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Abstract— This paper presents experimental results on the
five-finger dexterous robot hand DLR-HIT II, with Cartesian
impedance control based on joint torque and nonlinearity
compensation for elastic dexterous robot joints. To improve the
performence of the impedance controller, system parameter es-
timations with extended kalman filter and gravity compensation
have been investigated on the robot hand. Experimental results
show that, for the harmonic drive robot hand with joint toruqe
feedback, accurate position tracking and stable torque/force
response can be achieved with cartesian and joint impedance
controller. In addition, a FPGA-based control architecture with
flexible communication is proposed to perform the designed
impedance controller.

I. INTRODUCTION

In recent years, interest have grown in dexterous robot
hand and associated control approaches in robotics. Several
anthropomorphic robot hands, such as the NASA Robonaut
Hand [1], the DLR Hand II [2] and the DLR-HIT Hand I [3],
have been developed as result. However, challenges related
to elastic joint based dexterous robot hand’s control system
remain, such as the lack of an accurate model, high friction,
joint flexibility, nonlinearity and uncertain gravity effects [4],
[5].

Hogan introduced a framework for impedance control [6],
which can be used to achieve compliant manipulation and
reliable grasping with different objects in an unknown envi-
ronments. The goal of Cartesian impedance control is to re-
alize a desired dynamical relationship between the motion of
the end-effector and the external forces/torques. Wimboeck et
al. developed an object impedance controller for multifinger
dexterous manipulation based on passive impedance control
on the DLR Hand II [7]. Gonzalez and Widmann proposed a
hybrid impedance control scheme, in which a desired force is
utilized as the commanded variable, demonstrating enhanced
performance with explicit force control structure [8]. Albu-
schaeffer and Ott [9] [10] [11] [12] implemented Cartesian
impedance control with complete static states feedback for
DLR LWR arm series (DLR light-weight arms). Asymptotic
stability has been proved based on passivity theory.
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Control algorithm for the dexterous robot depends on
effective control hardware structure. In order to fulfill require-
ments including high-speed data transfer, fast calculation,
dependable communication and more data/program memory,
etc. Field programmable gate array (FPGA) has become a
viable option in complex logic circuit design due to its
flexibility, ease to use, and short time to market [13]. As
shown in [14], the hardware structure of the DLR light-
weight robot consists of a DSP/FPGA board in each joint
for joint torque controller, a PC-based Cartesian controller
and a serial realtime communication specification (SERCOS)
based fiber optical bus for communication.

In the above works, nonlinear effects such as friction
compensation of the elastic robot joints have only been
applied to robot arms, but not explicitly analyzed in robot
hand. Therefore, joint and cartesian impedance controller
with model-based nonlinear compensation is designed in this
paper for the DLR-HIT dextero rous hand II. To overcome
the dynamic uncertainties due to approximation in modeling,
extended kalman filter is implemented to adaptively esti-
mate parameters for the system dynamics. Furthermore, a
DSP/FPGA based mutisensory hardware architecture is pro-
posed to perform the Cartesian impedance control with fric-
tion and gravity compensations. The hardware is composed
of three DSP/FPGA data processing units, high-speed (200
µs cycle time) multipoint low voltage differential signaling
(M-LVDS) serial data bus communicatio system and QNX
real-time controller.

This paper is organized as follows: Section II presents the
hardware architecture of DSP/FPGA based control system;
Section III gives joint and cartesian impedance control ar-
chitecture of flexible joint dexterous robot; Section IV deals
with parameter estimation of system dynamics in detail;
experimental results and application are presented in Section
V. Finally, the conclusions of this work are drawn and
presented in Section VI.

II. HARDWARE CONTROLLER ARCHITECTURE

Success of robot control system relies not only on the con-
trol algorithm, but also on the hardware controller structure.
As illustrated in Fig. 1, the proposed control architecture con-
sists of multisensory system, finger controller, palm controller
and external real-time controller.
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Fig. 1. Controller Diagram

A. Multisensory System

The fingers of the dexterous robot hand DLR-HIT II are
identical, which are driven by the BLDC (brushless DC)
motor, harmonic drive gear (gear ratio 1:100) and timing belt
(ratio 1:1.25). For each finger, two custom designed poten-
tiometers in the proximal joint and a contactless magnetic
angle sensor in the finger distal unit are equipped to measure
the absolute angular position of the 3 joints. To precisely
measure the external torque without any interference between
the two DOFs, a new type of proximal joint torque sensor
with two DOFs and a distal torque sensor, both based on
strain gauge theory, are adopted for the three joints.

