

Abstract—This paper proposed an improved algorithm that

we call “D++” which can be applied to real-time and

collision-free path -planning to solve some problems of common

methods at present. D++ algorithm combines the Dijkstra’s

algorithm with sensor-based method so that D++ algorithm can

deal with problems of unknown, large, complex, or dynamic

environment, and need only local environmental information

initially to find a shortest path. In the later of this article, we

demonstrated some examples to show that D++ algorithm is very

efficient for path-planning and also very practicable on real

mobile robot system.

I. INTRODUCTION

N past few years, researches on mobile robot were paid

more and more attention, and widely applied to the industry,

hospitals, offices, home-care and the military. This is because

of the excellent moving-ability of mobile robot so that it can

help challenged people, explores an unknown and danger

environment, and drive cars automatically…ect.

Path-planning is one of important technology for mobile

robot.

With the rapid development of theories and methods in

artificial intelligence, path-planning has been successfully

applied to video game, navigator, autonomous car, and mobile

robot. According to the acquired information of environment,

path-planning can be divided into two types: (1) Global

path-planning: means that environmental information is static

and known in advance. So robot can use path-planning

methods to find a shortest or optimal path from a start to a goal.

(2) Local path-planning: means that environmental

information is unknown or known about some parts. The

shapes, sizes, and locations of obstacles and other objects

must be obtained through observing later, and then make a

decision immediately. Therefore, environmental information

of local path-planning can change in any time. At present,

research of path-planning on static environment has obtained

many achievements, and it is paid more attention on those

problems which environment is uncertain and variable.

Generally, for static problem, the searching algorithm is a

one-time computation to find a shortest path. The most famous

Manuscript received March 10, 2010. This work was supported in part by

the Department of Mechanical Engineering of National Chiao Tung

University.

P. Y. Cheng, is with the Department of Mechanical Engineering of

National Chiao Tung University, 1001 University Road, Hsinchu, Taiwan

300, ROC (e-mail: pycheng@cc.nctu.edu.tw).

P. J. Chen, is with the Department of Mechanical Engineering of National

Chiao Tung University, 1001 University Road, Hsinchu, Taiwan 300, ROC

(e-mail: rexandimmj@hotmail.com).

algorithms are Dijkstra’s algorithm [1] and A* algorithm [2].

Dijkstra’s algorithm, conceived by Edsger Dijkstra in 1959, is

a graph search algorithm which can find the shortest path.

However, Dijkstra’s algorithm explores a great deal of nodes

in searching space, so Dijkstra’s algorithm is considered that

isn’t efficient enough. In 1972, Peter Hart, who proposed A*

algorithm, used a heuristic estimate so that it will deal with

better nodes in searching space first, and ignore some

obviously worse nodes. Therefore, A* algorithm can find the

path more quickly than Dijkstra’s algorithm, and still acquires

a very similar solution.

However, for dynamic environment, algorithms with

one-time computation, such as Dijkstra’s and A* algorithms,

are quite inefficient. Because when the environment changes

(for example, new obstacle appears), Dijkstra’s or A*

algorithms must run a complete search again from present

location to the goal. And this needs to spend a lot of

computing time. Another problem is that while only parts of

environmental information are known, then Dijkstra’s and A*

algorithms will have very poor responses, even can’t begin

working.

In 1994, Anthony Stentz proposed D* algorithm [3][4]

which is mainly to resolve the problem of Dijkstra’s and A*

algorithm that can’t handle dynamic environments. In 2005,

Sven Koenig proposed D*-Lite algorithm [6] which is easier

to be understood and has better efficiency than D* algorithm.

D*-Lite algorithm doesn’t base on D* algorithm, but is built

on LPA* algorithm [5] which was also proposed by Sven

Koenig. However, D* and D*-Lite algorithms still have to run

a complete search from start to goal at first so that there will be

also a waiting time before finishing first search, especially for

the large map.

In the past two decades, artificial potential fields (APF)

which had been proposed by Khatib [7], is widely used in

path-planning for manipulator and mobile robot. At first, APF

was designed for manipulator to avoid collision when

grabbing objects. However, later it was discovered that APF is

also good at handling the path-planning problem of mobile

robots, and can create a very smooth trajectory. Although the

theory of APF is very simple, however, its problems are also

very obvious. The most one is the local-minimum problem.

