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Abstract— To design, to study, and to control mixed animals-
robots societies is a challenging field of scientific exploration
that can bring new frameworks to study individual and collec-
tive behaviors in animal and mixed robot-animal societies. In
the Chicken Robot project we aim at developing a mobile robot,
able to collaborate with a group of chicks and to control certain
group behaviors. The first research step is to build formal
models of relevant animal behaviors by performing ethological
experiments. Hence, one of the principal tasks is to design
a setup equipped with appropriate monitoring tools. In this
paper, we present a toolset for running chick-robot experiments
and analyzing results. It includes an autonomous PoulBot
robot and an experimental setup, able to autonomously record
experimental video and audio data, to detect displacements of
chicks and robots, to detect their calling activity and to provide
robots with these data. We also present a visual data analysis
system to extract behavioral features of individual chicks using
the variational Bayesian Gaussian mixture model classification
with a particle filters based prediction of future positions of
chicks. We show how these tools are currently used to carry
out chick-robot experiments, to collect behavioral data and
to extract animal behavioral features that allow us to build
behavioral models bound to be implemented in the robot.

I. INTRODUCTION

In ethological studies one of the long-standing interests is
to understand social communication, relationships and struc-
tures. Until recently to study these mechanisms researchers
had used specially designed simple mock-ups whose behav-
ior can be controlled in details to monitor a response of the
animals. But nowadays availability of low-cost miniaturized
computer chips, motors and sensors allowed these artificial
models to become sophisticated robotic devices that can be
used to test hypotheses, which were too tricky to work with
before [1]. For instance, robots were used to study male
territorial instinct in dart-poison frogs [2] and mate selection
in tungara frogs [3], to test ideas about nest mate recognition
in brush turkeys [4] and the predator avoidance by ground
squirrels [5]. However, most of these robots still had a small
number of sensors, a limited computational power and very
little or no autonomy; they were able to test only one or very
few specific behaviors.

We, on the contrary, aim to develop a mobile robot,
equipped with a wide range of sensors (video cameras,
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microphones, proximity sensors, etc.) and a sufficient com-
putational power, which will allow ethologists to study more
sophisticated phenomena. The scientific questions that will
be addressed using this kind of robotic system are the
link between individual and collective behavior, the role of
inter-individual variability in collective decision making and
the cognitive capabilities required, such as sound commu-
nication, color perception and pattern recognition. From a
biological point of view we chose the domestic chicken
(Gallus gallus domesticus) as a model animal; the domestic
chicken is a well studied animal model that gives us a solid
knowledge base; it is also one of the most important farming
animals and we believe that our results could be translated in
the poultry industry to improve chicken welfare and breeding
conditions. The robot has to be able to interact with animals
by using relevant natural communication channels, to send
cues to the animals, to perceive their responses and to
respond to them. Thus, the system has to close the loop
between the animals and the robots, i.e. they both have to
exert a mutual influence through a lasting relationship. In
this case, at the individual level, the robot has to be capable
of perceiving the animal location through vision or by other
sensors, to perceive sound signals emitted by the animals, to
detect zone of interest either according to their luminosity
or temperature. These perception capabilities have to be put
into a relevant behavioral context by the robot, i.e. not only
does the robot need to be capable of perceiving a certain cue
but it needs also to be able to understand its meaning related
to a context, and to send a relevant visual or sound response.
This implies that we will need to develop cognitive models
for the robot. These cognitive capabilities will also be used
to assess its role and impact at the collective level.

Methodologically our project continues the European
project Leurre, where mobile microrobots were designed to
study and control the social aggregation in cockroaches [6].
Other projects that address related questions are the research
on smart collars aiming to study and potentially control
the herding behavior of cattle by building a virtual fencing
system based on the interactions between the animals and the
network of collars [7], [8], and a Robot Sheepdog Project,
where a mobile robot was designed to shepherd a flock of
ducks and to lead them safely to a specified position [9]. In
[10], [11] the researchers designed the WM6 rat-like robot
to teach a rat to push a lever to access a food source, and an
autonomous experimental setup for real-time measurement
of rats behavioral parameters. The main difference from
our previous project is that we work with animals that
have different cognitive and communication capabilities than
cockroaches, i.e., here we mainly use learning (imprinting),
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sound and vision instead of tactile and olfactory communi-
cation. Compared to most of other projects on animal-robot
interactions, we deal with group of animals interacting with
each other and with autonomous robots instead of one-to-
one interactions; we also aim at integrating the robot into
the animal society building upon social behaviors.

