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Abstract—
To tele-operate a robot, visual feedback is critical. However,

communication channel latency can delay feedback to the point
where the operator is impeded in performing his task. This
work presents a vision-based “predictive display” system that
compensates for visual delay. The approach is online and
relatively uncalibrated, thus it has the advantage of being
useful in unknown environments and many applications. From
monocular eye-in-hand video, we incrementally compute a 3D
graphics model of the robot site in real time using our new
technique. The method exploits free-space/occlusion constraints
on the scene to produce a physically consistent mesh. Novel
vantage points are immediately rendered in response to the
operator’s control commands, without waiting for delayed
video. We implement a full prototype tele-operation system
where the operator controls, via a PHANTOM Omni device, a
Barrett WAM robot mounted on a mobile Segway. Experiments
with this setup validate the efficacy of the proposed approach.
We demonstrate significant improvement in task completion
time with predictive display on a real robot, while our previous
related results were established only in simulation.

I. INTRODUCTION

In tele-robotics, a human operator controls a remotely
located robot. The operator sends control commands to the
robot and receives sensory feedback via a communication
channel. Such remote tele-operation lends itself to many
applications where it would be dangerous or impractical for a
human to perform the robot’s task directly. Space and marine
robotics, tele-surgery, and remote bomb defusal are just a few
examples.

Communication delays are a fundamental problem. When
the operator sends commands to the robot, he expects sensory
feedback to reflect his inputs in a natural and transparent
way. This is essential for closing the master-slave control
loop. However, in practice sensory feedback is delayed by the
round-trip latency of the communication channel. Therefore,
simple streaming of video and haptic information typically
proves insufficient. Visual delays as small as 0.3 seconds
negatively impact operator performance and produce a sense
of decoupling the human’s motions from the robot, resulting
in effectively open-loop “move and wait” control [1], [2],
[3], [4], [5]. This magnitude of delay is common across
the internet, and e.g. ground-to-space tele-operation suffers
unavoidably larger delay due to the finite speed of light.

The focus of this paper is to ameliorate the effects of
visual delay via predictive display. Predictive display refers
to rendering a visualization of the robot site directly in

response to the operator’s control commands, without waiting
for delayed video.

Our system accomplishes this via online computer-vision
techniques at the robot site; from video, a 3D model is
acquired and updated in real time and sent back to the op-
erator for immediate visualization. The operator’s rendering
pose is determined from his control commands and forward
kinematics, and from monocular localization of the robot’s
mobile base w.r.t. the world. Specifically, this paper presents
three main contributions.
• An online vision subsystem comprised of a synthesis

of our recent free-space carving technique [6] and
PTAM [7], providing robust localization and online
model construction for photorealistic predictive display.

• Integration into a full prototype tele-robotics system
with a Barrett WAM arm and Segway mobile base.

• Experiments that validate and demonstrate the effective-
ness of this predictive display approach.

Traditionally, predictive display has been accomplished
in highly precalibrated settings by superimposing hand-
modeled wireframe and solid-model overlays of the robot
manipulator and scene objects atop delayed video [1], [8],
[9]. This approach supposes a known environment and non-
moving external camera. More recent work aims to produce
photorealistic predictive display in less calibrated scenar-
ios [10], [11], [12], [13]. Our work falls into this category;
we provide for an eye-in-hand moving camera and do not
require a 3D model a priori.

Image-based rendering techniques have been applied to
photorealistic predictive display, including pure image-based
synthesis [11] and hybrid geometric approaches [14], [12].
To date however, these techniques require an offline recon-
struction step or a lengthy online learning phase to get a
sufficiently dense image-sampling. Burkert et al. describe
an online depth-fusion technique for predictive display that
acquires a 3D model using a stereo camera rig [10]. However,
their system takes upwards of 30 s to integrate each new
depth map, and it exhausts computational resources, both
CPU and GPU. Additionally, their implementation lacks
online localization of the camera rig. In contrast to these
systems, we demonstrate real-time tracking, localization, and
3D scene reconstruction using a single mobile laptop CPU.

Rachmielowski’s system is closely related to ours [13];
we build upon this work. His system reconstructs a sparse
camera-set and 3D point structure using online SLAM. It

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5792



WAM

Local Operator

PHANTOM OmniPredicted Display

Remote Site

Segway RMP Base

Camera

Model

Fig. 1. Top: the operator tele-operates the robot from the local site; the
model is computed at the remote site and transferred to the operator for
predictive display. Bottom: system components and data flow.

creates a coarse view-dependent geometry by connecting
projected 3D points and then backprojecting the 2D mesh
into a 3D model. Predictive rendering is achieved by projec-
tive texturing from keyframes. This method enjoys similar
benefits to our own: online performance, support for a
moving camera without rigorous precalibration, no need for a
3D model a priori, and applicability to a variety of unknown
environments. However, the integration with a real robot was
preliminary, and thus experimental validation in [13] was
performed primarily in simulation.

