
Constrained geodesic trajectory generation on learnt skill manifolds

Ioannis Havoutis Subramanian Ramamoorthy
School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK

I.Havoutis@sms.ed.ac.uk, S.Ramamoorthy@ed.ac.uk

Abstract— This paper addresses the problem of compactly
encoding a continuous family of trajectories corresponding to
a robotic skill, and using this representation for the purpose of
constrained trajectory generation in an environment with many
(possibly dynamic) obstacles. With a skill manifold that is learnt
from data, we show that constraints can be naturally handled
within an iterative process of minimizing the total geodesic
path length and curvature over the manifold. We demonstrate
the utility of this process with two examples. Firstly, a three-
link arm whose joint space and corresponding skill manifold
can be explicitly visualized. Then, we demonstrate how this
procedure can be used to generate constrained walking motions
in a humanoid robot.

I. INTRODUCTION

Humanoid robots receive increasing attention as general
purpose platforms suitable to a multitude of applications.
However, the level of flexibility that can actually be achieved
tends to fall short of this promise of generic dexterity -
due to the difficulty in devising motion planning and control
algorithms that can cope with the combination of dynamic
complexity, dimensionality and model imprecision. Many off
the shelf solutions providing humanoid behaviours, e.g., for
locomotion, tend to be restricted to a limited and discrete
vocabulary, valid only in narrow domains of applicability.
For instance, it is hard to find a general purpose humanoid
walking ‘engine’ that provides full control over step length,
width and height, in real-world terrains. On the other end,
specialized approaches that do enable some flexible move-
ments tend to be computationally expensive, e.g., requir-
ing high-dimensional numerical optimization and/or c-space
search, often with near-exact knowledge of the system and
its environment. This is a steep requirement for resource
constrained machines.

In this paper, we address the problem of designing motion
strategies that can achieve a rich set of within-skill variations.
These strategies are acquired in a data-driven manner, allow-
ing for adaptation to changes in environmental conditions
and task contexts, and can be implemented in realistic
resource constrained robotic systems. Such a representation
of a parameterized skill, applicable under a wide variety of
conditions, could then form the basis for higher level search
processes over a small alphabet, enabling fast high level
planning.

We build on earlier work [1] – to compactly represent
a continuous family of trajectories representing a specific
skill such as variable step-length walking - to incorporate
constraints (involving both task and joint space obstacles).
The goal is to define a scheme wherein the manifold captures
the essential variations in the set of trajectories corresponding
to a skill, from which one is able to (lazily) select specific
instances as dynamic constraints are revealed. Our approach
could also be used in a receding-horizon paradigm.

The idea of using low-dimensional representations for
motion synthesis is becoming well accepted in the robotics
and graphics communities [2], [3]. Some recent works [4],

Fig. 1. Top; Sketch of the constrained optimization procedure, where the
obstacle set O drives the trajectory away from the red square obstacle. Left;
An obstacle point ok affects only the path points that are within its range
(2ℓ) and exerts on them repulsive forces (red). In contrast the path points
are modeled as a spring system and points of the path can exert repulsive
(not shown) and attractive forces (blue) to their path neighbors. Right; All
forces that act on each path point are averaged and the resulting mean vector
is subsequently projected on the learnt manifold M.

[5], [6] address this issue by considering how task space
constraints can be used to structure planning in configuration
space with local Jacobian mappings. This does require full
access to an exact model, which may not always be possible.
The machine learning literature includes many examples
of dimensionality reduction to make problem spaces man-
ageable. For instance, Wang et al. [7] introduced Gaussian
Process Dynamic Models that use a mapping to a low
dimensional space where a linear dynamic model is fit to
data. Similarly, Bitzer et al. [8] use a Gaussian Process-based
nonlinear dimensionality reduction technique to arrive at a
subspace within which one may approximate demonstrated
data using parameterized families of paths. An approach
that is closer to our current work is that of Calinon et
al. [9], who use a probabilistic model, Gaussian Mixture
Regression, to learn trajectories from demonstration. While
impressive, these techniques essentially map a set of poses to
a low-dimensional space defined by some statistical criterion
and separately fit a parameterized model, hence essentially
overriding potential intrinsic dynamics effects that define
many behaviours of interest.

