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Abstract— In this work we show the use of potential fields
in conformal geometric algebra to assist the humanoid manip-
ulation planning. Since the computational unit in conformal
geometry algebra is the sphere, it appears natural to use the
potential fields for computing navigation trajectories avoiding
obstacles. Furthermore, by covering obstacles with convex hulls,
one can obtain certain shapes which are amenable of being
parameterized as spheres, thus this equivalent potential fields
can be used so that the robot device can move around the
irregular shapes of obstacle without increasing the computation
complexity. In this paper we present this theory and show with
simulations the effectiveness of the approach.

Index Terms— Conformal Geometry, Kinematics, Grasping,
Tracking.

I. INTRODUCTION

For the study of kinematics and motion planning of

robot mechanisms different mathematical frameworks have

been used like vector calculus, quaternion algebra or linear

algebra, being the last one the most used. However, in these

mathematical systems it is very complicated to handle the

kinematics and dynamics involving geometric primitives like

points, lines, planes and spheres. On the other hand, if

we want to integrate potential fields for computing suitable

trajectories avoiding obstacles, the algebraic complexity is

increased if matrix or tensor calculus are still used. In

this work, we formulate the kinematics and the motion

planning using potential fields in the conformal geometric

algebra framework. In conformal geometry algebra [1], [2],

the computational unit is the sphere, thus it appears quite

natural to use the potential fields [3] for computing navi-

gation trajectories avoiding obstacles. The gradient of the

potential fields creates repulsive forces bringing away the

robot mechanism from the obstacle. Since this potential field

function is formulated with respect to a position vector of

the conformal geometric algebra, it can be integrated in the

inverse kinematics to find out the appropriate angles of the

root arm to get around the obstacles. Interestingly enough,

by covering obstacles with convex hulls, we obtain certain

shapes which are amenable of being parameterized as spheres

[8], therefore they can be used for the inverse kinematics

computation in the conformal geometric algebra framework

for obstacle avoidance. A similar idea, was used by us to

parametrize different shapes of mirrors for omnidirectional

catadioptric vision [1]. As a result the parabolic, hyperbolic

and elliptic mirror can be represented in a canonical form

using a spherical mirror. In this paper, we show how confor-

mal geometric algebra simplifies the algebraic treatment of

inverse kinematic with the use of potential fields for planning

the robot manipulator maneuvering. Sections two and three

presents an outline of geometric algebra and conformal

geometric algebra respectively. Section four presents the

representation of rigid transformations and direct kinematics

in terms of versors. Section five shows the computing of

the inverse kinematics of a 5 D.O.F. manipulator using

conformal geometric algebra. In section six, we explain the

use of potential fields in the conformal geometric algebra

framework. Section seven describes the Conformal mapping

to represent irregular shapes. Finally section eight is devoted

to the conclusions.

II. GEOMETRIC ALGEBRA: AN OUTLINE

Let Gn denote the geometric algebra of n-dimensions, which

is a graded-linear space. As well as vector-addition and

scalar multiplication, we have a non-commutative product

which is associative and distributive over addition. This is

the geometric or Clifford product.

The inner product of two vectors is the standard scalar or

dot product, which produces a scalar. The outer or wedge

product of two vectors is a new quantity which we call a

bivector. We think of a bivector as an oriented area in the

plane containing a and b, which is formed by sweeping a

along b.

Thus, b ∧ a will have the opposite orientation making the

wedge product anti-commutative. The outer product is im-

mediately generalizable to higher dimensions. For example,

(a∧ b)∧ c, a trivector, is interpreted as the oriented volume

formed by sweeping the area a∧ b along vector c. The outer

product of k vectors is a k-blade, and such a quantity is said

to have grade k. A multivector (the linear combination of

objects of different grades) is a homogeneous k-vector if it

contains terms of only a single grade k.

In this paper we will specify the geometric algebra Gn of

the n dimensional space by Gp,q,r, where p, q and r stand

for the number of basis vectors which square to 1, -1 and 0

respectively and fulfill n = p + q + r.