When the resultant of repulsive and attractive force on robot is

zero, robot will hover at this place and stop moving. There

were many methods proposed to solve this problem. For

example, adding a random disturbance force robot to move

when robot is in the situation of local minimum, or combining

The D++ Algorithm: Real-Time and Collision-Free Path-Planning

for Mobile Robot

Pi-Ying Cheng, Pin-Jyun Chen

I

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3611

APF with other artificial intelligent methods helps robot to

leave the region of local minimum. These methods reduces the

probability that robot goes into a local solution. However,

when the size and sharp of obstacles are large and complex, it

is still difficult to solve this problem completely. Besides,

there are other problems in artificial potential fields, such as

oscillate in narrow channel, or can’t pass through small-size

doors. There are more detailed descriptions in [8][9].

The other artificial intelligence methods, such as genetic

algorithms [10], neural networks [11], and fuzzy

[12][13]…etc., have a great deal of achievements in real-time,

collision-free, and dynamic problem. However, for complex

terrain or maze-type map, these methods still become

relatively inefficient, and often result in unsatisfying

solutions.

For mobile robot, there are some issues needed to be solved

in reality. (1) Generally it is best that robot can travel in a

changeless environment, and obtain global environmental

information prior. However, in most of situations, it is difficult

to acquire all of the environmental information every time

before path-planning. Collecting information and building

model for complex and large environment are not an easy job.

(2) Even if robot already has acquired all environmental

information before path-planning, however, environmental

information may change, for example, pedestrians or moving

objects. Therefore, robot must have the ability to deal with

unknown and dynamic environment in real-time. Otherwise it

will easily lead to accidents and disasters.

II. D++ ALGORITHM

D++ algorithm is an improved algorithm which combines

Dijkstra's algorithm with sensor-based path-planning method

[15]. Traditionally, the Dijkstra’s algorithm belongs to global

path-planning method with one-time computation, and can’t

solve the problem of unknown and uncertain environment.

Besides, for large map, Dijkstra’s algorithm needs to spend a

lot of computing time before making any response. In order to

overcome this situation, we add the idea of “detective range”

into Dijkstra’s algorithm so that robot can only deal with local

environmental information in a cycle time. The detective

range is similar to an area observed by sensor. Robot only

needs to search a waypoint which is nearest to goal at present

in every cycle, and decide how to move next. By keeping

searching waypoints and next steps, robot will gradually

approach goal until robot reaches it. The simple conception of

D++ algorithm is shown in Figure 1.

In Figure 1, because the searching space of each loop is

only within a detective range, the computing time will be very

short if the detective range is small. Thus, robot could have

high response in real-time system. Besides, by observing the

information of detective range, robot can ignore and avoid

many vain paths or local solutions as long as the detective

range is large enough.

The Dijkstra’s and A* algorithms usually use “Open” and

“Close” lists to record the information of nodes, such as the

father-node, cost, and that nodes are visited or not. Since we

only use Dijkstra's algorithm within detective range, and will

clear the contents of “Open” and “Close” lists before next

cycle. Thus, these two lists couldn’t record that nodes are

visited or not for whole map in D++ algorithm. This will make

robot visit old nodes again and again, and result in a local

solution. In order to avoid this situation, D++ algorithm

follows the mode of D* algorithm to record the status of nodes

additionally. When the searching is beginning, status of all

nodes are “New”. Nodes will be changed their status to “Old”

if they have been detected or visited once. Therefore, we add a

“Select” list in D++ algorithm. Before the searching of every

cycle is beginning, the “Select” list will be also cleared like

Open and Close lists. In one searching cycle, nodes which are

discovered by Dijkstra’s algorithm will be checked that they

are “New” or “Old”. If node is “New”, it will be put into the

“Select” list, or it will be ignored. After all nodes in detective

range are discovered and checked, a waypoint which is nearest

to goal in “Select” list will be picked. Then, by tracing the

father-node from waypoint to present location of robot, robot

can decide how to move next.

