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Abstract— This paper describes a new approach for building
3D geometric maps using a geometric line and plane detector
together with laser range finder and a stereo camera system.
This detector is developed in such a way that one can related
easily it with the conformal geometric algebra framework, thus
detected lines and planes can be used for algebra of incidence
computation to find geometric constraints useful to perceive
special configurations in the 3D visual space for exploration,
navigation and obstacle avoidance.

I. INTRODUCTION

Mobile robots are equipped with different input devices to

sense the surrounding environment. The laser range finder is

widely used for this task due to its precision to detect lines,

and its wide capture range. Our procedure merges the data

obtained by the laser and the stereo camera system to build

a 3D virtual map with the shapes like walls and surrounding

objects obtained by the sensors. This paper is an extension

of previous work [1].

Using the Conformal Geometric Algebra we can represent

different geometric entities like lines, planes, circles and

spheres including the line segments (as a pair of points).This

framework also allows us to formulate transformations (ro-

tation, translation) using spinors or versors. By using those

geometric primitives, we can represent complex 2D and

3D shapes. There are basically two types of maps suitable

for localization: the occupancy grid map and geometric

primitives based map. This work uses the latter. To know

the pose (position an orientation) of the robot while the

map is being building is a crucial need for mobile robots.

In this work, for the robot relocalization, we use the line’s

characteristics in the Hough domain [2] (θ,ρ) for finding

out the current robot position in the 2D map. When the

environment map has been captured and one starts the mobile

robot in a different place the problem is to relocalize it in

the same map In this work, we use the lines captured in the

Hough domain to perform the relocalization inside the 2D

map. Once the robot is relocalized, it uses the 3D Hough

transform to detect planes and include them in the 3D map.

Our robot algorithm exploits the 2D and 3D Hough space to

relocalize and to find out particular 3D space configurations

which can be used to recognized spacial areas and navigate

safely. We present experiments using real data which validate

the efficiency of our approach.

In section II we give an outline of the geometric algebra

and the conformal geometric algebra. The 2D and the gener-
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alized Hough Transformation are presented in section three.

Section four describes the approach for 3D map building.

The procedure for the robot relocalization is explained in

section five. The approach for the plane detection using the

3D Hough transform and stereo vision is presented in section

six. The section seven is devoted to the concluding remarks.

II. GEOMETRIC ALGEBRA AN OUTLINE

The Geometric algebra Gp,q,r is constructed over the

vector space Vp,q,r, where p,q,r denote the signature of the

algebra; if p 6= 0 and p = r = 0, the metric is Euclidean;

if only r = 0, the metric is pseudo Euclidean; if p 6= 0,

q 6= 0, r 6= 0, the metric is degenerate. The dimension of

Gn=p+q+r is 2n, and Gn is constructed by the applications of

the geometric product over the vector basis ei. The geometric

product between two vectors a,b is defined as

ab = a · b + a ∧ b

and the two parts; the inner product a · b is symmetric

part, while the wedge product (outer product) a ∧ b is the

antisymmetric part.

In Gp,q,r the geometric product of two basis is defined as

eiej :=





1 ∈ R for i = j ∈ {1, . . . , p}
−1 ∈ R for i = j ∈ {p + 1, . . . , p + q}
0 ∈ R for i = j ∈ {p + q + 1, . . . , n}
eij = ei ∧ ej for i 6= j.

this lead in a basis for Gn that contains elements of different

grade called blades (e.g. scalars, vectors, bivectors, trivectors,

etc.):

1, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, · · · , e1 ∧ e2 ∧ · · · ∧ en

which is called basis blade; where the elements of maximum

grade is the pseudoscalar I = e1 ∧ e2 ∧ . . . ∧ en. A linear

combination of basis blades, all of the same grade k, is called

k-vector. The linear combination of such k-vectors is called

multivector, and multivectors witch certain characteristics

represent different geometric objects or entities (as points,

lines, planes, circles, spheres, etc.), depending on the GA

where we are working (for example, a point (a, b, c) is

represented in G3,0,0 [the GA of the 3D-Euclidean space

E3] as x = ae1 + be2 + ce3, however a circle can not be

defined in G3,0,0, but it is possible to define it in G4,1,0

(CGA) as a 4-vector z = s1 ∧ s2 [the intersection of two

spheres in the same space]). Given a multivector M, if we

are interested in extracting only the blades of a given grade,

we write < M >r where r is the grade of the blades we

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 810



want to extract (obtaining an homogeneous multivector M’

or a r-vector).