We will use ei to denote the basis vector i. In geometric
algebra Gp,q,r, the geometric product of two basis vectors is

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 13781378



defined as

eiej =

8
><
>:

1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p + 1, · · · , p + q

0 for i = j ∈ p + q + 1, · · · , p + q + r.
ei ∧ ej for i 6= j

This leads to a basis for the entire algebra:

{1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, . . . , {e1 ∧ e2 ∧ . . . ∧ en} (1)

Any multivector can be expressed in terms of this basis. The
multivectors can be of grade 0 (scalars), grade 1 (vectors),
grade 2 (bivectors), grade 3 (trivectors), etc., up to grade n
(n-vectors). For example, G4,1,0 has the basis

{1}, {e1, ..., e5}, {e12, e13, ..., e45},

{e123, ...e345}, {e1234, ..., e2345}, {e12345 = I}
(2)

where e2
1 = 1, e2

2 = 1, e2
3 = 1, e2

4 = 1, e2
5 = −1. G4,1,0 is a

five-dimensional geometric algebra with 25 = 32 multivector

blades.

III. CONFORMAL GEOMETRIC ALGEBRA

Geometric algebra G4,1 = G4,1,0 can be used to treat

conformal geometry in a very elegant way. To see how this

is possible, we follow the same formulation presented in [2]

and show how the Euclidean vector space R
3 is represented

in R
4,1. This space has an orthonormal vector basis given by

{ei} and eij = ei ∧ ej are bivectorial bases and a bivector

basis e23, e31 and e12 that corresponds together with 1 to

Hamilton’s quaternions. The unit Euclidean pseudo-scalar

Ie := e1∧e2∧e3, a pseudo-scalar I = IeE, and the bivector

E := e4 ∧ e5 = e4e5 are used for computing Euclidean and

conformal duals of multivectors. For more about conformal

geometric algebra, refer to [1], [2].

A. The point

The vector xe ∈ R
3 representing a point after a conformal

mapping is rewritten as

xc = xe +
1

2
x2

ee∞ + e0, (3)

where the null vectors are the point at infinity e∞ = e4 + e5

and the origin point e0 = 1

2
(e4 − e5) with the properties

e2
∞

= e2
0 = 0 and e∞ · e0=1.

B. Spheres and Planes

The equation of a sphere of radius ρ centered at point pe ∈
R

3 can be written as (xe−pe)
2 = ρ2. Since xc·yc = − 1

2
(xe−

ye)
2, where xe and ye are the Euclidean components, and

xc · pc = − 1

2
ρ2, we can rewrite the formula above in terms

of homogeneous coordinates. Since xc · e∞ = −1, we can

factor the expression above to

xc · (pc −
1

2
ρ2e∞) = 0 (4)

this equation corresponds to the so called Inner Product
Null Space (IPNS) representation. Which finally yields the
simplified equation for the sphere as s = pc − 1

2
ρ2e∞ . Note

from this equation that a point is just a sphere with a zero
radius. Alternatively, the dual of the sphere is represented as

Fig. 1. a) (left column) Reflection of a point x with respect to the plane
π. b) (right column) Reflection about parallel planes.

4-vector s∗ = sI . The advantage of the dual form is that the
sphere can be directly computed from four points as

s
∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (5)

If we replace one of these points for the point at infinity, we
get the equation of a 3D plane

π
∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (6)

So that π becomes in standard IPNS form

π = Iπ∗ = n + de∞ (7)

Where n is the normal vector and d represents the Hesse

distance for the 3D space.

C. Circles and Lines

A circle z can be regarded as the intersection of two spheres
s1 and s2 as z = (s1 ∧ s2) in IPNS. The dual form of the
circle can be expressed by three points lying on the circle,
namely

z
∗ = xc1 ∧ xc2 ∧ xc3 . (8)

Similar to the case of planes, lines can be defined by circles
passing through the point at infinity as:

L
∗ = xc1 ∧ xc2 ∧ e∞. (9)

The standard IPNS form of the line can be expressed as

L = nIe − e∞mIe (10)

where n and m stand for the line orientation and moment

respectively. The line in the IPNS standard form is a bivector

representing the six Plücker coordinates.