In contrast, our system offers improvements. Instead of
using a view-dependent rendering proxy, we infer a single
coherent view-consistent proxy that respects physical free-
space/visibility constraints on the scene. Moreover, we pro-
vide experimental evaluation on a real Barrett WAM robot.

II. SYSTEMS

Our system consists of a WAM robot mounted on a Seg-
way RMP. A single camera is mounted on the end-effector
of the WAM. We use a PHANTOM Omni haptic device to
tele-operate the WAM through a joint angle mapping; see
Fig. 1.

The operator is presented with immediate visual feedback
of his motions. This predictive display utilizes a coarse
geometry obtained from our free-space carving technique
that executes in parallel with a vision-based tracking and
mapping process at the robot site. The vision process tracks
and maps independent of any knowledge of the robot motion.
On the operator site, the received geometric proxy is rendered
using the predicted camera pose and textures from delayed
images. The predicted pose of the camera corresponds to the

location where the robot-mounted camera will be when the
robot receives the joint angles for the current Omni pose.

Currently, the Segway RMP is not actuated; the operator
has only direct control of the kinematic arm. However, our
system supports correct predictive display even in the pres-
ence of unknown motion of the platform. As a consequence
of our vision-process being uncoupled from the robot, we use
discrepancies between our kinematic computed pose and the
vision-process tracked pose to determine the relative motion
of the base.

The remainder of this section outlines the modules of our
system. Specifically, first we describe the vision-based 3D
modeling algorithms running at the robot site (Section II-
A). Then we discuss how this model, delayed images, and
remote camera pose are used in predictive display (Section
II-B). As the vision-process is running independently, the
reconstructed model must first be registered online in the
robot coordinate system (Section II-C). Finally, we discuss
our particular choice of joint angle mapping from the PHAN-
TOM Omni to the WAM (Section II-D).

A. Vision Modeling by Free-Space Volume Carving

For the vision module, we run two components at the robot
site: incremental free-space carving and PTAM; see Fig. 1.

The carving module constructs a 3D graphics model of
the robot site. The approach is volumetric: we chisel away
sections of space that violate free-space constraints on the
scene. When a camera images a 3D patch of scene surface,
we know that the volume comprised of the rays of projection
from the patch to the camera’s optic center must be vacant,
and therefore consist of “free space.” Fig. 2(a) illustrates.

In practice, instead of generalized patches, our carving
module takes as input a sampled point cloud of 3D re-
constructed world features {P}. It also takes a history of
keyframe camera poses with optic centers {O}, as well as
visibility information {OP} that relates which points in {P}
are visible from each view of {O}. See Fig. 2(b).

Such inputs are readily available from any SLAM-like
tracking system operating on the robot-camera’s video
stream. We obtain them from PTAM [7]. PTAM additionally
computes at each time t the current localized camera pose
w.r.t. the world, Et

p. We use this pose to determine the
robot’s base position in real-time; see Section II-C. PTAM
was chosen as our base tracking system because it is robust
and effective; it produces a dense and accurate point cloud,
and it reliably relocalizes to recover from tracking failures.

To carve, we adaptively discretize space via the 3D
Delaunay triangulation of the input point set {P}. This
partitions space into a connected set of tetrahedra that span
{P}’s convex hull. The method then marks the tetrahedra
that intersect any free-space constraint OP as empty. In this
way, a physically consistent carved scene model is produced.

As PTAM acquires more images, our inputs {O}, {P},
and {OP} continuously change online. The free-space carv-
ing method incrementally reconciles such changes and ex-
pands the model. Modifications to {P}, be it from the addi-
tion of new points or from outlier deletion, entail rediscretiza-
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Fig. 2. Free-space constraints. (a) The general concept. A camera O
observes a surface patch, here the quadrilateral ABCD. The pyramidal
volume ABCDO must be empty; otherwise, the patch would be occluded.
(b) Our chosen representation of free-space constraints. The carving method
considers only points P instead of generalized patches. Therefore our free-
space constraints are infinitesimally thin volumes, the line segments, OP .

tion of a subset of space. To support real-time reconstruction,
we therefore associate with each tetrahedron the set of free-
space constraints that intersect it. Using this mapping, we
efficiently determine the minimal set of constraints that must
be reprocessed in response to an incremental change in the
inputs. See Figure 3 for an illustration of the algorithm. Other
types of changes to the inputs (e.g. bundle adjustment) are
handled analogously. To ensure the real-time quality of our
system, we employ a simple heuristic: in each tetrahedron’s
constraint set, we retain only the K most dissimilar con-
straints, where K is a fixed parameter. For full algorithmic
details and run-time complexity analysis, refer to [6].