In this paper we present our current progress in the
project. We developed a robot for chicken-robot experiments
and implemented a behavior based control system; besides
this, we built an experimental environment equipped with
recording and remote monitoring system, and designed a
toolset for analysis of recorded experimental video data,
where variational Gaussian mixture models and particle
filters are used to extract relevant behavioral features. We
show how these tools are currently used at Université Libre
de Bruxelles (ULB) in studies related to the decision-making
mechanisms in chick groups, the role of leadership in group
behavior and the impact of inter-individuals differences on
collective behaviors.

The paper is organized as follows. Section II gives a brief
overview of the experimental setup. Section III describes a
PoulBot robot, its vision and control systems. Section IV
presents a remote monitoring interface. Section V describes
a system for semi-autonomous extraction of individual be-
havioral features from the recorded video, followed by
experimental results in Section VI.

II. OVERVIEW OF THE EXPERIMENTAL SETUP
The experimental setup is composed of the following

components:
• an experimental arena;
• an overhead camera;
• a standalone experimental PC.

For experiments on the audio communication the setup can
be additionally equipped with a specially designed micro-
phone array [12].

The experimental arena is a flat square 3 by 3 meters sur-
rounded by a wooden wall of 60 cm height (Fig. 1). The floor
is painted in black to simplify the tracking task. The lighting
has the reduced infrared (IR) emission to decrease a noise on
the IR proximity sensors of the robot. The experimental PC
runs the vision system, the Graphics User Interface part of
the robot control system, and records experimental video data
and audio data, in case if the microphone array is used. The
input video data is processed by a real-time vision system
that detects chicks and robots. When the microphone array is
used, the PC can also run a real-time sound calls localization
system, based on the frequency domain beamformer [12];
its output is probabilistically mixed with the vision system
output to detect calling chicks.

III. POULBOT – A MOBILE ROBOT FOR ANIMAL
EXPERIMENTS

A. Design of the Robot

The design of an appropriate body and behaviors of the
robot for animal experiments must originate from relevant
sensory modalities and behaviors of the animal under study.

Fig. 1: The experimental arena with the PoulBot robot and
a group of chicks

We do not copy the animal in all its aspects, instead we focus
on the relevant constraints. It is not always necessary for a
robot to look like an animal under study; for example in the
Leurre project the InsBot robots resembled the cockroaches
only in size, but they were accepted by the animal group
thanks to the special pheromone spread on the robots [6].
When working with domestic chickens we can also profit
from the natural learning mechanism called filial imprinting
[13]; if shortly after hatching we present the moving and
vocalizing robot to chicks they learn that the robot is the
mother. Afterwards chicks are attracted by the robot and
demonstrate a following behavior. Because variations in size,
shape and color are well tolerated for imprinting, it is not
necessary for the robot to look like a hen.

(a) The robot with an activated sample
color pattern

(b) The design of the
robot

Fig. 2: The PoulBot robot and its design. The modules are,
from base to top: a base, a plexiglas bumper, a color pattern
module, an extra IR sensors ring and a top markers board

The PoulBot robot (Fig. 2) that we use in experiments is
a track-type mobile robot that has a size of an adult chicken.
The robot is a modification of the marXbot mobile robot
[14]; the marXbot is a modular robot that consists of a
locomotion base and various application specific modules,
fixed on it. Among other sensors, the base provides 24
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infrared proximity sensors around the robot, a gyroscope,
an accelerometer and contains a replaceable 38 Wh lithium
polymer battery. We extended the base by adding a plexiglas
bumper, a color pattern module, an extra IR bumper, a
speaker, a top markers board, and Bluetooth connectivity.

Fig. 3: The design of the color pattern module

The color pattern module serves to improve and control
the efficiency of filial imprinting and to study cognition in
chickens. Its design is based on three rings of RGB LEDs
mounted one above another, a diffusing plastic tube and
a nontransparent replaceable pattern tube (Fig. 3). Every
LEDs ring consists of 24 diodes that are driven by a
dsPIC33 microcontroller and separated from one another by
nontransparent horizontal and vertical partitions to reduce
the light diffraction. Intensity and color of every LED can
be set separately, thus allowing to produce a variety of color
and spatial combinations; thanks to the replaceable pattern
tube different shapes of pattern elements can be tested. The
additional IR sensors ring is placed above a chick height and
is used in combination with IR sensors of the base in case
when we want the robot to behave differently if it detects a
wall or a chick. The plexiglass bumper protects chicks from
being caught by accident by the robot tracks. Markers on
the top of the robot are used by an external vision system,
described below to detect the position and orientation of the
robot.