B. Hand Controller

For the finger controller, the FPGA provides the processing
for the finger base joint motor control, which is physically
located at the bottom of a finger base. All the motor
driver, communication with finger distal and higher control
level, sensor data acquiring are implemented in one single
electronic board with Very-High-Speed Integrated Circuit
Hardware Description Language (VHDL). Two brushless
DC (BLDC) motors are directly driven and controlled by

an FPGA with MOSFET driver gates. In order to achieve
modularity of the robot finger, all the parameters related
to the finger control are stored in the flash memory on
the finger base board. The finger distal motor is controlled
by a DSP, which is attached on the back side of the first
linkage of the finger. For the finger distal motor, a Texas
instruments (TI) floating-point digital signal processor (DSP)
with maximum 100 MMACS is selected to carry out the
sensor signals processing, BLDC motor control, as well as
the communication between the finger distal and the finger
base.

For the palm controller, a Cyclone III FPGA is chosen
with NIOS II dual-processors system implemented in a
single chip. With its sufficient processing power, an enhanced
controller with more flexible communication system can be
achieved in a smaller electronics package. With the advantage
of flexible FPGA structure and integrated processing units,
the proposed control architecture is able to achieve high
control performance in hardware real-time, within a small-
sized control hardware electronics. Furthermore, diverse I/O
standards support connections between different hardware
components (e.g. FPGA, DSP, motor, sensors), which makes
the controller more flexible for different applications.

All the Cartesian impedance control algorithm, trajectory
planning and dynamic compensation are carried out in a QNX
PC with simulink-QNX tool chain, as shown in Fig. 1.

C. Communication System

A large amount of data has to be transmitted between
finger controller, palm controller and QNX PC. The data
package consists of motor control data, sensor data and
tracking data. During communication, the finger controller
packs all the digital sensor values, while the palm controller
distributes the control signal to each finger, and sends sensor
data packages back to the QNX PC at the same time. To
realize real-time feedback control of the robot hand, a high
speed data bus of M-LVDS is designed and implemented
between finger controller, palm controller and QNX PC. And
the control cycle time of 200 µs is achieved, which means
the control signal and sensor data are updated every 200 µs
in real time.

III. IMPEDANCE CONTROL FOR DEXTEROUS ROBOT
HAND

A. Robot Model

The fingers of the dexterous robot hand are of modu-
lar design, with identical mechanical structure and control
architecture. The joints of the robot fingers are driven by
electromechanical hardware, composed of brushless direct-
current motors (BLDC) and light weight harmonic drive
gears. Flexibility of the joint is inherent its harmonic drive
gear, timing belt and the torque sensor. The finger joint
impedance control fulfills the requirement between external
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force and finger joint position by adjusting the stiffness
parameters. The kinematics model of the robot hand with
flexible joint [15] is well known, and shown below:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τext (1)

Bθ̈ + τ + τf = τm (2)

τ = K(θ − q) (3)

where M(q) ∈ Rn×n, C(q) ∈ Rn and g(q) ∈ Rn
represent the inertia matrices, centrifugal term, and gravity
term, respectively. The joint torque vector is given by K(θ−
q), where θ indicates the vector of the motor angle divided
by the gear ratio, and q represents the link side joint angle.
K,B are diagonal matrices which contain the joint stiffness,
and the motor inertia multiplied by the gear ratio squared.
τext and τf are external torque vector and friction torque
vector, respectively. The generalized actuator torque vector,
τm, is considered as the control input.