The dual X∗ of a r-blade X is defined by X∗ = XI
−1

n
.

It follow that the dual of a r-blade is an (n − r)-blade.

The reverse of any multivector M is defined as

〈M̃〉i = (−1)
i(i−1)

2 〈M〉i, for M ∈ Gn, 0 ≤ i ≤ n. (1)

The reader should consult [3] to detailed explanation about

CGA and its applications.

A. Conformal Geometric Algebra

To work in Conformal Geometric Algebra (CGA) G4,1,0

means to embed the Euclidean space in a higher dimensional

space with two extra basis vectors which have particular

meaning; in this way we represent particular entities of the

Euclidean space with subspaces of the conformal space. The

TABLE I

ENTITIES IN CGA

Entity IPNS OPNS

Sphere s = p + 1
2
(p2

− ρ2)e + e0 s∗ = a ∧ b ∧ c ∧ d

Point x = x + 1
2
x2e + e0 x∗ = (−Ex −

1
2
x2e + e0)IE

Plane P = NIE − de P ∗ = e ∧ a ∧ b ∧ c
N = (a − b) ∧ (a − c)
d = (a ∧ b ∧ c)IE

Line L = P1 ∧ P2 L∗ = e ∧ a ∧ b

= rIE + eMIE

r = a − b

M = a ∧ b

Circle z = s1 ∧ s2 z∗ = a ∧ b ∧ c

sz = (e · z)z

ρz =
z
2

(e∧z)2

P-pair PP = s1 ∧ s2 ∧ s3 PP ∗ = a ∧ b

extra vectors we add are e+ and e−, defined by the properties

e+
2 = 1, e−

2 = −1, e+ · e− = 0. With this two vectors, we

define the null vectors

e0 =
1

2
(e− − e+); e = e− + e+ (2)

interpreted as the origin and the point at infinity, respectively.

From now on and in the rest of the paper, points in the

3D-Euclidean space are represented in lowercase, while

conformal points in underline letters; also the conformal

entities will be expressed in the Outer Product Null Space

(OPNS) (noted with an asterisk beside, also know as the

dual of the entity), and no in the Inner Product Null Space

(IPNS) (without asterisk) unless it is specified explicitly. To

go from OPNS to IPNS we need to multiply the entity by

the pseudoscalar.To map a point x ∈ V3 to the Conformal

space in G4,1 (using IPNS) we use

x = x +
1

2
x2

e + e0 (3)

Applying the wedge operator ”∧” on points, we can express

new entities in CGA. All geometric entities from CGA are

show in the table I for a quick reference.

The pseudoscalar in CGA G4,1,0 is defined as

I = IEE (4)

where IE = e1e2e3 is the pseudoscalar from G3 and E =
e+e− is the pseudoscalar from the Minkowski plane.

In GA there exist specific operators to model rotations

and translations called rotors and translators respectively. In

CGA such operator are called versor and are defined by (5)

being R the rotor, T the translator.

R = e−
1
2 lθ; T = e

et

2 , (5)

where the rotation axis l = l1e23 + l2e31 + l3e12 is a unit

bivector which represents a line (in IPNS) through the origin

in CGA, θ is the rotation angle, t = t1e1 + t2e2 + t3e3 is

the translation vector in V3. The equations (5) can also be

expressed as

R = cos

(
θ

2

)
− sen

(
θ

2

)
l; T = (1 +

et

2
) (6)

due to the exponential properties. Such operator are applied

to any entity of any dimension by multiplying the entity by

the operator from the left, and by the reverse of the operator

from the right, as show in (7).

x′ = σxσ̃ (7)

where x is any entities mentioned in table I, and σ is a versor

(rotor, translator or motor mentioned below). Using (7) is

easily to transform any entities from CGA (points, point-pair,

lines, circles, planes, spheres), not only points as is usual in

other algebras.