B. Vision System

To track robot and chick displacements we use the color
Basler scout Gigabit Ethernet camera scA1000-30gc. It takes
images of the experimental arena (1032 x 778 pixels) like one
on the Fig. 1 with a frame rate 10 fps. The image processing
is performed by the SwisTrack software, initially developed
for the Leurre project to track cockroaches and robots [15].

The robot position and orientation are defined by three
color markers on top of it, they can be detected by subtracting
the color of the markers from the input image and binarizing
the result with a predefined threshold. Chicks are mostly
white-yellow, so they can be detected by using the same
procedure. All positions and distances are measured in the
real-world coordinates thanks to the calibration routine based
on the well known Tsai’s calibration technique; for our setup
an average absolute calibration error is 3.1 mm. The detected

positions of robots and chicks are further transferred to
the robot controller, where they are used when a behavior
executed by the robot needs them.

C. Behaviors of the PoulBot Robot

The large number of onboard sensors implies that a control
system has to be relatively complex; since the main interest
and concern of biological researchers lies in a proper setting
and in conducting animal experiments and not in operating an
intricate control interface, our goal is to hide this complexity
and to provide a robust and easy to use control system. The
control system of the PoulBot robot consists of two parts:
an embedded robot controller and a PC part. The embedded
robot controller runs on seven dsPIC33 microcontrollers of
the robot, one for each motor, one to manage the sensors
of the base, three to control the color pattern and one to
manage the top IR board. The event-based data exchange and
coordination between the microcontrollers are provided by
the ASEBA framework [16]. ASEBA also includes an IDE
to program microcontrollers with a MATLAB like scripting
language.

Fig. 4: An overview of the control system of PoulBot

The distributed robot controller is in essence a behavior
based controller: PoulBot is equipped with a number of basic
behaviors such as obstacle avoidance, wall following, random
walking, goal following, calling, etc.; these behaviors can be
combined together to form higher level behaviors needed
for specific experiments (Fig. 4). Some behaviors use visual
information, for example during random walking the robot
can check whether the group is following and in case if the
chicks are far behind, it can stop and wait them or call or
go back, etc. The basic behaviors can be tuned by merely
changing their parameters such as motors speed, sensors
thresholds, LEDs color and intensity and so on.

The GUI part of the control system runs on the PC; it
provides the user with the information on the status of the
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robot, such as a battery charge level and a current executed
behavior, allows to tune the robot behavior parameters and
transfers the tracking information from the vision system to
the robot embedded control system through the Bluetooth
connection.

IV. RECORDING AND MONITORING

Besides tracking robots and chicks, SwisTrack is respon-
sible for video recording of the experiments. Nobody is
allowed to be in the experimental room while the experiments
are running, to observe a situation on the arena we developed
a lightweight and simple remote viewer that connects to
SwisTrack through TCP/IP and provides a 3D representation
of the arena (Fig. 5). The data stream is coded by using
NMEA 0183 protocol; since only coordinates are transferred,
the load on the network is considerably lower than if we
would transfer the video stream.

Fig. 5: The remote monitoring interface gives a virtual
representation of experiments in the real time

V. EXPERIMENTAL DATA ANALYSIS

A traditional way to analyze experimental data in etholog-
ical studies is to manually mark the positions of animals on
the video record and to tag their behavior frame by frame at
a given timescale. There are several commercially available
animal vision tracking and behavior analysis systems that
attempt to automatize this procedure. Noldus Information
Technologies offers EthoVision [17] video tracking, analysis
and visualization system for automatic recording of activity,
movement and social interaction of various kinds of animals.
To distinguish individual animals it uses color markers.
Other solutions are the SMART video tracking system [18]
designed for an animal video tracking and analysis of
behavioral tests (mazes), the Home Cage Video Tracking
System [19] that focuses on locomotor behavior of laboratory
animals in their home cages and the Video Tracking System
[20]. These software mostly employ simple image processing
techniques, e.g. thresholding and background subtraction,
often they are tuned to work with rats and mice, are mostly
calibrated for animal behavior related to drug testing in
pharmaceutical studies, and allow to track only one animal
or several animals in separated enclosures. Vicon Motion
Systems provides a comprehensive solution to tracks human,

animal and other objects automatically [21], but it is hardly
affordable for most research laboratories.

In our experiments chicks share the same enclosure as
a group. To avoid biased behavior we do not mark them
with color markers. That is why to analyze the experimental
data we designed our own tracking solution, where we use
a variational Bayesian Gaussian mixture model classification
with the particle filters based prediction of future positions
of chicks.