TABLE I

REPRESENTATION OF CONFORMAL GEOMETRIC ENTITIES

Entity IPNS Representation OPNS Dual representation

Sphere s = p −
1

2
ρ2e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Point xc = xe +
1

2
x2

ee∞ + e0 x∗ = s1 ∧ s2 ∧ s3 ∧ s4

Line L = nIe − e∞mIe L∗ = x1 ∧ x2 ∧ e∞
Plane π = n + de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞
Circle z = s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3

Pair of P. Pp = s1 ∧ s2 ∧ s3 P ∗

p = x1 ∧ x2

IV. RIGID TRANSFORMATIONS

We can express rigid transformations in conformal geometry

carrying out plane reflections.
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1) Reflection: The combination of reflections of confor-

mal geometric entities enables us to form other transforma-

tions. The reflection of a point x with respect to the plane

π is equal x minus twice the directed distance between the

point and plane (see the Figure 1(a)). That is, ref(x) =
x−2(π·x)π−1. We get this expression by using the reflection

ref(xc) = −πxcπ
−1 and the property of Clifford product

of vectors 2(b · a) = ab + ba.
For a IPNS geometric entity Q, the reflection with respect

to the plane π is given as

Q
′ = πQπ

−1
(11)

2) Translation: The translation of conformal geometric
entities can be done by carrying out two reflections in parallel
planes π1 and π2 (see Figure 1(b)). That is

Q
′ = (π2π1)| {z }

Ta

Q(π−1

1 π
−1

2 )| {z }
fTa

(12)

Ta = (n + de∞)n = 1 +
1

2
ae∞ = e

a

2
e∞ (13)

With a = 2dn.

3) Rotation: The rotation is the product of two reflections

at nonparallel planes which pass through the origin, (see

Figure 2)

Fig. 2. Reflection about nonparallel planes.

Q
′ = (π2π1)| {z }

Rθ

Q(π−1

1 π
−1

2 )| {z }
fRθ

(14)

Or computing the conformal product of the normals of the
planes.

Rθ = n2n1 = cos(
θ

2
) − sin(

θ

2
)l = e

−
θ

2
l

(15)

With l = n2∧n1, and θ twice the angle between the planes
π2 and π1. The screw motion called motor is related to an
arbitrary axis L is M = TRT̃

Q
′ = (TR eT )| {z }

Mθ

Q(T eR eT )| {z }
gMθ

(16)

Mθ = TR eT = cos(
θ

2
) − sin(

θ

2
)L = e

−
θ

2
L

(17)

The direct kinematics for serial robot arms is a succession
of motors as you can see in [1] and it is valid for points,
lines, planes, circles and spheres

Q
′ =

nY

i=1

MiQ

nY

i=1

fMn−i+1 (18)

.

V. INVERSE KINEMATIC USING CONFORMAL GEOMETRIC

ALGEBRA

In this subsection, we will briefly describe the procedure

steps to compute the inverse kinematics of a 5 D.O.F robot

arm using the conformal geometric algebra framework. We

have presented above a similar computation using motor

algebra G3,0,1 and the affine plane and next conformal

geometric algebra G4,1 [1]. The reader by studying these

examples can learn to compute using the geometric algebra

and get a better understanding of the potential of this

mathematical framework.

Objective: find the joint angles in order to place the robot

arm at the point pt in such a way that the gripper will stay

parallel to the plane φt.