In CGA it is possible to use the rotors and translator

to express general rotation and screw motions in space. To

model a screw motion, the entity has to be translated during

a general rotation with respect to the rotation axis. The

implementation consecutive of a translator and rotor can be

written as the product of them. Such operator is called motor

and expressed as

M = TR (8)

The translator, rotor and motor (all of them versors)

are elements from G+
4,1, and they defines an algebra called

motor algebra. This algebra greatly simplifies the successive

computation of rotations and translation, applying only the

geometric product in consecutive versors, giving the final

result another versor of this algebra, where all the transfor-

mations are together in one element.

III. 2D AND 3D HOUGH TRANSFORM

The Hough Transform [2] is a robust and effective method

to identify the location and orientation of lines. The trans-

form is the parametrization of a line from the (x,y) plan (a

Cartesian plan) to the (θ,ρ) plan (the Hough domain).

A. 2D Hough Transform

The line segments of the map are transformed to the

Hough domain, defining the transformation in the domain

of θ ∈ [0, 2π), so every line segment in (x,y) correspond to

a point (θ,ρ). This gives us one characteristic in a line, if it
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varies only in its angle θ it keeps the value of ρ constant.

So given a previous captured map G (global map) and a new

captured map L (new local map) the difference between them

is an angle ∆θ and a displacement ∆x and ∆y which affects

the ρ value.

The difference of an angle in the Hough domain is defined

as follow

∆θ(θa, θb) =





θa − θb − 2π if case 1

θa − θb + 2π if case 2

θa − θb if other

(9)

where

case 1 : if θa > θb and θa + θξ ≥ 2π and θb + θξ ≤ 0
case 2 : if θa < θb y θb + θξ ≥ 2π y θa + θξ ≤ 0

this give us the calculus of an any point near by other where

its angles are near to 0 = 2π.

B. Generalized Hough Transform

The 2D hough transform maps the R2 to a the so called 2D

Hough space parametrized by (θ, ρ). Since in this work, we

represent geometric entities in conformal geometric algebra,

we need to reformulate the Hough transform so that we can

use comfortably to this formulation while we are computing

in geometric algebra. Lines in 2D or planes in 3D are in

fact hyperplanes embedded in a 2D or 3D linear space,

thus if the Hough transform was developed for lines, from

the mathematical point of view, it should be possibly to

generalize it for any hyperplane of Rn, where n = 3, 4, . . ..

However, the way we represent such hyperplanes is the key,

thus we resort to formulate a generalized Hough transform

related with the conformal geometric algebra. The intrinsic

characteristics of Hyperplanes are just two: Hesse distance

(a scalar) and hyperplane orientation (nD unit vector), thus

a hyperplane in Rn has n+1 D.O.F. What we will now

formulate, it will be called from know on the Hough ge-

ometric sensor. First of all, we should underline the fact

that any Hough space is just a parametrized space, which

can be put in connection with conformal geometric algebra

for the purpose of carrying out algebraic computation using

the hyperplanes coded in the Hough space in question.

That means that a nD Hough space will be used together

with a Gn+1,1 conformal geometric algebra. Our formalism

was inspired by the concept of duality between hyperplanes

and points both represented in homogeneous coordinates.

Thus, if we imagine in Rn centered hyperspheres of varying

radius (perfect set), we can consider the radius as Hesse

distances an any point on the surface of any hypersphere as

an unique hyperplane, see figure 1. Now, any point lying

on this hyperplane p ∧ π = 0 increments a counter of

this plane. This model is straightforward extension of the

standard 2D Hough transform. Each counter can store also

(n-1) coefficients linked with each point solely to identify

the point with respect to the plane. Finally, we represent

this points in terms of two polar coordinates and the Hesse

distance. Each counter lying on the surface will represent

the intersection of infinity undulated manifolds, i.e. in 2D

are sinusoidal and in 3D surfaces with sinus undulation.