Given a carving, we still need to compute the isosurface as
a conventional 3D graphics mesh. Because tetrahedral facets
are triangles, this can be straightforwardly computed as the
set of facets that border adjacent tetrahedra with differing
labels (“carved” or “uncarved”).

We implement an improvement over our previous work [6]
by regularizing the isosurface computation. This results in
smoother meshes that are better rendering proxies. Let x
denote a 3D point (x, y, z)T , and let4 (x) be the tetrahedron
containing x. Let u (x) ∈ {0, 1} be a binary labeling
denoting whether x is carved or uncarved, and let v (4 (x))
be the labeling for tetrahedron 4 (x) provided by our base
algorithm. In essence, we minimize the following (continu-
ous) energy functional, but over a discrete carving u (4):∫∫∫

|u (x)− v (4 (x))| dx + λ

∫∫∫
H (‖∇u‖) dx. (1)

Here H is the Heaviside step function defined such that
H(0) = 0, and λ is a scalar regularization parameter. (λ was
set to 0.75 in all of our experiments.) The left-hand integral
is the data term, and the right-hand integral evaluates to the
surface area of the isosurface of u.

Put another way, we find the optimal carving u (4) that
minimizes the volume that disagrees with the original carving
v (4) plus a surface-area penalty term. We then extract the
isosurface of u.

To optimize, we cast the minimization as a discrete graph-
cut problem. We construct the graph as follows. The vertices
correspond one-to-one with each tetrahedron, except for an
additional source s and sink t. Node s is associated to the
label 0 = carved, and t to 1 = uncarved. To encode the
data term, each node representing a tetrahedron 4 with

Fig. 4. A graph with two tetrahedra A and B. Edges between A and
B carry the regularization term; edges connecting to s and t represent the
data term. (V denotes volume). The cut’s cost is the sum of edge weights
leading from s’s connected component to t’s (red edges).

original label v (4) = 0 connects to s by an edge with
weight equal to 4’s volume. Nodes with the opposite label
connect similarly to t. To encode the penalty term, nodes
corresponding to adjacent tetrahedra connect to each other
by directed edges with weight λA, where A is the area of
their shared facet. See Fig. 4 for an illustration.

Because the tetrahedra are four-connected, our graph has a
topology common to many graph-cut problems in computer
vision. To compute the regularized carving u, we use an
efficient algorithm optimized for such graphs [15].

Typically, the full graph-cut regularization and isosurface
extraction runs in about 0.25 seconds on a single core of
an Intel Core2 Duo CPU T5550 @ 1.83GHz. In practice, to
allow other threads and processes to run, we restrict the rate
at which we update our isosurface model to 1 Hz.

B. Display

In order to correctly predict what the robot camera will
observe when the operator moves the Omni, the predictive
display module must have access to the following quantities:
• A set of images with known camera pose
• A geometric model
• A predicted camera pose

The geometric model can then be textured with one or more
of the saved input images, and a novel image can be rendered
from the predicted camera pose.

As indicated in Fig. 1, the images, corresponding camera
pose, and geometric model come (delayed) from the remote
site. The predicted camera pose must take into account
the mapping from the input device to the robot (discussed
in detail in Section II-D). In our setup, the input device
controls only the WAM arm. Therefore, in the case of a fixed
platform, the predicted camera pose can be obtained through
a forward kinematic mapping of the current joint angles from
the input device to the WAM arm. The pose of the camera
relative to the end-effector can easily be pre-calibrated.

Incorporating a mobile base into the predicted camera
pose is straightforward provided the mobile base pose is
known (Section II-C). In such cases, the predicted pose can
be obtained by the forward kinematic mapping, as before,
concatenated with the base transformation.