Our goal is to learn a factored model that allows us to
capture the intrinsic structure of the space of trajectories
of interest in a geometric structure, i.e., a skill manifold.
If this structure is learnt from data (either from human
demonstration or by solving many instances of the prob-
lem in simulation) that reflect an underlying principle such
as a path optimization or redundancy resolution principle
or even a more complex kinodynamic constraint, then by
solving subsequent constrained optimization problems in this
space one is able to ensure that generated optimal solutions
naturally satisfy both categories of specifications.

II. MANIFOLD LEARNING

Our nonlinear manifold learning method is based on
Locally Smooth Manifold Learning by Dollar et al. [10],

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2670

which we adapt with robot motion-specific issues in mind. In
particular, we modify the neighborhood graph creation pro-
cess to consider task space distances and the need to ensure
that temporal neighborhood relations along the demonstrated
trajectories are respected, similar to the procedure used in
ST-Isomap [11].

Usually, manifold learning is aimed at finding an embed-
ding or ‘unrolling’ of a nonlinear manifold onto a lower
dimensional space while preserving metric properties such
as inter-point distances. Much of this work, e.g., Isomap,
has been focused on summarization or visualization of the
observed data. On the other hand, we are interested in
preserving dynamic properties of trajectories in the data set.
So, our goal is to learn a model of the tangent space of
the low-dimensional nonlinear manifold, conditioned on the
adjacency relations of the high dimensional data. Such a
learnt manifold model can then be used to compute geodesic
distances, to find projections of points on the manifold and
to directly generate geodesic paths between points.

A. Learning the model

Given that our D-dimensional data lies on a locally smooth
d-dimensional manifold in D-dimensional space, where d <
D, there exists a continuous bijective mapping M that
converts low dimensional points y ∈ R

d from the manifold,
to points x ∈ R

D of the high dimensional space, x =M(y).
The goal is to learn a mapping from a point on the manifold
to its tangent basis H(x),

H : x ∈ R
D 7→

[

∂

∂y1
M(y) · · ·

∂

∂yd
M(y)

]

∈ R
D×d

where each column of H(x) is a basis vector of the tangent
space of the manifold at y, i.e. the partial derivative of M
with respect to y.

Learning a model of the mapping with some parametriza-
tion θ, i.e. Hθ, is done as follows. Given two neighboring
points on the manifold, xi and xj , the difference between
these points, ∆i

.j , should be a linear combination of the
tangent vectors at that point on the manifold, scaled by an
unknown alignment factor. Taking ∆i

.j to be the centered

estimate of the directional derivative at x̄ij and ǫij to be
the unknown alignment factor, we have Hθ(x̄

ij)ǫij ≈ ∆i
.j ,

that holds given ǫ is small enough and the manifold can be
locally approximated with a quadratic form. To learn Hθ we
define the error function:

err(θ) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(x̄
ij)ǫij −∆i

.j

∥

∥

2

2
,

where N i is the set of neighbors of xi. This minimization
problem for θ is solved with a regularization term that
ensures that the ǫ’s do not get too large, that the tangents
do not get too small and that neighboring tangent bases are
aligned. For a precise model of the tangent space one would
need to compute the tangent basis for each point, Hθ(x̄

ij),
which can be considered as a regression over the evidence
(training data), and compute the alignment factors, ǫij , for all
neighboring points. Solving for the bases and their alignment
simultaneously is complex, but if either one is kept constant,
solving for the remaining variables becomes a tractable least
squares problem.

Modeling Hθ is done with a linear model of radial basis
functions (RBF’s) with features over the evidence, where the
number of basis functions, f , acts as parameter that can
control the smoothness of the estimated mapping. Optimizing

the model requires alternating between the two least squares
problems described above, until a local minima has been
reached. Typically more than one random restart is performed
to avoid bad local minima.