Generally, when the searching space in one cycle reaches

the size of detective range, we will end this cycle and pick the

waypoint from “Select” list. However, if robot is into a dead

end, such as a “U” trap, it is very possible that all of the nodes

in detective range are “Old”. This will result in that there is no

node in “Select” list to be picked. This will causes that robot

can’t decide how to move next, then gets stuck. Therefore, in

order to avoid this, D++ algorithm will keep expanding

searching space which is over detective range until there is a

Fig. 1. The simple conception of D++ algorithm

3612

“New” node found. In real situation, because the “Old” nodes

have been visited and checked, robot can record the

information of “Old” nodes into its memory. Therefore, even

if robot is in an area where all nodes are “Old” and is much

larger than detective range, robot still can run the search in its

“brain” and need not to move around to detect environment. In

this way, robot won’t fall into a local solution, and be sure to

find a path to goal.

By rearranging the idea and contentions described above,

we detail D++ algorithm step by step as Figure 3. The

waypoint is the node that has minimum distance to goal in

“Select” List. The formula of calculating distance between

waypoint and goal is described as following:

() ()
2 2

distance
W G W G

x x y y= − + − (1)

where xw means the position of waypoint in x axis, xG means

the position of “Goal” in x axis, yw means the position of

waypoint in y axis, and yG means the position of “Goal” in y

axis.

Then we demonstrated a simple example of D++ algorithm

in figure 3. We set the detective range for one grid. In terms of

the above steps, figure 4(a) presents the step 1 which the

primary work is to initialize the process. Figure 4(b) shows

that robot had finished the first cycle (step 2-12), then it

picked the upper right grid as waypoint from “Select” list (step

9). In this case, robot moves one grid per cycle. And because

the detective range is equal to only one grid in this case, the

waypoint is also the robot’s next position. Then the robot’s

position in Figure 4(c) was not the “Goal” (step 12), so robot

continued to next cycle (step 2-11). Figure 4(c) shows that

robot had found the “Goal” within detective range, so the

process jumped from step 4 to 9. Then robot picked the

waypoint (step 9), and moved robot to next position again

(step 11). In Figure 3(d), because robot had reached the

“Goal” (step 12), then we could end the whole searching

process. From the case in Figure 4, it shows that D++

algorithm will be similar to the greedy best-first method if the

detective range is quite small. This will cause that path may

not be shortest, even path will be so long to waste a lot of time

and energy. To avoid this, it is necessary to increase the size of

detective range appropriately. We will compare the results

with different size of detective range in next section.

Fig. 3. The flowchart of D++ algorithm

Fig. 2. The legends of D++ algorithm in this paper

3613

III. SIMULATION STUDIES

In this section, we demonstrate some simulations to verify

the performance and efficiency of D++ algorithm. At first, we

ran the simulation for static problem, and compared the results

with different sizes of detective range. Then we ran the

simulation with a dynamic environment to verify the

capability of D++ algorithm for real-time and collision-free

problem. In order to provide a reference, we listed the

specifications of our computer’s hardware and software in

Table I.
TABLE I

Specification of computer

Item Specification

CPU Intel Core 2 Duo T6600 2.2GHz

RAM DDR2-800 2GB

 VGA ATI Radeon HD4650 512 MB

OS Microsoft Windows XP

IDE SharpDevelop

A. Static problem

Static problem means that all objects and obstacles in

environment are fixed and changeless. If environmental

information is acquired prior, Dijkstra’s algorithm can be sure

of finding a shortest path from start to goal. When the

detective range contains whole map, D++ algorithm will be

equal to Dijkstra’s algorithm in one cycle time so that D++

algorithm can also promise to find a shortest path. However,

in this situation, it will spend a lot of computing time in every

cycle, and have very low response. Oppositely, if the detective

range is small, D++ algorithm will be similar to greedy

best-first method so that it is very possible to result in a long

and inefficient path. So it is better to set detective range as

wide as possible if cycle time is small enough to approximate

a real-time system.

We adopted the case which had been tested by Stentz [4]

(shown in Figure 5) to demonstrate the results with different

detective range. In Figure 6, the detective range was set for

three grids and the cycle time was set for twenty milli-seconds.