Fig. 1. Some planes and its Hesse normal form representation

The geometric sensor can be used by a robot vision system

to detect planes in the visual 3D space. Once stable planes are

found using robust algorihms like RANSAC [4][5], we can

use the parameters of the 3D plane (Hesse distance and plane

orientation) to represent a plane in 3D conformal geometric

algebra Gn+1,1 and look for geometric constrains between

points, lines and planes. For that we make use of algebra of

incidence using teh meet and join operations. The discovery

of geometric constrains is of extrem use for helping the robot

to navigate in places with obstacles. See in section VI an

interesting formulation of this new formulation.

IV. 3D MAP BUILDING

Using an equipped mobile robot with a laser rangefinder

sensor and stereo camera system mounted on a pan-tilt

head, each one with their own coordinate system. We apply

the method of hand-eye calibration [6] to get the center

coordinates of each devices related to a global robot co-

ordinate system. While the robot is moving exploring the

new areas two maps are performed simultaneously, one with

local coordinates ”L” (according to the current reading of the

robot) and the other with global coordinates ”G” (according

to the initial position of exploration). The use of the encoders

help us to estimate the actual position of the mobile robot

but this lectures has errors due to frictions on the wheels.

Therefore the pose of the robot, its rotation angle and

translation are calculated by

θ = θo + θerror (10)

T = To + Terror (11)

where θo and To are the rotation angle and the translation

vector given by the odometer, and θerror and Terror are the

value of correction error generated by the comparison of

the actual laser reading (line segments in local map) and

the prior reading (line segments in global map). Using the

perpendicular line to plane (x, y) as rotation axis and (10),

and adding a third fixed coordinate to (11) we can apply

this values in (5) to make Tpos and Rpos that represent the

movement of the robot in the environment.

In the next section we explain how to model data from

the input devices in the 3D environment.

812



A. Line detection

To extract line segments from range points, we use recur-

sive line splitting method as show in [7], this is a speedy

and correctness algorithm that performs divide-and-conquer

algorithms. For every endpoints of the line segments, we

maps them to CGA to get the pair of points entity and store

in a local map L. As the endpoints are 2D points we take

the last coordinate in V3 and give the 0 value to fix the point

in that plane. Now the local map L has every line segments

represented as pair of points in CGA and we can apply any

transformation on it (rotation, translation). While the map is

being built the collected data is stored in it with regard the

initial position The following records taken from the laser

rangefinder replace the actual local map for every new robot

position in the environment. When a new local map L is

taken, it is mapped to the global coordinate system using

(15) to perform a line matching. Here we use one property

of sphere to matching line segments (pair of point), namely

having two spheres s1
∗ and s1

∗ the product

(s1 ∧ s2)
2





< 0 if s1 and s2 intersect

= 0 if s1 and s2 are tangent

> 0 if s1 and s2 don’t intersect,

and to get a sphere from pair of points we use

SPP∗ =
PP ∗

PP ∗ ∧ e

(12)

When we got the line matching, we merge both maps and

correct the angle and displacement of the lines comparing

between local and global map, this little error is caused by

the odometry sensor. Then update the actual position of the

robot using (10) and (11).

We can express a motor that maps any entity that have

been taken from the laser coordinates system to the global

coordinates system. Taking the laser’s center of coordinates,

and making a motor Mlsr that represent the rotation and

translation from the center of the global coordinates system

to the laser’s center, and developing

Mcl = RposMlsrR̃pos (13)

Mpos = TposRlsr (14)

Mlu = MclMpos (15)

where (13) is the translation and rotation motor toward laser’s

center; (14) is the movement of robot using laser rangefinder

and (15) is the motor which leads us to the source of the laser

sensor in the global coordinate system.