B. Optimal geodesic paths

By approximating the tangent space of the manifold, we
gain access to a variety of geometric operations. A crucial
requirement for us is the ability to compute paths through
configuration space that lie on the low dimensional manifold.

Our goal is to find the shortest path between two specified
poses qstart and qend ∈ R

D1, D being the dimensionality
of the configuration space, that respects the geometry of the
learnt manifold. Being on the manifold implies satisfaction of
the constraints (e.g., optimality w.r.t. a particular task-specific
cost) inherent in the training data. In practice, we discretize
our path into a set of n via points, q = qstart, . . . , qend, with
qstart and qend being fixed, and we follow a combination of
gradient descent steps to minimize the length of the path
while not leaving the support of the manifold.

The initial estimate of the shortest path is computed
by interpolating linearly between qstart and qend, while
following the geometry of the manifold, until the distance
between consecutive points is acceptable. Since we have
learnt the tangent space of the manifold we can find a
minimum energy solution that follows the orthonormal (to
the manifold) component of the gradient of

errM(q) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(q̄
ij)ǫij − (qi − qj)

∥

∥

2

2
,

that essentially makes the qis “stick” to the learnt manifold
by iteratively moving them to points where neighboring
(consecutive) bases are aligned. Next we apply another
gradient descent optimization by following the parallel (to
the manifold) component of

errlength(q) =

n
∑

i=2

∥

∥qi − qi−1
∥

∥

2

2
,

that iteratively minimizes the length of the path without
leaving the support of the learnt manifold, while keeping
the endpoints fixed.

C. Constrained geodesic paths

In practice, we often require more control over the gener-
ated trajectories - to avoid task space and joint space obsta-
cles. This is a constrained trajectory generation problem over
the manifold. We now describe a procedure for generating
constrained geodesic paths that avoid “no-go” patches on
the manifold surface. These are defined as sets of obstacle
points O ∈ R

D that are uniformly sampled from the “no-go”
task space region and trace the obstacle patch in joint space.
For example such points can be samples from the faces of a
cube obstacle or a set of points sampled from the surface of
a sphere.

The intersection of the manifold set and the obstacle set,
M ∩ O, is the region that we would like to take into
consideration when generating a constrained geodesic path.
This point set would drive the geodesic path away from the
patch that we want to avoid but given the learnt tangent space
the path will not leave the surface of the manifold, thus the
optimality properties that the manifold represents.

1We change notation to denote that the point q is in configuration space.

2671

We treat the affected consecutive geodesic path points,
q, as a system of springs that can either exert attractive or
repulsive forces to their neighbors. A force, fq

ij , between
two consecutive path points qi and qj , is repulsive if the
distance between them is less than ℓ, and attractive if the
distance is greater than ℓ. The distance ℓ is a metric that
is derived from the manifold geometry and is the spacing
between consecutive points, while the strength of the forces
is dependent to the distance difference.

The obstacle point set, O, exerts repulsive forces to the
path points. The area of effect of the obstacle point set is also
defined relative to ℓ; each obstacle point, ok exerts a force,
fo
ik, to every path point, qi, within a hypersphere of radius

set to 2ℓ. This distance can also be increased or decreased
with obstacle clearance in mind.

We calculate all forces that act on each affected path point
and compute a mean force vector. This vector is projected
on the manifold and each point is moved by a small step
accordingly. We repeat the procedure until all points have
cleared obstacle points or the algorithm has converged. Fig.
1 provides a sketch of the procedure.