B. Joint Level Impedance Control

The goal of the impedance controller is to achieve a desired
dynamic behavior with respect to external forces and torques
acting on the link side. As shown in Fig. 2, the dynamic
behaviour is given by a stiffness parameter Kθ as well
as a damping parameter Dθ. Following the idea in [11],
interpreting the joint torque feedback as the shaping of the
motor inertia makes it possible to use the torque feedback
directly within the passivity framework. The controller design
is conceptually separated into two steps, one related to torque
feedback, and the other to position feedback. Consider a

Fig. 2. Model for a Flexible Joint Robot

torque controller of the form:

u = τ +Bθθ̈ (4)

where u ∈ Rn is a new input variable and Bθ is a diagonal,
positive define matrix, such that bθi < bi. Then together

with (2), the scaling of the apparent rotor inertia from B to
Bθ can be achieved by a joint torque feedback:

τm = BB−1
θ u+ (I −BB−1

θ )τ + τf (5)

The ratio BB−1
θ for DLR-HIT hand is main determined by

the noise level of the torque sensors, values of which should
be chosen lower when high stiffness is desired.

For passivity consideration, in case that the desired
impedance behavior is defined (w.r.t joint coordinates), a
motor position based PD-controller as following can be used:

u = −Kθ(θ − θs)−Dθθ̇ (6)

θs represents a desired configuration. Together with (2) and
(3), the following closed loop equations can be achieved:

M(q)q̈ + C(q, q̇) + g(q) = τ + τext (7)
Bθθ̈ +Dθθ̇ +Kθθ̃ + τ +BθB

−1τf = 0 (8)

where θ̃ = θ − θs.

C. Cartesian Level Impedance Control

In the following, it is assumed that the position and
orientation of the end-effector can be described by a set of
local coordinates x ∈ Rm, and the relationship between
Cartesian coordinates x and the configuration coordinates
q ∈ Q is given by a known function f : Q → Rm,
i.e. x = f(q). As described in [16], with the Jacobian
J(q) = ∂f(q)/∂q, Cartesian velocities and accelerations
can be written as

ẋ = J(q)q̇ (9)

ẍ = J(q)q̈ + J̇(q)q̇ (10)

Throughout this paper only the nonsingular case is consid-
ered, thus it is assumed that the manipulator’s Jacobian J(q)
has full row rank in the considered region of the workspace.

To specify the desired impedance behavior, the position
error x̃ = x − xd, between real position x and a
virtual equilibrium position (possibly time-varying) xd, is
introduced. The goal of the impedance controller here is to
alter the system dynamics (1) such that, in the presence of
external forces and torques at the end-effector Fext ∈ Rm, a
dynamic relationship between x̃ and Fext could be achieved
as follows:

Λd ¨̃x+Dd ˙̃x+Kdx̃ = Fext (11)

where Λd, Dd and Kd are the symmetric and positive
definite matrices of the desired inertia, damping and stiffness,
respectively.

The relationship between the external torque vector τext
and the generalized external force vector Fext on the end-
effector is given by:

τext = J(q)TFext (12)
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Substituting q̈ = J(q)−1(ẍ− J̇(q))q̇ From (10) and (12)
into (1) leads to

M(q)J(q)−1(ẍ− J̇(q)q̇) + C(q, q̇)q̇ + g(q) =

τ + J(q)TFext (13)

With q̇ = J(q)−1ẋ from (9) and by pre-multiplying the
resulting equation by J(q)−T , the relationship between the
Cartesian coordinates x and the joint torques τ can now be
expressed in the form:

Λ(x)ẍ+ µ(x, ẋ) + J(q)−T g(q) =

J(q)−T τ + Fext (14)

where the matrices Λ(x) and µ(x, ẋ) are given by:

Λ(x) = J(q)−TM(q)J(q)−1 (15)
µ(x, ẋ) = J(q)−T (C(q, q̇)−

M(q)J(q)−1J̇(q))J(q)−1 (16)

with q = f−1(x) and q̇ = J(f−1(x))ẋ.
By treating them as the external torques, the gravity torque

g(q) and the joint torque τ can be rewritten in form of the
equivalent task space gravity forces Fg(x) and the new input
vector Fτ . Therefore, the system equations can be expressed
in the form:

Λ(x)ẍ+ µ(x, ẋ)ẋ+ Fg(x) = Fτ + Fext (17)

Λ(x) and µ(x, ẋ) are the inertia matrix and the Cori-
olis/centrifugal matrix with respect to the coordinates x.
Combining (17) and (11), the impedance control law, which
is the desired closed loop system, with Fτ as the control
input, can be arrived:

Fτ = Λ(x)ẍd + µ(x, ẋ)ẋ+ (Λ(x)Λ−1
d − I)Fext

Fg(x)− Λ(x)Λ−1
d (Dd ˙̃x+Kdx̃) (18)