Using (15) with any geometric entity (points, lines, circles)

recorded with the laser rangefinder sensor, we can move

easily to the global coordinate system using the form

x′ = MluxM̃lu (16)

As we are dealing in a 3D real world and the laser

rangefinder only show us a plane measure, we can add a

virtual wall (fig. 2) to the shapes from laser rangefinder to

get a 3D visual sense of the walls that are inside of the virtual

world.

If a new laser rangefinder is mounted on the mobile robot

or if the laser rangefinder is moved in another place in the

mobile robot, is easy to get the new motor that maps the data

from laser rangefinder to the global map, only updating the

motor Mlsr that represent the rotation and translation from

the center of the global coordinates system to the laser’s

center, and recalculate (15).

Fig. 2. 3D map using virtual walls

B. Stereo camera system with pan-tilt unit

The pan-tilt unit has two degrees of freedom which can

be expressed as two rotation, one for pan and other for tilt.

This rotation we can modeled using rotors as show in (5).

Let Rpan be the rotor for the pan movement and let Rtilt for

the tilt movement. Applying this rotors using the geometric

product we can model all the pant-tilt system. The stereo

camera system has is center coordinates on the left camera

(right camera viewing in front). We apply the method of

hand-eye calibration [6], to get the axis from the pan-tilt

unit and getting its intersection (or the closet point between

the rotation axis), we build a translation from this intersection

to the source of the stereo camera system. This translation

is performed using a translator Teye as show in (5). Now

getting all this information we develop a motor that maps any

entities taken from the stereo camera system to the global

coordinates system as

Tap = RposTaxisR̃pos (17)

Rpt = RposRpanRtilt (18)

Topt = RptTeyeR̃pt (19)

Mmpt = TposRpt (20)

Msu = ToptTapRmpt (21)

where (17) is the translation to the point that has the

minimum distance to the axis of pan-tilt, taking into account

rotation of the robot position. (18) is the rotor resulting of all

the spins that has done so much in the position of the robot,

as in the pan-tilt. (19) is the translation to the left camera

of the stereo camera system taking into account all the

movements that had the system. (20) is the movements motor

of the robot, along with the pan-tilt. (21) is the complete

movement motor of the robot.

Any point captured by the cameras in any angle of the

pan-tilt unit, in any position of the robot can be map from
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the stereo camera system to global coordinate system using

the form

x′ = MsuxM̃su (22)

By capturing the 3D objects using its representative points

we can represent points, line segments (pair of points), lines,

circles, planes, spheres in the frame of stereo camera system

and then take them to the global coordinate system using

(22).

C. Plane detection

Fig. 3. Planes in a corridor and their Hesse form representation

Points obtained from stereo images and formulated using

equation (22) can be used to obtain a representation of a

plane in virtual world. Several techniques can be used to

get features from images. 3D plane parameters can obtained

using stereo vision and the RANSAC. The plane parameters

are the radius or radial distance ρ, the plane tilt (or polar

angle) θ and the azimuth (or azimuthal angle) ϕ (see Fig.

3). Using these parameters, we get the Hesse distance of

the plane. The plane representation in the environment is

displayed using the points lying on the plane. Four of these

points are used to represent the plane.

The ρ, θ, ϕ are utilized in the Hough domain and are used

as point in this space. Using these points is easier to handle

planes due to its values (ρ > 0, θ ∈ [0, π) and ϕ ∈ (−π, π]).
When the mobile robots navigate, only the value of ρ and

θ are changed. Note, that A plane is represented just by 3

DoF.

V. ROBOT RELOCALIZATION ON A MAP

According subsection III-B, the Hough transform is the

parametrization of a line from the (x,y) plan (a Cartesian

plan) to the (θ,ρ) plan (the Hough domain). The line seg-

ments of the map are transformed to the Hough domain,

defining the transformation in the domain of θ ∈ [0, 2π), so

every line segment in (x,y) correspond to a point (θ,ρ). This

gives us one characteristic in a line, if it varies only in its

angle θ it keeps the value of ρ constant. So given a previous

captured map G (global map) and a new captured map L
(new local map) the difference between them is an angle ∆θ

and a displacement ∆x and ∆y which affects the ρ value.

