the help of reactive obstacle
avoidance (obst. avoid.).

Fig. 4. The two setups used for simulation. Top row: Obstacles are placed
in front of the robot and randomly displaced. Goal is to reach the position
marked in blue with the left hand. Bottom row: Goal is to reach each of
the marked positions with the left hand.

If we examine the average runtime of planning in the
configuration and task space, there is an advantage in favor
of task space planning visible. The number of tree-extensions
shows the same qualitative result, even though the relative
differences are greater. Comparing the average runtime for
the cases with and without reactive obstacle avoidance,
the most significant difference occurs if the task space is
the 5-dimensional position and orientation space. For the
3-dimensional position space there is no clear difference
visible.

Figure 6 shows the average runtime at every individual
target position for the second setup. Here the results of
figure 5 are subdivided on the spatial scale. The difference
between configuration and task space planning, especially
with reactive obstacle avoidance, tends to be greater on the
left side of the table, more distant to reach for the left hand.
Regarding reactive obstacle avoidance, the observation that
the performance gain is larger for the 5-dimensional task
space can be reproduced here.

Besides the average runtime, it is important to look at
the percentage of solved runs. In both setups, configuration
space planning is more successful in solving queries than task
space planning. However the difference is quite small, what
is especially apparent looking at the different table positions
in figure 6. Here the spatial distribution of solved runs can be
seen. Positions in the middle can not be reached at all. For
the reachable positions, configuration space search solves a
few targets more than reactive task space search and task
space search without reactive obstacle avoidance finds the
least solutions.

V. DISCUSSION

Our proposition of saving planning time by searching
the task space instead of the configuration space holds
for these two setups. The reduced dimensionality – from

5938



Fig. 5. Results for randomly displaced obstacles (top) and table scene (bottom), showing (from left to right) the fraction of queries solved, the average
runtime for the subset of queries that are solved by all planners (filtered) and for the subset that is only solved with reactive obstacle avoidance (obst.
avoid.). Further the average number of tree-extensions for the same subsets is shown. Dark blue bars show results for configuration space planning, light
blue bars results for task space planning and grey bars results if no planning is done. The bars are grouped according to the task space dimension (3D or
5D) either with (obst.) or without obstacle avoidance.

Fig. 6. Average solution time for all table positions, for planning the position (top, 3D) and position with orientation (bottom, 5D) of the hand. Three
planners are shown here: Configuration space EST with task space bias using obstacle avoidance, task space EST with obstacle avoidance and task space
EST without obstacle avoidance (from left to right). The size of the boxes depict the fraction of solved planning runs.

9 (configuration) to 5 and 3 (task) dimensions – can be
exploited to speedup the search, although some overhead
is added with the control framework involved. Every tree
extension comes with the cost of computing the Jacobian
pseudo-inverse in every iteration of the control system and
for the case of reactive obstacle avoidance, a significant
amount of time is spend computing closest distances.

Notably, the averaged runtimes show a large variance
over all planning runs. One explanation can be ascribed to
the random nature of the search process but also, figure
6 suggests that the runtimes vary across different target
positions too. Some show an equally low or high runtime,
while at some positions a greater difference can be seen for
different planners. This can be interpreted as the difficulty
to reach certain targets, and under this premise we argue

that planning with reactive obstacle avoidance eases planning
substantially for many difficult target positions.

In theory the configuration space search is able to find all
possible solutions, while the task space search is limited to a
subset. This is confirmed by the simulation, but only for some
difficult situations. The incorporation of reactive obstacle
avoidance enables task space search to solve nearly as many
queries as configuration space search. Thus if this limitation
can be neglected, task space planning is advantageous by
speeding up the planning process.

Due to the limited computation time, solutions are not
always found in time. This explains the observation in figure
6 that with increasing average runtime, the fraction of solved
runs decreases. Also the difference between configuration
space search with and without reactive obstacle avoidance

5939



Fig. 7. Approaching a 5D target position (right) with non-reactive (left)
and reactive control (middle). The posture with reactive control (middle)
already lies closer to the target position. Thus reactive control simplifies
task space planning here.

can be explained by this circumstance, because the search
takes longer for the latter case and thus was prematurely
terminated more often.