If the desired torque vector τ is chosen as:

τ = J(q)TFτ + C(q, q̇)q̇ − J(q)TΛ(x)J̇(q)J(q)−1

(19)
(18) can be simplified as:

Fτ = Λ(x)ẍd − Λ(x)Λ−1
d (Dd ˙̃x+Kdx̃) + Fg(x)

+(Λ(x)Λ−1
d − I)Fext (20)

With the assumption that centripetal and Coriolis forces can
be ignored at the robot’s relatively low operating speeds (with
maximal velocity 0.3m/s for the DLR-HIT robot hand).
Furthermore, If the desired inertia Λd is chosen as identical to
the robot inertia Λ(x), the feedback of external forces Fext
can be avoided. Then it follows that actual implementation
of the impedance controller:

Fτ = Λ(x)ẍd −Dd ˙̃x−Kdx̃+ Fg(x) (21)

then follows the desired joint torques τ :

τ = g(q) + J(q)T (Λ(x)ẍd −Dd ˙̃x−Kdx̃) (22)

Using motor θ instead of the link side angles q in the
forward kinematics x = f(q), impedance controller based
on PD position control w.r.t Cartesian coordinates can be
generalized from (6). Then the feedback law is given by:

u = −J(θ)T (Kxx̃(θ) +Dxẋ)

x̃(θ) = f(θ)− xd
ẋ = J(θ)θ̇ (23)

with Kx and Dx represent the desired stiffness and damping
matrices, respectively corresponding to Kd and Dd in (22).
xd indicates the virtual motor side position in Cartesian
coordinates. The the controller in (23), together with (5),
forms the closed loop system:

M(q)q̈ + C(q, q̇) + g(q) = τ + τext

Bθθ̈ + J(θ)T (Kxx̃(θ) +Dxẋ) + τ = 0 (24)

IV. DEXTEROUS ROBOT HAND DYNAMICS

A. Gravity Compensation

As shown in [17], the gravity torque compensation term in
the desired steady state can be used for a motor position based
PD-controller. For the DLR-HIT II dexterous robot hand, the
gravity compensation is realized with the nominal parameters
of the robot (D-H parameters and masses, etc.), shown in Fig.
3. The gravity forces on the robot hand can be written as:

g(θ) =
∂V (θ)

∂θ
(25)

V (θ) = m2gh2(θ) +m3gh3(θ) +m4gh4(θ)

where V is the potential energy of the robot hand. mi and
hi represent the mass of each joint and the height of the
mass center respectively, which can be obtained by using the
forward kinematics map.

Fig. 3. Dexterous Robot Hand and Reference Frame

In case of an impedance controller, however, large devia-
tions from the steady state positions may occur in case of a
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small desired stiffness. Ott constructed a compensation term,
which relies solely on the motor position, and is able to
compensate for the link side gravity torques [9]. Consider
the set Ω := {(q, θ)|K(θ − q) = g(q)} of stationary
points (for τext = 0), the goal of the gravity compensation
is now to construct a compensation term ḡ(θ) such that in
Ω:

ḡ(θ) = g(q) ∀(q, θ) ∈ Ω (26)

which can be carried out by the computable relationship
between θ and q. Notice that for any point (θ, q) ∈ Ω,
the motor position can be expressed uniquely as a function
of the link side position:

θ = q +K−1g(q) := h(q) (27)

Furthemore, it is shown in [9] that the inverse function to
h(q) exists, and the mapping T (q) := θ −K−1g(q) is a
contraction. Thus the iteration:

q̂n+1 = T (q̂n)

= θ −K−1g(q̂n) (28)

converges for every starting point, as follows from the
contraction mapping theorem [18]. By using q̂0 = qs one
would obtain satisfactory gravity compensation with one or
two iteration steps [19].

B. Velocity Observer and Friction Compensation

The performance of the controller can be significantly
improved with appropriate robot dynamic model. A model
with viscous and static friction is chosen in this paper, which
is described as:

τf = bθ̇ + csign(θ̇) (29)

b and c are viscous friction coefficient and static friction
coefficient, respectively. The dynamic model of the robot
system is expressed as:

Iθ̈ = τ − bθ̇ − csgn(θ̇) (30)

where τ = τm − τext, I represents motor inertia. In
order to implement controller with friction compensation, it is
necessary to determine parameters corresponding to the robot
dynamical model. Kalman filter is a powerful estimation
approach when the precise nature of the modeled system is
unknown, which can be used to fulfill the nonlinear system
parameter estimation for DLR-HIT dexterous hand II. The
proposed controller design with extended Kalman filter is
described in this section.