Step 1: Find the position of the point p2

l∗y = e2E, st = pt −
1

2
d2
3e∞

zt = st∧πt, j∗

z = zt∧e∞

l∗d = d(pt, l
∗

y)∧pt∧e∞, π∗

jld
= j∗

z∧(l∗dE)

P P2
= πjld∧zt, p2 =

P ∗

P2
+

√
P ∗

P2
· P ∗

P2

P ∗

P2
· e∞

.

where d(pt, l
∗

y) stands for the directed distance between

pt and l
∗

y .

Step 2: Find the point p1

s1 = e0 −
d2
1

2
e∞, s2 = p2 −

d2
2

2
e∞

π∗

1 = l∗y∧p2 = e2E∧p2, π∗

2 = e3Ic

P P1
= s1∧s2∧π1, p1 =

P ∗

P1
+

√
P ∗

P1
· P ∗

P1

P ∗

P1
· e∞
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Step 3: Find the point p0

π∗

1 = l∗y∧p2, s0 = e0 −
d2
0

2
e∞

π0 = e2 − he∞, z0 = s0∧π0

P P0
= z0∧π1, p0 =

P ∗

P0
+

√
P ∗

P0
· P ∗

P0

P ∗

P0
· e∞

Step 4: Compute the lines l1, l2 and l3

l
∗

1 = p0∧p1∧e∞, l
∗

2 = p1∧p2∧e∞, l
∗

3 = p2∧p1∧e∞ (19)

Step 5: Compute the angles

cos(θ1) =
π∗

1 · π∗
2

|π∗
1 ||π∗

2 |
, cos(θ2) =

l
∗

1 · l∗y
|l∗1||l∗y|

cos(θ3) =
l∗1 · l∗3
|l∗1||l∗3|

, cos(θ4) =
π∗

1 · π∗
3

|π∗
1 ||π∗

3 |

cos(θ5) =
l∗3 · l∗2
|l∗3||l∗2|

.

VI. POTENTIAL FIELDS

There are several strategies in robotics to tackle the prob-

lems of obstacle avoidance and path planning for n-links

manipulators. The method of potential fields, pioneered by

Khatib [3], is a good approach to address these problems.

The aim is to generate a field potential with an attractive

global minimum at the target and a repulsive local maximum

at the obstacle. In others works like [4], [5] it was proposed

to use an electrostatic field as an artificial potential function

to specify the desired trajectories. These approaches assume

knowledge of the location of the obstacle. The principal

advantage of a Coulomb potential is the absence of local

minima. In [5] the standard Coulomb potential was extended

to the n-dimensional Euclidean space for r > 0 with

r = (

n∑

i=1

x2
i )

1
2 , x = (x1, x2, x3) (20)

The generalized harmonic potential of a point charge q is

given by

U(r) =

{
q

rn−2 , n = 1, 3, 4, · · ·
q ln q

r
, n = 2

(21)

The associated electrostatic force field is computed by

E(r) = −gradU(r)


(n − 2) q

rn−1 , n = 1, 3, 4, · · ·
q

r
, n = 2

(22)

The formulation of (21), it was proposed in [8], [4] to locate
a negative unit charge in the goal point and a distributed
positive charge in the obstacles. However, the calculations
of the field created by a distributed charge is tedious for
this reason in [5] it was proposed to locate a positive point
charge in each obstacle. To avoid collisions of the robot or
end effector whit the obstacles it was proposed in [6] the use
of a security circle whit radius R and center in the position
of the positive charge q of the obstacle. A key aspect is
to construct the potential field such that the gradient lines
(trajectories) do not cross the security circle from outside
to inside. The equilibrium point placement method [6]
determines the charge of the obstacle by

q =
R

R + D
(23)

where R is the radius of the security circle and D is the

distance between the two charges.