Although more elaborate schemes are possible, we have
used only the most recent image and its camera pose to
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(a) Initial (b) Conflicts (c) Retriangulation (d) Final Carving

Fig. 3. A 2D illustration of incremental free-space carving. (a) The initial triangulation. The blue dashed lines are free-space constraints currently in the
triangulation. Shaded cells have not yet been carved. (b) An incoming point (red cross). The yellow cells are in Delaunay-conflict with the point because
it falls inside their circumcircles. (c) The yellow cells were deleted and rediscretized. The red free-space constraints (bolded) belonged to the deleted
tetrahedra; they are now used to carve away two of the four new tetrahedra. (d) Finally, the new free-space constraint(s) from the current view are applied.

texture the most recent geometric model.

C. Calibration

A field robot cannot rely on a specific calibration of the
scene relative to the robot. Upon initialization, we align the
structure from our vision process into the robot’s coordinate
frame. Subsequent pose information from the vision process
is then used to estimate the base motion of the robot. An
important consequence of the system not using odometry is
that our updated base transformations can allow for arbitrary
motion (e.g., if the robot is on a ship moving in waves and is
modeling and tracking an adjacent ship, the base motion of
the robot will be compensated as long as the visual tracking
is reliable).

PTAM provides an estimate of the camera in the world,
and our kinematics give an estimate of the camera relative to
the base; discrepancies between the two coordinates imply
motion in the base. We first discuss how PTAM’s coordinates
can be aligned to our initial kinematic coordinate frame, and
then we present a simple filtering approach to incorporate
changes in PTAM’s camera pose into the estimated base
motion of our platform.

1) Relative Calibration: Let Ei
m and Ei

p denote the pose
of the camera for the model (subscript m) and PTAM
(subscript p) in their respective frames at time i:

Ei
m =

[
Ri

m ti
m

0 1

]
(2)

Ei
p =

[
Ri

p ti
p

0 1

]
(3)

The change of coordinates is a metric transformation,
mWp, that aligns PTAM coordinates with our kinematic
coordinates, Xm = mWpXp, and can be simply obtained
from two corresponding camera poses:

mWp = mŴpdiag(s, s, s, 1) (4)

mŴp = E1
m

[
R1

p st1
p

0 1

]−1

(5)

s =
|t1

m − t0
m|

|t1
p − t0

p|
(6)

The transformation aligns the coordinates for E1
m and

only uses the correspondences asymmetrically. To utilize
both the correspondences equally, we refine the solution by
minimizing reprojection error. Given at least two correspond-
ing coordinate frames and a set of 3D points in PTAM’s
coordinates {Xk

p}, the reprojection error is then

∑
i,k

|Π(KI(pŴmEi
m)−1(sXk

p))−Π(KI(Ei
p)−1Xk

p)|2

where Π is the perspective division operator, I is the 3x4
identity matrix, K is the 3x3 matrix of internal camera
parameters, and pŴm = (mŴp)−1.

This formulation is similar to resection in computer vision,
with the exception that the transformation is common to all
the correspondences. Furthermore, notice that no measured
image correspondences are used; the reprojection error mea-
sures the difference between the 3D points from PTAM and
their projection in the transformed kinematic coordinates.
That is, the 3D points are used as representative samples
of the scene.

If necessary, the pose of the camera on the kinematic
structure can be refined by adding an additional camera
update transformation, Tcam, in the objective:∑
i,k

|Π(KI(pŴmEi
mTcam)−1(sXk

p))−Π(KI(Ei
p)−1Xk

p)|2

Optimization of this objective is only necessary once to
determine the pose of the camera on the arm.

2) Base Motion: After alignment of the coordinate
frames, any discrepancies from PTAM’s transformed camera
pose must be either due to mistrack or mobile platform
motion. As PTAM provides an accurate measure of the
tracking status, we rule out mistracking and can estimate
the mobile platform motion as follows:

B̂(i)Ei
m = mŴp

[
Ri

p sti
p

0 1

]
(7)

B̂(i) = mŴp

[
Ri

p sti
p

0 1

]
(Ei

m)−1 (8)

Our filtered estimate, is then:

B(t) = (1− λ)B̂(t) + λB(t− 1)
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Fig. 5. The mapping between the PHANTOM Omni and the WAM robot.

where, in practice, we perform the above interpolation using
SLERP for the quaternion component and linear interpolation
on the translation. For all of our experiments λ = 0.95.