Algorithm 1 Constrained Geodesic Trajectory Generation

INPUT: M, qstart, qend, O
OUTPUT: q ≡ {qstart, . . . , qi, qend}
q← Optimal Geodesic Path(qstart, qend)
repeat

dO ← Compute Distances(q, O)
[fo

ik, fq
ij]← Calculate Spring Forces(q, dO)

f̄i ← fo
i. + fq

i.

f̄M
i ← f̄iH

q

θH
q

θ

′

q← q+ γf̄M
i

Ci ← ∂q2/∂s2 {Curvature}
C̄ ← 1/n

∑

Ci

C̄Mi ← (C̄ − Ci)Hq

θH
q

θ

′

q← q+ γC̄Mi
δ ← q− qold

until dO = null or δ ≤ 10−6

1) Curvature smoothing: The above procedure only acts
on the geodesic path points that are in the area of effect (dis-
tance < 2ℓ) of obstacle points. This leads to nonsmooth paths
when only small portions of the paths are near obstacles. We
alleviate this by considering the full set of path points and
interplays with the constraint optimization. For this, we use
the path curvature as the criterion. We calculate curvature,
C, over the discrete geodesic points, q = q1, . . . , qn as

Ci =
∂q2

∂s2
, i = 1, . . . , n− 2,

where s is the distance between two consecutive points.
We calculate the mean curvature C̄ and the error gradient
C̄ − Ci (vector), for each triple of path points. Each point
is then moved by a small step along the error gradient and
projected on the manifold tangent space. The entire proce-
dure is summarized in Alg. 1. The following sections present
two examples of our method. The first illustrative example
presents experiments on a simulated 3-link arm where both
the manifold and the learnt model can be visualized. The
second example involves a physical humanoid robot, with
which we demonstrate how our method scales up.

III. EXPERIMENTS ON A ROBOTIC ARM

This example is chosen to elucidate the basic concepts
underlying our approach. We use a 3-link planar arm where

we can explicitly visualize both the configuration space
and the optimization manifold (corresponding to a specific
redundancy resolution strategy), along with possible obstacle
points. The arm is a series of three rigid links, of 1/3 length,
that are coupled with hinge joints, producing a redundant
system with 3 degrees of freedom (DoFs) that is constrained
to move on a 2 dimensional plane (task space).

A. Training data

We randomly sample 100 Cartesian points from the top
semicircle of the task space of the system. The dataset is
100 points of x and y couples, where −1 ≤ x ≤ 1 and
0 ≤ y ≤ 1. We run the task space dataset through an
iterative optimization procedure detailed below and get the
corresponding joint space datapoints, q = (q1, q2, q3). A
set of 100 such points is depicted in Fig. 2(a), as black
dots in joint space and task space plots. We densely sample
the space with 900 more points that are used solely for
visualization purposes and play no further part in the learning
procedure. For visualization purposes, we use all 1000 points
to compute a Delaunay triangulation of the joint space
structure as sampled, and then plot the trimesh (triangle
mesh) for comparison with the paths that our algorithm
produces. This trimesh surface is depicted in all figures with
thin gray edges.

The system being redundant, one needs a redundancy
resolution strategy, which implicitly specifies the geometry of
the manifold (Fig. 2(a)) that we subsequently learn. Here, we
choose the joint space configuration, q, that minimizes the
absolute sum of joint angles, in a different view it minimizes
the distance to a convenience (e.g., minimum strain) pose,
qc = (0, 0, 0), with joint weighting,

min ‖wq− qc‖
2
, subject to f(q)− x = 0,

where w is a weighting vector, f is the forward kinematics
and x is the goal endpoint position on the plane. We set
w = (4, 2, 1), which means that the cost of the first joint
offset will be four times as significant as the last joints angle,
thus penalizing more its motion.

The resulting q’s trace a smooth nonlinear manifold in
joint space, depicted in Fig. 2(a). We note that the manifold
surface resembles a convex strip that bends backwards to-
wards the edges, much like a section cut of a bent tube. This
is the surface that points of the specific optimality criterion
trace. Also different redundancy resolution strategies would
produce different optimality manifolds. We note that, in
general, this kind of information is not explicitly known (in
the case of human demonstration) or even visualizable, for
many complex problems.