And in Figure 7, the detective range was set for ten grids and

the cycle time was also set for twenty milli-seconds. The

results of search are shown individually in Figure 6 and 7.

According to the result in Figure 6, it is quite obvious that

path was long and passed through many unnecessary places.

The primary reason is that the place where is near the start has

two directions to choose. The detective range with three grids

is not wide enough to make robot do correct decision. This

affected the final result seriously. Then, in Figure 7, although

only detection range was increased from three to ten grids, we

obtained a much better solution than the one in Figure 6. On

the other hand, the robot system still has high response

because the computer hardware can sustain the load of

computation in real-time. Thus, there is no pause or lag

between the whole processes. We compared the result in

Figure 7 with the one which was presented by Stentz, and we

can see two very similar paths which were acquired by D++

and D* algorithms respectively. However, D++ algorithm

used less searching space, and didn’t need to run one complete

search at first.

Fig. 5. The terrain which had been discussed by Stentz [4]

���� �
(a) (b)

���� �
���

Fig. 4. A simple example of D++ algorithm with the detective range of

one grid

3614

Then we also adopted the case which was discussed by

Willms, AR [14] (shown in Figure 8). It is a maze, and for

some path-planning methods, such as artificial potential fields,

fuzzy, neural network, and genetic algorithm, is very difficult

to obtain a good and efficient solution. Even it may result in a

local solution and never reach a goal. We also set the cycle

time for twenty milli-seconds, and set the detective range for

twenty grids. The result is shown in Figure 7. We acquired the

same path which was also obtained by Willms, AR. However,

the method of Willms, AR has poor efficiency like Dijkstra’s

and A* algorithm especially for large maps.

B. Dynamic problem

In this simulation, there were nine objects which were in the

middle of map and moved one grid randomly per cycle time

(shown in Fig. 9). We set the detective range for ten grids, and

set the cycle time for two hundreds milli-seconds. The result

of simulation is shown in Fig. 10. The key technology which

D++ algorithm can solve dynamic problem is that D++

algorithm detects environment and runs a search in every

cycle time. Thus, if the cycle time is small enough then it will

almost become a real-time system to deal with dynamic

environment.

Fig. 7. The result with the detective range of 10 grids, and the cycle

time is 20 milli-seconds. The total time is about 5 seconds.

Fig. 9. The case of dynamic problem. There are nine objects in the

middle of map, and they move one grid randomly per cycle time.

Fig. 8. The result with the detective range of 20 grids, and the cycle

time is 20 milli-seconds. The total time is about 4 seconds.

Fig. 6. The result with the detective range of 3 grids, and the cycle time

is 20 milli-seconds. The total time is about 26 seconds.

3615

ACKNOWLEDGMENT

The authors would like to thank Kun- Min Huang and

Chuen-Fu Wu for their help. This work was supported by

Metal Industries Research & Development Centre, Taiwan.

IV. CONCLUSION

In this paper, we proposed the D++ algorithm to solve

general problems of path-planning methods at present for

mobile robot. The main idea of D++ algorithm is that

combining Dijkstra’s algorithm with sensor-based method to

make robot run Dijkstra’s algorithm with a small range of

searching space which we call detective range in this paper

within one cycle time. Through the design of detection range,

D++ algorithm will be more flexible than Dijkstra’s algorithm

to make robot have higher response or better capacity of

finding the shortest path. Therefore, adjusting the size of

detective range will have a great effect on the performance of

D++ algorithm. Comparing with Dijkstra’s and A* algorithms,

D++ algorithm can avoid a waiting time for a large map, and

also can deal with dynamic problem which is difficult to be

solved by Dijkstra’s and A* algorithms generally. Besides,

comparing with artificial potential fields, D++ algorithm can

easier leave the region of local solution, even won’t approach

some regions of local solution such as a trap if the detective

range is wide enough. Therefore, D++ algorithm is not only

very suitable for large maps, but also complex maps, such as a

maze. Because D++ algorithm is based on Dijkstra’s

algorithm, it can ensure reaching a goal like Dijkstra’s

algorithm if there is at least one path to goal. In future, we will

continue this research to apply D++ algorithm to real mobile

robot.