D. Input Device Mapping to WAM Robot

Our WAM robot is 4 DOF. It has shoulder and elbow
joints, but no wrist. These freedoms do not directly agree
with the first freedoms of the PHANTOM, therefore we use
the mapping illustrated in Fig. 5. In this mapping, the roll
around the first WAM link (the third joint) is fixed to zero.
The rotation of the PHANTOM base directly maps to the
base rotation of the WAM. The angles from the first link are
scaled to make up for the small range of the PHANTOM,
and the last link is mapped with an offset. Letting θO be the
OMNI angles, the mapping is

θWAM = [θO(1),−9
5
θO(2)− π

2
, 0,

π

2
− θO(3)]

These joint angles are forwarded from the operator site
through the PVM communication channel to the remote site
at 30 Hz. The WAM robot control loop runs at 500 Hz
and uses joint PID controllers to follow smooth trajectories
derived from the incoming angles. The smooth trajectories
have a truncated trapezoid velocity profile with a maximum
velocity and maximum acceleration of 1 rad/s and 1 rad/s2.
Upon receiving a new command, both the current velocity
and joint angles are used to fit the trapezoid shaped velocity.
This ensures that abrupt and possibly damaging motions by
the operator are not translated directly to the robot.

III. EXPERIMENTS

In this section we present three experiments performed
with the system. The main purpose is to test the volume
carving technique and to validate the predictive display
system in a real robotics setup.

A. Mobile Base Motion

In this experiment, the robot’s base is arbitrarily moved
away from the initial position by a lab-mate pulling it, like
shown in the supplemental video. The purpose is to test the
model building from an unknown environment, and to show

that it is possible to move or perturb the robot’s position
while the predictive display appropriately compensates.

The experiment was run by starting the system in an
arbitrary location in a room and initializing the model in
a local region. After the system has enough features to build
a model, the base is moved to a new position, while visual
features are tracked to update the base-to-model location1.
The model continues to be built by adding newly carved
space. Using this method, we built a model of our robotics
laboratory. Fig. 6 shows the reconstruction of the room seen
from various vantage points.

B. Alignment Task

Alignment tasks are common in manipulation2. In this
case, we used visual targets (letters) in the scene which the
user had to align with the rendered reference in the video
display. When the rendered target matches the real one then
the alignment is satisfied. This experiment evaluates and tests
alignment performance under predictive display. We compare
three modes of visual feedback: non-delayed video, 0.3 s
delayed video, and predictive display with 0.3 s delay.

This experiment is largely inspired by and similar to the
one presented by Rachmielowski [13], yet ours is conducted
on a real-world robot instead of a simulated graphics environ-
ment. To be able to compare the timings of several subjects,
in this experiment the 3D model was acquired once by the
vision system, and the same model was used for all subjects.
Texturing used video from the robot camera, and this varied
for each trial.

The experiment was conducted first by running a warmup
where the user familiarizes himself with the input device
and kinematics of the robot, as well as the three visual
modes. After the warmup session, the timed experiment
starts. Each user performs a total of three trials in each of
the three modes. For each trial, the display mode and scene
configuration are drawn randomly without replacement. The
scene is comprised of four targets each placed in one out of
six possible calibrated positions. The user has to first align
A, then B, then C and finally D. An alignment is satisfied
when the user places the robot in a position which is close
enough3 to the desired position.

The user is only allowed to look at the display and not
at the scene where the robot is operating. Fig. 7 shows an
alignment task where the user is controlling the robot to align
the rendered A with the actual A in the scene.

Due to the time needed to arrange the physical scene
configuration, the experiments involved only 36 alignments
by each of five lab colleagues for a total of 180 align-
ments. Despite the small number of test subjects, the results
were consistent with the 1200 alignments on a simulated
graphics scene [13]. This experiment illustrates that the

1The range of the displacement of the mobile base is only limited by the
fact that enough features have to remain trackable at all times

2For example, in operations like putting a wrench on a bolt
3A threshold is set on the distance from the exact alignment to the actual

alignment, as well as a 500 ms dwelling time. The threshold was tuned to
be reasonably challenging: satisfiable, but near the limit of human precision
using a PHANTOM Omni and the 640×480 video / texture feed resolution.
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Fig. 6. A model of the Robotics research laboratory constructed with our system moved around the lab. Although the geometries are coarse, this does not
impair the user in performing the tasks in Sections III-B and III-C appropriately. Top: Geometry, shaded. Bottom: Texture overlay, from same viewpoints.

Fig. 7. Align task. Left: image of the setup. Right: the camera view
illustrating the overlay (white A) which should be aligned to the real A.