B. Implementation

We start by computing the neighborhood graph of the
data points. We do this by evaluating task space distances
using known forward kinematics. As we require that our set
consists of one connected component, we gradually increase
the neighborhood distance until no disconnected subsets
exist. The resulting neighborhood graph is depicted in Fig.
2(b)(inset plot).

We can see that the manifold can be naturally represented
with a two dimensional tangent space, and we learn a model
of Hθ with 10 RBFs. We can subsequently evaluate Hθ at
any point in our joint space. For example Fig. 2(b) shows
the tangent basis evaluated at the centers of the RBFs used.
Note that the basis vectors are aligned and vary smoothly, i.e.

2672

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Manifold surface

q
1
(rad)

q
3
(r

a
d
)

−0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Samples

(a) Samples.

0
1

2 0
1

2

0

0.5

1

1.5

2

2.5

q
2
(rad)

Tangent space basis

q
1
(rad)

q
3
(r

a
d
)

−0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Neighborhood graph

(b) Learnt manifold.

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

Geodesic paths

q
1
(rad)

q
3
(r

a
d
) −0.5 0 0.5

0.2

0.4

0.6

0.8

x(m)

y
(m

)

Task space

(c) Generated geodesic paths.

Fig. 2. The manifold learning and usage for the 3-link arm example. a) Starting with 100 datapoints in joint space, that correspond to task space coordinates
as in the inset plot. b) The neighborhood graph in task space (inset plot), and the learnt tangent space that the model predicts for the RBF centers in the
high dimensional space. c) Randomly sampled optimal (unconstrained) geodesic paths and corresponding task space trajectories in the inset plot. The thin
gray trimesh is a densely sampled reconstruction of the underlying surface, used only for comparison and as a visualization aid.

−0.5 0 0.5 1 1.5 2 0
1

2

0.5

1

1.5

2

2.5

q
2
(rad)

 #3

Constrained geodesic paths

q
1
(rad)

 #2

 #1

q
3
(r

a
d

)

−0.4−0.2 0 0.2 0.4 0.6

0.4

0.6

 #1

 #2
 #3

x(m)

y
(m

)

Task space avoidance

Fig. 3. Example geodesic trajectories that avoid point set obstacles on the
learnt manifold. The constrained geodesic trajectories are in blue, and the
unconstrained versions are in red.

we obtain good generalization within the region of support
of the data. This way, in order to “walk” on the manifold
we need to evaluate the learned tangent basis and follow
each local frame for each consecutive step, in other words
follow the blue and green arrows of Fig. 2(b) for each point
in question.

C. Results

In the learnt model of the manifold tangent basis we
have access to the geometric properties of the surface. The
procedure for generating unconstrained paths on this was
described in section II-B, and the key advantage is that the
generated paths will adhere to the manifold geometry. Opti-
mal geodesic paths generated from randomly sampled start
and end points are depicted in Fig. 2(c), where the manifold
geometry is also plotted (thin gray trimesh) for comparison.
Note how the generated paths trace the underlying manifold
geometry while also minimizing the deviation from a straight
line connecting start and end points (non-geodesic minimum
distance). The resulting task space trajectories –the geodesic
paths run through forward kinematics– are also displayed
in the inset plot at the same figure. Note that the resulting
task space trajectories are curved, an interesting observation
discussed in the next subsection. Next, we want to be able
to specify patches on the manifolds to be avoided. This is
accomplished by the procedure detailed in section II-C, and
results are depicted in Fig. 3. We start with a set of random
start and end points and pick a list of obstacle points that

intersect the manifold. In Fig.3 the points to be avoided
appear as red circles, and effectively trace a patch that can
be viewed as a “no-go” region on the manifold. The red
lines are the predicted geodesic paths that travel through
the obstacle regions. The blue lines are the constrained
geodesic paths that are optimized with the obstacle patches
in consideration. The resulting task space behaviour for this
set of examples is visualized in the inset plot of the same
picture.