A. Chick Detection by Variational Bayesian Gaussian Mix-
ture Based Clustering

To build a behavioral model of the chicks we extract
individual trajectories from the recorded video data. In this
case we rejected to use the simple blob detection to detect
chicks because of its low reliability – if two or more chicks
are close to one another only one blob will be found. The
Gaussian mixture model (GMM) based clustering approach,
which is one of the popular techniques for image segmenta-
tion, demonstrates good detection results (Fig. 6b), but when
the classical maximum likelihood (ML) method is used for
training, it suffers from the over-fitting problem in case if
some of chicks are accidentally hidden behind the robot (Fig.
6c). On the contrary, the variational Bayesian approach [22]
handles this problem by adapting the number of components
and pruning the components that are not used. It is also
free from the singularities problem of the ML-based training
approach.

(a) a sample image presenting
a typical experimental situation

(b) a GMM based clustering is
able to accurately detect chicks
positions

(c) but GMM clustering suffers
from the over-fitting when some
chicks are not visible

(d) a variational Bayesian
GMM adapts the number of
component in the mixture

Fig. 6: The detection of chicks positions by variational
Bayesian GMM

The points distribution is modeled by the mixture of K
Gaussians as follows:
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p(x) =

K∑
k=1

πkN (x|µk,Λk),

where µk, Λk and πk are the mean vector, precision
matrix and mixing coefficient of the k-th Gaussian. The
priors over these parameters are chosen to be a Dirich-
let distribution Dir(π|α0) for mixing coefficients, Gaussian
distribution N (µk|m0, (β0Λk)−1) and Wishart distribution
W(Λk|W0, ν0) for mean and precision of each Gaussian
component. The optimization of the variational posterior
distribution is carried out by an iterative algorithm that
consists in two steps, similar to the E and M steps of the
maximum likelihood EM technique:

(E)xpectation step: We compute values rnk representing
the posterior probabilities that k-th component is responsible
for generating the data point xn:

rnk =
ρnk∑K
j=1 ρnj

.

Here

ln ρnk = ψ(αk)− ψ

(
K∑
k=1

αk

)
+

1

2

D∑
i=1

ψ

(
νk + 1− i

2

)
+

+
D

2
ln 2 +

1

2
ln |Wk| −

D

2
ln(2π)− D

2
β−1
k −

−νk
2

(xn −mk)TWk(xn −mk),

where D is the dimensionality of the data variables x, and
ψ is the gamma function.

(M)aximization step: We recompute the variational dis-
tribution over the parameters:

αk = α0 +Nk, βk = β0 +Nk, νk = ν0 +Nk,

mk =
1

βk
(β0m0 +Nkx̄k),

W−1
k = W−1

0 +NkSk +
β0Nk
βk

(x̄k −m0)(x̄k −m0)T ,

where statistics Nk, x̄k and Sk are computed as follows

Nk =

N∑
n=1

rnk, x̄k =
1

Nk

N∑
n=1

rnkxn,

Sk =
1

Nk

N∑
n=1

rnk(xn − x̄k)(xn − x̄k)T .

After convergence components that do not take any essential
responsibility for explaining the data will have rnk ' 0 and
hence Nk ' 0.

Fig. 6d demonstrates the result of the sample experimental
image clustering by using variational Bayesian GMM ap-
proach. The initial values for the parameters are chosen as
suggested in [22].

B. Particle-based Tracking

A well-known limitation of the GMM based clustering
lies in the mixture parameters initialization procedure: to get
good segmentation results we must provide reliable initial
conditions; moreover while detecting positions of chicks the
clustering provides no information about their behavior in
time (tracking). For that reason, it is desirable to combine
the clustering with some method able to track chicks by
probabilistically integrating all measurements available up
to the current time. It was shown that particle filters provide
an effective way of sound and visual target tracking [23],
[24]. Using a sequential Monte Carlo method, particle filters
recursively estimate the probability density of the unknown
source state conditioned on all received data up to and
including the current frame.

At time t every chick c = 0, 1, ..., C − 1 is modeled
using P particles at positions x

(t)
c,p, each with its weight w(t)

c,p.
The state vector for particles has four dimensions: two for a
position and two for a speed:

s(t)
c,p =

[
x

(t)
c,p

ẋ
(t)
c,p

]
.

We use the sampling importance resampling algorithm
with a predictor in the form, used in [23], as it was shown
to work well in practice. The model is defined as

ẋ(t) = aẋ(t−1) + bFx, x(t) = x(t−1) + ∆T ẋ(t),

where a = e−α∆T , b = β
√

1− a2, Fx is a normally
distributed random variable and ∆T is the time interval
between two frames. The model parameters suggested in [23]
are α = 0.05 and β = 0.2. The positions of chicks, predicted
by the filters are used as initial values for means of the
Gaussians for the clustering procedure; next we recalculate
the weights of particles as follows: w(t)

c,p = e−γ|x
(t)
c,p−x̂

(t)
c |,

where x̂
(t)
c is a position of c-th chick corrected by GMM

clustering. Then the particles are resampled according to
their weights, the new set of particles s

(t+1)
c,p is predicted by

propagating the resampled set according to the dynamical
model and the procedure is repeated.