REFERENCES

[1] Dijkstra, E. W. “A note on two problems in connexion with graphs,”

Numerische Mathematik 1: 269–271, 1959.

[2] Hart, P. E.; Nilsson, N. J.; Raphael, B. (1972). “Correction to A Formal

Basis for the Heuristic Determination of Minimum Cost Paths,”

SIGART Newsletter 37: 28–29.

[3] A. Stentz, “Optimal and Efficient Path-planning for Partially-Known

Environments,” Proceedings of the International Conference on

Robotics and Automation, 1994,3310–3317.

[4] A. Stentz. “The Focused D* Algorithm for Real-Time Replanning,”

Proceedings of the International Joint Conference on Artificial

Intelligence, 1652–1659, 1995.

[5] S. Koenig, M. Likhachev and D. Furcy. “Lifelong Planning A*,”

Artificial Intelligence Journal, 155, (1-2), 93-146, 2004.

[6] S. Koenig and M. Likhachev, “D* Lite,” In Proceedings of the

Eighteenth National Conference on Artificial Intelligence, pp. 476-483,

July 2002.

[7] Khatib, O. “Real-time obstacle avoidance for manipulators and mobile

robots,” Robotics and Automation. Proceedings. 1985 IEEE

International Conference on Volume 2, Mar 1985 Page(s):500 – 505

[8] Koren, Y.; Borenstein, J., “Potential field methods and their inherent

limitations for mobile robot navigation,” Robotics and Automation,

1991. Proceedings., 1991 IEEE International Conference on 9-11 April

1991 Page(s):1398 - 1404 vol.2, Digital Object Identifier

10.1109/ROBOT.1991.131810

[9] Charifa S., Bikdash M., “Comparison of geometrical, kinematic, and

dynamic performance of several potential field methods,” Southeastcon,

2009. SOUTHEASTCON '09. IEEE Digital Object Identifier:

10.1109/SECON.2009.5174043, Publication Year: 2009 , Page(s): 18 -

23

[10] Ismail AL-Taharwa, Alaa Sheta and Mohammed Al-Weshah, “A

Mobile Robot Path-planning Using Genetic Algorithm in Static

Environment,” Journal of Computer Science 4 (4): 341-344, 2008,

ISSN 1549-3636

[11] Simon X. Yang, Max Meng., “Neural Network Approaches to Dynamic

Collision-Free Trajectory Generation,” IEEE Transactions on Systems,

Man, and Cybernetics-Part B: Cybernetics, Vol.31 No.3 pp.302-318,

June, 2001

[12] Senthilkumar K.S., Bharadwaj K.K., “Hybrid Genetic-Fuzzy Approach

to Autonomous Mobile Robot,” Technologies for Practical Robot

Applications, 2009. TePRA 2009. IEEE International Conference on

Digital Object Identifier: 10.1109/TEPRA.2009.5339649, Publication

Year: 2009 , Page(s): 29 – 34

[13] Hassanzadeh I., Sadigh S.M., “Path-planning for a mobile robot using

fuzzy logic controller tuned by GA,” Mechatronics and its Applications,

2009. ISMA '09. 6th International Symposium on Digital Object

Identifier: 10.1109/ISMA.2009.5164798, Publication Year: 2009 ,

Page(s): 1 - 5

[14] Willms, A.R.; Yang, S.X., “An efficient dynamic system for real-time

robot-path-planning ,” Volume 36, Issue 4, Aug. 2006 Page(s):755 -

766 , Digital Object Identifier 10.1109/TSMCB.2005.862724

[15] Myungsik Kim, Nak Young Chong, Wonpil Yu, “Fusion of direction

sensing RFID and sonar for mobile robot docking,” Automation

Science and Engineering, 2008. CASE 2008. IEEE International

Conference on Digital Object Identifier:

10.1109/COASE.2008.4626436, Publication Year: 2008 , Page(s): 709

- 714

Fig. 10. The result with the detective range of 10 grids, and the cycle

time is 100 milli-seconds. The total time is about 3 seconds.

3616