D. Remarks

An interesting observation regarding the shape of the task
space trajectories generated by geodesic paths is that the
shortest path in the 3 dimensional joint space would be a
straight line connecting the start and end points. The optimal
geodesic paths are the joint space trajectories that connect
start and end points and minimize the deviation from a
straight line with respect to the manifold geometry. Now, the
manifold is the surface defined as the union of all joint space
paths that are optimal with respect to a specific redundancy
resolution strategy. These are shortest paths that satisfy the
optimality requirements implicitly encoded. In our scenario,
the predicted trajectories would be composed of a series
of points that minimize the sum of joint angles , thus the
task space trajectories would be subsequently optimized with
respect to minimum angular change.

Another point is that the generation of geodesic paths is
more efficient – and much faster – than numerical optimiza-
tion as described in section III-A (as also in [1]). One current
limitation is that the start and end points used, are assumed
to lie on the manifold surface for our experiments. These
points are currently generated by the numerical optimization
strategy. Once the manifold has been learnt, one could search
efficiently for a target point that satisfies the task space goals.
In practice, only the goal point has to be searched for and
located on the manifold as the start point would already be
the current position of the robot.

IV. EXPERIMENTS ON A HUMANOID ROBOT

Our next example involves a humanoid robot skill. This
experiment is based on the 25 DoF Nao (Fig. 7) humanoid
robot. From the point of view of motion synthesis, it is an
inherently unstable system, with an elevated center of mass.

We do not have an analytical model of the system dynam-
ics. However, we do use a model of the robot kinematics for
calculating the relevant foot and pelvic positions in global
coordinates.

2673

−5

0

5

−12−11
−10

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
−12−11−10

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(a) Right foot training set

−5

0

5

10 11
12

0

1

2

3

4

5

6

7

y(cm)
x(cm)

z
(c
m
)

−5
0

5
101112

0

2

4

6

y(cm)x(cm)

z
(c
m
)

(b) Left foot training set

Fig. 4. The neighborhood graph, computed for a dataset of 500 points
for each swing leg. Both plots show the swing foot midpoint position in
task space. The inset plots show the corresponding continuous trajectories
in task space.

We focus on the task of walking, with the aim of generat-
ing a motion synthesis strategy that achieves full coverage of
a reasonably large interval in step length, width and height. In
effect, the optimality surface would be the set of all solutions
to all possible task space queries, thus a tangent space point
would have a local coordinate frame that guides the path in
that particular neighborhood. We begin with a redundancy
resolution strategy that would yield walking examples as
training data for manifold learning.

A. Training data

We frame the redundancy resolution strategy as a con-
strained nonlinear optimization problem. Algorithmically, we
use a sum of squares (SoS) approach that uses the trust-
region-reflective algorithm. The optimization problem is of
the form,

min
q
J (q), J = J1(q) + . . .+ Jn(q),

subject to f(q)− x = 0,

where J is the cost function composed of a number of
factors Jn, f is the forward kinematics and x is goal task
space position. The cost is a mixture of task constraints and
stability constraints, including:

• distance between swing foot and goal
• alignment between swing foot and x/y versors
• deviation in pelvis position
• alignment between waist and z versor

The initial pose for the numerical optimization algorithm is
a default robot initialization pose with slightly bent knees.

To generate a walking trajectory we start with the desired
task space path of the swing leg and the position of the pelvis,
and discretize to 10 points. The swing foot trajectories are
straight lines from start to goal points while the height of the
foot is regulated with a sinusoid with varying apex height.
In practice we set the position of the pelvis to be over the
support foot and perform a double support weight shift step
once the swing leg has reached the goal position. Lastly, we
run the optimization procedure described earlier, and get the
joint space trajectory of the leg swing and the weight swift
phases for each complete task space step path.