The extended Kalman filter is subdivided into prediction
step and estimation step as shown in [20]. Based on the
current state and the dynamic model of the system, a forecast
can be calculated for the state in the prediction step:

∆x̂−
k+1 = Ak∆x̂

+
k +BKuk

P−
k+1 = AkP

+
k +GKQkG

T
k (31)

The estimation step is defined, where the forecast and the
measurements are compared, and an optimal compromise is
made:

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)−1

∆x̂+
k = ∆x̂−

k −K(Hk∆x̂
−
k −∆yk)

P+
k = (I −KkHk)P

−
k (32)

In order to eliminate a possible divergence of ∆x, the error
state is set accordingly to zero after the estimation step.

As described in [21], to derive an adaptive Kalman filter,
viscous and static friction parameters b and c are modeled
as constant system states. τ is considered as a state variable,
or specifically a measurement variable rather than an input
variable. The influence of τ can be adjusted by tuning its
corresponding system noise parameter. Then the dynamic
model of the system can be expressed as :

d

dt


θ

θ̇
τ
b
c


︸ ︷︷ ︸

:=x

=


θ̇

1
I
(τ − bθ̇ − csign(θ̇))

0
0
0


︸ ︷︷ ︸

:=a

(33)

The parameters describing viscous and static friction are
estimated along with position, velocity and τ . Therefore
further nonlinearities besides the ones already mentioned are
introduced into the system. By partial deriving the system
dynamics equation, replacing the partial derivation sign ∂
with differences sign ∆ and using linearlized form of sign
function:

f(θ̇) =


−1 θ̇<−limit
1

limit
−limit<θ̇<limit

1 limit<θ̇

where nonlinearities in the system dynamic model can be
eliminated. The following linearized system dynamics equa-
tion can be arrived:

d

dt


∆θ
∆θ̇
∆τ
∆b
∆c

 = Alin ·


∆θ
∆θ̇
∆τ
∆b
∆c

 (34)

where:

Alin =


0 1 0 0 0

0 −( bI+α cI )
1
I

−θ̇
I

−f(θ̇)
I

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (35)

with α represents the derivation of f(θ̇), given by:

α =


0 θ̇<−limit
1

limit
−limit<θ̇<limit

0 limit<θ̇
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Solution to the differential equations (34) can be expressed
[22] as:

X(t) = Φ(t, t0) ·X(t0) (36)
Φ(t, t0) = eAlin(t−t0)

The discrete-time-space solution is achieved by calculating
(36) from discrete time k · ts to (k+ 1) · ts and expanding
the exponential function in its power series:

Xk+1 = Ak ·Xk (37)

Ak = 1 +Alin,k ·
ts

1!
+A2

lin,k ·
ts

2!
+ · · ·

where Alin,k = Alin(x(kts)) = Alin. Together with
(35), the linearized adaptive kalman filter results in:

∆xk+1=

0BBBBBBBB@

1 a2 a3 −θ̇·a3 −f(θ̇)·a3

0 a1
1
I ·a2 − θ̇

I ·a2 − f(θ̇)
I ·a2

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1CCCCCCCCA
·∆xk (38)

Where:

a1 = e−(b+αc)· tsI

a2 =
I

b+ αc
· (1− e−(b+αc)· tsI )

a3 =
I

(b+ αc)2
· (e−(b+αc)· tsI − 1 + (b+ αc)

ts

I
)

Fig. 4 illustrates the experimental results of viscous and
static friction parameters estimated with extended Kalman
filter. The estimations converge towards the assumed values
(b = 0.3, c = 0.2) calculated with the least-squares
technique as shown in the figure, which indicates the effec-
tiveness of the proposed Kalman filter. The consistent errors,
especially with the estimation of c, can be explained with
the necessary approximations and linearizations during the
filter-design. The system noise Q and the measurement noise
covariance R play a crucial role in the performance of the
Kalman filter. Superior filter performance can be obtained by
tuning the filter parameters Q and R offline. The behavior
of the Kalman filter can also be observed in the velocity
estimation, as shown in Fig. 5.