The difference of an angle in the Hough domain is defined

by equation 9. The relocation follows the next steps:

• Extract the actual environment, using the laser

rangefinder, extract the line segment and map them to

the Hough domain and store in L (L only has (θ,ρ)

from each line).

• Make the difference for each element in L with each

element in G (using (9) in angles) and store it in ∆(θ,ρ),

giving us a twist and displacement, this step can see

as the difference of the actual map an the previous

captured.

∆(θ,ρ) = G − L (23)

• Now we build a new global map adding all the elements

of ∆(θ,ρ) to an element li ∈ L and store it in G′

i as show

in (24)

G′ = ∆(θ,ρ) + Li (24)

this give us a displacement of the actual map close to

the global map.

• Now the angle ∆θ have been shifted in G′

i, so we

decrease G by the value of G′

i, and get an error of

displacement ξi. The goal is to reduce this error using
∑

G′

i − L = 0 (25)

• Let V be a zero vote matrix of dimension |G| × |L|,
which votes are given if the error of the displacement

is less than a threshold

ξi < (ξθ, ξρ) (26)

where ξθ and ξρ are threshold from the angle and the ρ

respectively.

Fig. 4. Steps in relocation

Repeat last 3 steps for each line in L. Finally when all the

line where displaced and voted and extracting the maximum

value per column from V where the row position correspond

to a line in G so this is the line correspondence, if the value

is null, there is not matching. Now we get all the information
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about which lines are matching, and with this data we can

move and rotate the robot to the right place on the map

according to the samples taken.

Using each matching line to get the average of the angles

and with this angle get the rotation angle to build a new rotor

to turn the robot and the local map L (line segments) in the

new environment. Now we have the orientation of the mobile

robot and is only missing the displacement position. We can

find the displacement ∆x and ∆y using the closet point to

the origin in the matching lines, to generate a translation

vector. The closet point in to the origin on a line in CGA

can be calculate by

p = −(L∗ · E) · ((e+ · L)IE) (27)

as we get line segments (pair of points in CGA) only need to

apply the wedge operator with the point at infinity as show

in (28)

L∗ = PP ∗ ∧ e (28)

to get the line in CGA and perform (27). With the translation

vector we make a translator and apply it to the local map

and to the mobile robot. And now the robot is locate in

the correct place into the map, then we can continue with

navigation within the environment. In Fig. 4 we can see the

relocation evolution, where (a) show the initial position of

the robot and it is taking a sample of the environment, (b)

generating the lines segments of the actual environment (c)

load previous map to perform matching, here we can see that

the mobile robot is displaced and turned in an random place,

(d) locate and put the robot in the correct place into the map,

here the robot is located itself on the previous environment

and placed in the right place.

VI. PLANE DETECTION FOR A 3D MAP

Figure. 5 shows a mobile robot exploring a room. The

robot is passing throw a corridor, that has many planes on

its way. These planes are sensed by stereo camera system.

Planes in front of the robot are detected and processed by

our algorithm. At the bottom left of the figure, we see the

left image of the stereo vision system, where the planes were

highlighted with colour. On the right, after the robot sensed

the planes, it depicts them in a virtual environment. As you

can see, the planes are positioned according to their right

spatial location which was observed by the stereo vision

system. All these planes have their representation in CGA

and in the 3D Hough space. Note, that We can pass a plane

represented in CGA to a plane representation in the 3D

Hough space.

VII. CONCLUSIONS

In this paper the authors have introduced the generalized

Hough transform related with conformal geometric algebra.

The 2D and 3D Hough transforms are used as geometric

detectors of lines and planes sensed by a laser range finder

and a stereo vision system for 3D map building and robot

relocalization . Once lines or planes are stored in theses geo-

metric sensors, one can compute relations or find geometric

Fig. 5. A mobile robot in a corridor with planes by its side

constrains useful for line and plane configurations detection,

3D map building and robot relocalization, navigation an

obstacle avoidance. We believe that our approach can be of

great use for mobile robots or robot humanoids.
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