The optimization results are approximately constant speed
quasi-static trajectories, in the sense that inertial effects are
negligible. We collected 50, full body, joint space trajectories
for stepping with the right leg and the same amount for
stepping with the left leg. Start and goal points of every step
have been randomized within a reasonable reaching distance.
The inset plots of Fig. 4(b) and 4(a) show the task space
trajectories of each swing leg foot midpoint, by running the
datasets through the forward kinematics of the system.

−5

0

5
−12

−10

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(a) Generated right foot traj.

−5

0

5

10
12

0

1

2

3

4

5

y(cm)
x(cm)

z
(c
m
)

(b) Generated left foot traj.

Fig. 5. Generated task space trajectories from randomly sampled start and
end points. The trajectories correspond to swing foot midpoint trajectories
in task space and are stable on the robot.

−5

0

5

−14
−12

−10

0

1

2

3

4

y(cm)

Constrained right step examples

x(cm)

z
(c

m
)

−5 0 5
0

2

4

x(cm)

z
(c

m
)

−8
−6

−4
−2

0
2

4
6

8 1010.51111.5

0

1

2

3

4

5

y(cm)

x(cm)

Constrained left step examples

z
(c

m
)

−5 0 5
0

2

4

x(cm)

z
(c

m
)

Fig. 6. Generated constrained task space trajectories from randomly
sampled start and end points. The red trajectories correspond to the original
unconstrained foot midpoint that collide with the obstacle (red circle). The
resulting optimized constrained task space trajectories plotted in blue.

B. Implementation

Compared to our previous example, this is a higher
dimensional space and sampling is necessarily somewhat
sparse. Of the 25 DoFs of the robot, we focus on the 12
DoFs for legs and hips, keeping the arm and head joints
at a constant pose. Furthermore we separate each footstep
into a swing phase and a weight shift phase. This way we
divide the learning process into two components, leg swing
manifold and support weight shift manifold - as the measure
of optimality is essentially different for each phase.

We begin with the same neighborhood graph computation
procedure where we gradually increase the neighborhood
distance until the graph is not disconnected (Fig. 4(b) and
4(a)). We set the dimensionality of the manifolds to be 4,
with a simple cross validation step that penalizes model
complexity while producing stable and reasonable results. In
all learnt manifolds we used models with 20 RBFs, and 500
data points that belong to 25 random task space trajectories
as described in the previous section.

C. Results

The learnt manifolds are able to produce smooth walking
trajectories that satisfy the optimization criteria used to pro-
duce the training data. Moreover, trajectories are produced
approximately within one to two seconds, in contrast to

2674

Fig. 7. Nao executing of a planned motion. Top; the unconstrained stepping
trajectory that hits an obstacle (the ball). Bottom; the constrained optimized
trajectory where the swing path avoids the obstacle, the ball.

the numerical optimization used to generate the data which
required on average approximately 45 seconds per trajectory,
both with reasonable code and on commodity hardware.
The computation time of the former increases with the
dimensionality of the manifold.

The procedure is able to produce stable walking in the
continuum of the reachable space of the robot as depicted
in Fig. 5(a) and 5(b) for right and left swings accordingly.
One interesting observation is that the robot manufacturer
in the accompanying software for walking, specifies that the
stepping space of the feet cannot extend more than 9cm.
With our manifold trajectory generation we are able to step
further and reach stably up to 12cm, nonetheless most of our
experimental sampling was constrained to be up to 10cm.

One point to note is that the shape of the generated
trajectories in task space is qualitatively different from the
training data. The training data is generated by point-by-point
kinematic optimization of an artificially imposed sinusoidal
sequence of task space points. By fitting the tangent space
of the manifold to the collection of all such data points, and
making all local frames consistent, we extract a manifold
that indeed traces the true underlying geometry that the
optimization procedure sculpts in the robot joint space.

The above examples correspond to trajectory generation in
an unconstrained scenario. As with the 3-link arm example
we randomly pick a set of start and end points in task space,
generate a trajectory as a geodesic path on the learnt skill
manifold and insert an obstacle near the trajectory. Examples
of this process are depicted on Fig. 6 for right and left foot
midpoint task space trajectories. Note that the dashed red
lines correspond to the unconstrained predictions that collide
with the perceived obstacles, that appear as red circles.