Fig. 8. Mean normalized times to perform the alignment for each target.

system performs well with a real-world model from video.
The completion time for the alignment task was improved
by the use of the predictive display. It helped the users
cope with both the transmission delays and the velocity
and acceleration limits of the robot. Fig. 8 shows the mean
normalized times to perform each of the alignments. Our
statistics are normalized the same as in [13] so that each
subject contributes to the results equally.

It is important to note that even though the model is rough
and the overlaid texture does not match in detail with the
scene’s geometry, this did not seem to handicap the user.
The users were oblivious to the model not being perfect.

C. Inspection Task

Inspection is useful when evaluating systems’ functionality
in remote environments (e.g., determining if an electronic
board is burnt or evaluating a mechanism’s operability after
some damage). This last experiment’s purpose is to test
predictive display in a different task where the user does
not perform an action on the environment but assesses the
situation from information in the scene.

In this experiment, the setting involved two panels with
a 3x3 LED matrix. In most cases, the panel would have
one “damaged” unlit LED which is to be identified by the
user; in other cases, all the LEDs were lit. These panels
were placed in two randomly selected positions out of five
possible locations for each trial. Two users were asked to do
the inspection in two trials for each visual mode (i.e., six
trials per user in total). Again, the mode order was selected
at random. The unlit LED in each panel was also random in
each trial. In this experiment, the user was allowed to read
the panels in any order. Fig. 9 shows how the task looks
from the operator’s point of view.

The experiment started with the robot in home position.
The task was to first identify the position of the two LED
panels and then move the camera close enough in front of
the panel to identify the unlit LED, if any. From afar, one
can locate the lit panels, but it is practically impossible to
make an assessment of which LED is unlit.

Fig. 10 shows the mean normalized times for the inspec-
tion task. Predictive display improves the ability of the user
to cope with both the delay and the dynamics of the robot.
It is important to note that for the first panel, the predictive
display allows the user to read the panel in less time than
when using non-delayed or delayed video streams. Most
users looked for both panels from a point of view where the
whole scene was visible, yet it took more time to move to
a suitable position to read the second panel with predictive
display than with non-delayed video. It was observed that
because of the single texture used in the predictive display,
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Fig. 9. An operator performing inspection. Target locations are seen from
far away [left] but identification of burnt LED requires a close view [right].

Fig. 10. Mean normalized times to perform the inspection task.

the second target could go out of view when there was no
overlaid texture to help with inspecting the second panel.

IV. CONCLUSIONS

We have developed a system for predictive display with a
real WAM robot that uses online visual tracking and mapping
for pose estimation. A PHANTOM Omni haptic device is
used to tele-operate the remote WAM robot. The predictive
display uses an original incremental real-time free-space
carving technique with regularized isosurface extraction to
compute a geometric proxy. This model is computed at the
remote robot site and transferred back along with images that
are used with projective texture mapping in the rendering.

We have obtained reasonably accurate free-space models
of unknown environments. Our experiments validate results
that were previously only obtained on synthetic data: op-
erators can perform alignment tasks more efficiently with
predictive image-based display compared to delayed video.
We also found that because the predictive display is not
constrained by the robot’s kinematic constraints or veloc-
ity/acceleration limits, it is possible for operators to achieve
better performance with predictive image-based display in
delayed situations than using non-delayed video. Further-
more, we have preliminary results suggesting that similar
benefits exist in inspection tasks.

A. Extensions / Future Work

Our current hardware setup offers immediate directions
for improvement. Our WAM wrist is sent for repair, which
is why we have resorted to the 4 DOF configuration. Incor-
porating the extra DOF should be straightforward. In future
work we could use the motor motion signals of the Segway

RMP and the WAM to improve robustness of the vision-
based tracking and mapping process. Although we use a
haptic device for tele-operation, we do not yet provide any
haptic feedback. In the future we would like to analyze
the benefits and trade-offs of predictive haptic feedback vs.
predictive visual feedback.

In terms of the predictive rendering, we would also like
to analyze more elaborate alternatives for rendering, some of
which might be better suited to communication channels with
large delay or low bandwidth (e.g., such as the dynamic tex-
ture [12]). An alternative to improving the texture/appearance
component would be to improve our approximate geometry,
e.g., using a method that takes photoconsistency into account.
These alternatives should be straightforward to integrate into
our prototype, as the display, model building, and tracking
components of our system are modular and swappable.
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[14] D. Cobzas, M. Jägersand, and H. Zhang, “A Panoramic Model
for Remote Robot Environment Mapping and Predictive Display,”
International Journal of Robotics and Automation, vol. 20, no. 1, pp.
25–34, 2005.

[15] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124–1137, 2004.

5798