An interesting counter intuitive result is the fact that
reactive obstacle avoidance has a bigger effect in the case of
the 5 dimensional task space, since in that case the redundant
space that can be used for avoidance motions is more limited
than in the case of a 3 dimensional task space. An intuition
to why this happens is shown in figure 7. On the left side, the
arm posture without reactive behavior is shown, and in the
middle the same posture with reactive behavior. Compared
to the target position on the right side, with the grasp-axis
pointing upwards, the reactive posture is already closer to
the goal. Thus reactive obstacle avoidance is more effective
here because the goal incidentally lies close to the posture
generated by the reactive behavior.

VI. CONCLUSIONS

A combination of classical sampling-based random tree
planning with a reactive control framework that is able to
exploit redundancy to avoid obstacles is presented in this
paper. The effort of planning motions is reduced by shifting
the search to a lower-dimensional task space. Although the
subset of planning queries that can be solved is limited,
hybrid task space planning can solve a large fraction of
queries. The use of redundant obstacle avoidance enhances
the applicability of the approach by enlarging the number
of queries that can be solved. This is shown by a simulation
study with the whole body motion control framework for the
Honda humanoid research robot and an adaption of the EST
sampling-based planning algorithm for planning in the task
space. We compare task space planning against an algorithm
for configuration space planning that utilizes the control
framework to bias the search in the task space. For cases
where pure task space planning fails, it is feasible to switch
towards planning in the configuration space, if a strong bias
in the task space is imposed. Building upon these results, the
development of a planner with the ability of interleaved task
space and configuration space planning, depending on the
difficulty of the planning problem, might be an interesting
subject for further research.

ACKNOWLEDGMENTS

Matthias Behnisch gratefully acknowledges the financial
support from Honda Research Institute Europe for the project
”Sampling-based planning for goal directed robot control”.

REFERENCES

[1] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and
Mobile Robots,” The International Journal of Robotics Research,
vol. 5, no. 1, p. 90, 1986.

[2] M. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole body
motion for humanoid robots,” in Proceedings of the IEEE-RAS Inter-
national Conference on Humanoid Robots, 2005.

[3] M. Toussaint, M. Gienger, and C. Goerick, “Optimization of sequential
attractor-based movement for compact movement representation,” in
Proceedings of the IEEE-RAS International Conference on Humanoid
Robots, 2007.

[4] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Real-time self
collision avoidance with whole body motion control for humanoid
robots,” in Proceedings of the IEEE-RSJ International Conference on
Intelligent Robots and Systems, 2007.

[5] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[6] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[7] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated

approach to inverse kinematics and path planning for redundant
manipulators,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2006.

[8] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept, Iowa State University, Tech. Rep.
TR, pp. 98–11, 1998.

[9] M. V. Weghe, D. Ferguson, and S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
Proceedings of the IEEE-RAS International Conference on Humanoid
Robots, 2007.

[10] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner, “Bis-
pace planning: Concurrent multi-space exploration,” in Proceedings of
Robotics: Science and Systems IV, 2008.

[11] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions
using a task-space voronoi bias,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 2009.

[12] O. Brock and L. Kavraki, “Decomposition-based motion planning: A
framework for real-time motion planning in high-dimensional config-
uration spaces,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2001.

[13] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” The International Journal of
Robotics Research, vol. 21, no. 12, p. 1031, 2002.

[14] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments,” in Proceedings of Robotics: Science and Systems, 2006.

[15] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Addison-Wesley Publishing Co., Inc., 1991.

[16] D. Hsu, R. Kindel, J. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” The International
Journal of Robotics Research, vol. 21, no. 3, p. 233, 2002.

[17] S. LaValle and J. Kuffner Jr, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions: the Fourth Workshop on the Algorithmic Foundations
of Robotics, 2001, p. 293.

[18] J. Phillips, N. Bedrossian, and L. Kavraki, “Guided expansive spaces
trees: a search strategy for motion-and cost-constrained state spaces,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2004.

[19] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2007, pp. 3307–3312.

[20] CM Labs Vortex. [Online]. Available: http://www.vxsim.com/
[21] E. Plaku, K. Bekris, and L. Kavraki, “Oops for motion planning:

An online, open-source, programming system,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2007.

[22] OOPSMP. [Online]. Available: http://www.kavrakilab.rice.edu/

5940