(a) viscous fricition parameter b (b) static fricition parameter c

Fig. 4. Friction Parameter Estimation with EKF

Fig. 5. Velocity Estimation with EKF

V. EXPERIMENTS AND GRASPING APPLICATION

A. Joint Impedance Control

In this experiment, each joint of the finger is independently
driven. The aim is to make all three joints of the finger move
in different direction, coming in contact with an external
object before reaching the desired position. Damping and
stiffness are set at Dd = [0.0013, 0.0013, 0.0031](N ·
m · s/◦), Kd = [0.0625, 0.0625, 0.125](N · m/◦).
Fig. 7 shows all the finger joints tracking the desired
position trajectory (red dash line). As shown in Fig. 6,
contact is made with a rigid external object at joint angles
of [28◦, 52◦, 17.5◦] (distal, proximal and abduct joint re-
spectively), where real tracking seperates from the desired
tracking. The experimental results show that the joints can
follow the desired trajectory closely in the free space, and
the joints torque increases stably while they make contact
with the environment. It can therefore be concluded that the
finger joint space impedance control behavior is successfully
achieved.

Fig. 6. Robot Finger Contacts with External Rigid Object

B. Cartesian Impedance Control

For the cartesian impedance control law (20)-(24), the
following control parameters Λ(x), g(x̄), Kx and Dx
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(a) position tracking (b) torque response

Fig. 7. Position Tracking and Force Response in Three Joints of the Finger

should be known. As described in Section IV, g(x̄) as well
as Λ(x) can be generated by directly using Pro/E model of
the dexterous hand. Dx and Kk are designed by the double-
diagonalization appoach with the robot inertia matrix and the
desired damping ratio, as presented in [10].

The cartesian impedance control experiment has been
made in the single finger of the robot hand with the other
finger are braked. As shown in Fig. 8, the joint tracks the
desired position trajectory(red line), with real tracking curve
is shown as the solid line, and contacts a rigid environment
where the position offset ∆x = 0.0115m in x direction.
The filtered joint torque can also be found in Fig. 8 and. The
experiment results show that the joint can follow the desired
trajectory closely in the free space, and the joint torque
increases stably while it makes contact with the environment.

In a further experiment, the robot pauses at an virtual
equilibrium position xd = [0.036, 0.036, 0.2] w.r.t carte-
sian coordinates. And we pull the endpoint of the finger in
different direction and then release the finger. Fig. 9 illustrate
the corresponding Cartesian position offset varies and forces
along with the Cartesian position with the proposed Cartesian
impedance controller. The robot overcomes the gravity and
friction, returning to the xd as soon as the external force is
released. With friction and gravity compensation proposed in
this paper, the static error in the x axis is less than 0.2 mm, as
well as y and z direction. It can therefore be concluded that
the Cartesian impedance behavior is successfully achieved.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an impedance controller for dexterous robot
hand with elastic joints is derived in both Cartesian space and
joint space. Gravity compensation based on motor angle is
implemented to compensate the link side gravity. The model-
based friction estimation and velocity observer are carried
out with an extended Kalman filter, which is implemented to

Fig. 8. Cartesian Position and Force Tracking with Contacting Evironment

Fig. 9. Cartesian Coordinate Varies and Torque Response with External
Force

adaptively handle parameter uncertainties. The designed es-
timator demonstrates good prediction performance, as shown
in the experimental results. A DSP/FPGA hardware structure
with multisensory system and real-time communication is
designed for the practical implementation of the proposed
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controller. Impedance control experiments are conducted with
five-finger dexterous robot hand DLR-HIT II in joint and
Cartesian coordinate systems, which show the effectiveness
of the proposed controller and hardware architecture.

Successful implementation of Cartesian impedance con-
troller paves the way for designing object level impedance
control, while hand-arm telemanipulation systems [23] to-
gether with exoskeleton can be carried out based on the
proposed joint space impedance controller. The Friction ob-
server and stability analysis of the impedance controller with
friction compensation should be further investigated to help
improve compensation performance, and therefore impedance
control behavior. Hand grasping application and two-hand
manipulation with DLR-HIT II dexterous robot hands will
also be explored in the future.
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