A. Use of potential fields in conformal geometric algebra

The designed potential field has been developed in a Eu-

clidean space. Now, to solve the inverse kinematics problem

of a manipulator arm, we work with conformal points, for

this reason we need to transform the conformal points to

Euclidean points for the design of the gradient field. Using

the additive split [1] we can divide a conformal point

xc ∈ R
n+1,1 into its Euclidean and conformal parts by

PE(xc) = (xc · E)E = αe0 + βe∞ ∈ R
1,1 (24)

P⊥

E (xc) = (xc ∧ E)E = xe ∈ R
n (25)

xc = PE(xc) + P⊥

E (xc) (26)

where E = e∞∧e0 and α, β are scalars. Now using (25) we

can design an unitary gradient field for the Euclidean part of

xc, which is

E(xe) = Eobs − Egoal (27)

where Eobs is the gradient field in the obstacle for a charge

q and Egoal is the gradient field for a unitary charge in the

target.
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Fig. 3. Gradient field in R
3 for a positive charge q in the sphere center

and a negative charge in the goal point.

B. Path generation

To generate the trajectory that the end effector must follow

we create a path consisting of points using (27) and the initial

position of the end effector. This is an iterative process which

evaluates the distance between the end effector and the goal

point. This is a description of the method to generate the

path for a robotic arm:

1) First, we calculate the distance between the current position
of the end effector (xc(n) ∈ R

4,1) and the position of the
goal point (xgoalc ∈ R

4,1) using dist[xc(n), xgoalc] =p
−2(xc(n) · xgoalc), if it is less or equal to a boundary

ε then xc(n) is the final position of the end effector, else we
move to 2.

2) We obtain the Euclidean part(xe(n)) of xc(n) using (25).
3) Then, we compute the following position of the end effector

(xe(n + 1)) by xe(n + 1) = xe(n) + εE(xe(n)).
4) Using (3) we mapped xe(n+1) to a conformal point (xc(n+

1)).
5) Using the steps of the section V we find the inverse kine-

matics for xc(n + 1).
6) We update xc(n) doing xc(n) = xc(n + 1) then we back to

1.

C. Obstacle Avoidance

Fig. 4. Two links case for collision avoidance. c is the sphere center and
z2 is a cylinder wich represents the link.

With the generated path we ensure that the end effector does

not collide with an obstacle, but we cannot guarantee that

the links of the manipulator arm avoid collisions. For this

reason we propose a method to avoid collisions using the

minimum distances between the obstacle and the links. When

we compute the gradient field, we assume knowledge of the

position of the positive charge q which is the center of the

obstacle sphere (s) and its radius R. The stage of the problem

is shown in figure (4). Computing lines like in (19) for each

link we can calculate the minimum distance (d) between s

and the link by

d =
√

ρ2 −
√

s2 − r2 (28)

where r2 is the radius of the cylinder z2 (see figure(4)), s2

is the geometric product ss and ρ2 is computed by

ρ
2 =

"
l∗ ·

`
s + 1

2
s2e∞

´

l∗ ·
`
s + 1

2
s2e∞

´
· e∞

#2

(29)

If the distance is greater or equal than a boundary ς , then the

solution of the inverse kinematics calculated on section V is

valid for collision avoidance, otherwise we need to find other

points to do (19) until the distance condition is satisfied. To

find these other points we use a rotor. Suppose that the point

p2 in the step 1 of the section V is not valid for collision

avoidance, then we can rotate this initial point with a rotor

wich axis of ratation is the axis of the circle zt shown in

the step 1. The angle of rotation is a factor ∆θ in this way

we can make an iterative process to obtain new points to do

(19). The process used, is summarizing by

p′2 = Rθp2R̃θ (30)

where Rθ is

Rθ = e−
θ+∆θ

2
jz

∗

(31)

and jz
∗ is the axis of the circle zt.

Figure (5) shows a simulation using CLUCalc [7] for a

humanoid arm using the proposed method. In the figure we

can see the target and the generated path to avoid the obstacle

sphere, also we can see a case when a collision can happen

and how the rotor works to find other points wich avoid the

collision.