The efficacy of such an additional degree of control
is obvious. To provide a concrete example we have used
the constrained geodesic trajectory generation for random
obstacle avoidance, staying away from regions in task space
that might interfere with the swing trajectory. In the case
of going up or down a step, it is often the case that the
foot collides with the previous or next step’s edge. When
such a collision occurs, the robot loses its balance and falls
down. Now, we can detect this collision and set this point
to be a “no-go” point in a point set. In the same state
the robot will then skillfully avoid the colliding pose and
successfully negotiate the step. The accompanying video
provides a number of such examples. Snapshots of such
behaviour are also shown in Fig. 7 and 8.

Fig. 8. Detail of a left foot swing. Top; the original trajectory that provides
minimal foot clearance (approx. 2cm on apex). Bottom; adding a obstacle
close to the original trajectory pushes the optimization to higher stepping
trajectories (here approx. 5cm on apex).

V. CONCLUSIONS AND FUTURE WORK

We present an approach to constrained trajectory gener-
ation over a manifold that compactly encodes a continuous
family of trajectories corresponding to a robotic skill. This
skill manifold is learnt from demonstration data by approx-
imating the tangent space. Having this manifold along with
the local coordinate frames in the form of the tangent space
enables efficient ways to handle changing task contexts and
obstacles, while respecting intrinsic requirements of the task.

We demonstrated these ideas on two sets of examples
- a simulated robotic arm, suitable for visually illustrating
core concepts and a humanoid robot behaviour, constrained
variable step-length walking. We have demonstrated that
the manifolds, defined by solutions to a complex numerical
optimization problem, can be learnt from sparse data and that
the geometric structure generalizes within and beyond the
support of the data. This enables motion synthesis methods
where one is able to lazily compute trajectories in response to
changing task specifications (perhaps including additions to
the underlying cost function expressions) by the constrained
geodesics that intrinsically respect the partial specifications
that define the essence of the underlying task.

REFERENCES

[1] I. Havoutis and S. Ramamoorthy, “Geodesic trajectory generation on
learnt skill manifolds,” Robotics and Automation, 2010. ICRA 2010.
Proceedings 2010 IEEE International Conference on, 15-19, 2010.

[2] S. Ramamoorthy and B. J. Kuipers, “Trajectory generation for dynamic
bipedal walking through qualitative model based manifold learning,”
IEEE International Conference on Robotics and Automation (ICRA),
pp. 359–366, May 2008.

[3] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing phys-
ically realistic human motion in low-dimensional, behavior-specific
spaces,” ACM Trans. Graph., vol. 23, no. 3, pp. 514–521, 2004.

[4] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” in IEEE International Conference
on Robotics and Automation (ICRA ’09), May 2009.

[5] M. Stilman, “Task constrained motion planning in robot joint space,”
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pp. 3074–3081, 29 2007-Nov. 2 2007.

[6] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-step motion
planning for free-climbing robots,” in in WAFR, 2004, pp. 1–16.

[7] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process
dynamical models for human motion,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 2, pp. 283–298, 2008.

[8] S. Bitzer, I. Havoutis, and S. Vijayakumar, “Synthesising novel move-
ments through latent space modulation of scalable control policies,”
in LN in Computer Science, 2008.

[9] S. Calinon and A. Billard, “Statistical learning by imitation of com-
peting constraints in joint space and task space,” Advanced Robotics,
vol. 23, pp. 2059–2076, 2009.

[10] P. Dollár, V. Rabaud, and S. Belongie, “Non-isometric manifold
learning: Analysis and an algorithm,” in ICML, June 2007.

[11] O. C. Jenkins and M. J. Mataric, “A spatio-temporal extension to
isomap nonlinear dimension reduction,” in In International Conference
on Machine Learning (ICML), 2004, pp. 441–448.

2675