VII. REPRESENTING OBJECT SHAPES IN CONFORMAL

GEOMETRIC ALGEBRA

We would like to represent areas outside of irregular shapes

with respect to a canonical representation in conformal

geometric algebra, namely the circle. As figure (6) shows,

according the Joukowski conformal mapping, exterior areas

of ellipse, oriented ellipse and aerofoil shape can be mapped

one to one into the exterior area of a circle. Thus, any point

(x,y) of R
2 outside of the shape represented using a complex

number q = x + iy or multivector q = x + e1e2y ∈ G2,1

can be represented in conformal geometric algebra in the

following way

pc = p +
1

2
|p|2e∞ + e0, (32)

where p and q are related for the Joukowski conformal

mapping as follows
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Fig. 5. Colission avoidance of a humanoid arm using potential fields and
the proposed method to avoid collision.

Case (a):

p =
1

2

h
q +

p
q2 − c2

i
, q = p +

c2

4p
,

c
2 = a

2 − b
2

(33)

Case (b):

p − q0 =
1

2

»
q − q0 +

q
(q − q0)

2 − c2ei2θ

–
,

q = p +
c2

4 (p − q0)
e

i2θ
(34)

Case (c): (33) applied to a circle whose center is not at the origin.

VIII. CONCLUSIONS

This paper has presented a complete mathematical frame-

work for treating real-time obstacle avoidance for manipula-

Fig. 6. Conformal mapping of exterior areas. (a) ellipse orentation fixed,
(b) ellipse orientation, arbitrary and (c) aerofoil shape.

tors and mobile robots. In the conformal geometric algebra

framework, we use potential fields as gradient repulsion

functions which helps to compute the inverse kinematics of

robot manipulators to avoid obstacles in real time. Since

the computing unit of conformal geometric algebra is the

sphere, we can easily embed the potential filed in this frame-

work. Our approach takes advantage of two seminal ideas:

the Kathib’s potential fields and the Wolovich’s conformal

mappings both for planning and obstacle avoidance. This

work generalizes to higher dimensions the issue of complex

potential functions and complex mappings. Our future work

will use our new formalism to exploit velocity feedback

using modern sliding modes techniques for planning and

maneuvering.

IX. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of CIN-

VESTAV and the project CONACYT-2007-1 No. 82084

“Cognitive and geometric methods for humanoid perception,

learning, control and action”.

REFERENCES

[1] Bayro-Corrochano Eduardo. Geometric Computing: for Wavelet
Transforms, Robot Vision, Learning, Control and Action, Springer
Verlag, Jan, 2010.

[2] Li H., Hestenes DF. and Rockwood A. [2001]. Generalized Homoge-
neous coordinates for computational geometry. In G. Somer, editor,
Geometric Computing with Clifford Algebras, pages 27-52. Springer-
Verlag Heidelberg.

[3] O. Khatib. 1986. Real-time obstacle avoidance for manipulators and
mobile robots. Int. Journal of Robotics Research, Vol. 5, No. 1, pp.
90-98.

[4] V. I. Utkin, S. Drakunov, H. Hashimoto, and F. Harashima “Robot
path obstacle avoidance control via sliding mode approach,” in Proc.

IEEE/RSJ International Workshop on Intelligent Robots and Systems,

(Osaka, Japan), pp. 1287-1290, 1991.
[5] H. Hashimoto, F. Harashima, V. I. Utkin, S. A. Krasnova, and I.

M. Kaliko “Sliding mode control and potential fields in obstacle
avoidance,” Proc. European Control Conference, pp. 859-862, 1993.

[6] J. Guldner V. I. Utkin, “Sliding mode control for an obstacle avoidance
strategy based on an electrical potential field,” in Proc. IEEE Conf.

Decision and Control, (San Antonio, TX, USA), pp. 424-429, 1993.
[7] http://www.clucalc.info/ Mathematical tool to Geometric Algebra
[8] D. Megherbi and W.A: Wolovich.[1992].. Real-time feedback obstacle

avoidance via complex variables and conformal mappimg. In Proceed-
ings of the Int. Conf. on Robotics and Automation, ICRA’1992, Nice
France,May, pp. 206-213.

13831383