Sometimes it happens that several chicks form a very
dense group and the tracker fails to estimate correct number
and exact positions of animals, in this case the user can
manually correct the tracking results for the problem frames.

VI. EXPERIMENTS

The robotic system is being designed and tested in parallel
with behavioral studies on chick groups of domestic fowl. We
run various experiments of the following types: ’one chick-
one robot’, ’several chicks-one robot’ and ’several chicks-
several robots’. These experiments allow to discover factors
influencing the acceptance of the robot by the animals and
the relevance of sound and visual communication.

One of the benefit of intelligent autonomous robots is that
they allow to repeat many time the same kind of experiments
in well controlled trials. These kind of behavioral animal
studies are time consuming and heavy work, thus the benefit
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of having automated intelligent systems is high. For example,
it allows us to quantify many behavioral parameters with
good metrics and good statistical validity.

To illustrate how the present system can be used in the
chicks-robots experiments we will give two examples of
experimental data: the individual tests ’one chick-one robot’
and the group experiments ’one robot-several chicks’.

A. Individual Experiments

After the imprinting procedure is carried out, every chick
is tested to quantify its individual features, i.e. how much it
is attracted by the robot depending on the pattern displayed
and the kind of call emitted, its exploring preferences of the
arena, etc. The same parameters are estimated for the chick
in a group and in individual tests. This gives us individual
behavioral dynamics characteristics and allows to study the
influence of the group mates on the individual preferences.

In individual tests a chick is released into the arena, where
the robot executes a random walk behavior with a speed
of 8 cm/sec that is comfortable for chicks. In this kind
of test we only study the chicks reaction to the robot and
don’t try to control them to reach a specific goal, so the
robot does not react to any cues received from the chicks, it
only displays a specific color pattern and emits a call. Then
the individual trajectories of the robot and the chicks are
extracted from the video records of the trials, and we estimate
various parameters, e.g. the amount of time when the chicks
were active (the time intervals, when their speed was above
a given threshold), the chick-robot distance and the angle
between the chick heading direction and the direction from
the chick to the robot.

Depending of the demonstrated behavior every chick can
be put into one of three groups: imprinted chicks that follow
the robot; non imprinted mainly staying on the spot, where
they were released, not paying attention to the robot and
sometimes sleeping; and avoiding running along the walls
as if trying to avoid the robot with a maximal distance. We
found that only three behavioral parameters are enough to put
any chick into one of these classes with a high level of relia-
bility: a mean chick-robot distance dm, a mean chick velocity
vm and a mean absolute deviation of the chick velocity vector
from the chick-robot vector δm. As a classification technique
we use the Fisher’s linear discriminant. As a training data set
we use the results of the individual tests made during one of
three experimental series conducted this year (Fig. 7). Been
applied to the validation data set corresponding to two other
experimental series the classifier managed to put a chick into
the correct class in 97% of cases.

B. Group Experiments

Even if the chicks are imprinted on the robot, when in
groups they are also attracted by their group mates. In this
case the following behavior can be less stable as there is
a competition between the attraction to the robot (acting as
a leader) and the attraction to other chicks, some of which
have a low attraction to the robot. In this kind of experiments,
we test various behavioral responses of the robot that would

Fig. 7: The dm-vm projection of the experimental data for
59 chicks comprising three classes used to train the classifier

increase its leadership on the group. We release one robot
and a group of chicks in one corner of the arena, then the
robot moves to the opposite corner in order to lead there
the group. The vision system provides information about the
chicks positions and distance from the robot to the animal
group center of mass and the group dispersion. When some
parameters are above a threshold, the robot can modify its
behavior to attract the group towards its destination like
stopping and waiting until chicks join him, or going back
to fetch the group, etc. Once reaching the opposite corner
the robot rests for a defined duration, then repeats the same
procedure. The same experiments can be repeated with the
same group, but varying various behavioral parameters in
order to quantify the effective leadership of the robot. Fig. 8
presents the robot position on the diagonal line connecting
the opposite corners of the arena, superposed with the same
value computed for a chick group center of mass. The figure
shows that after some initial time the group demonstrates a
stable following behavior. In this case the leadership of the
robot on the group displacement is efficient.

Fig. 8: The position of the robot on the diagonal line (green),
superposed with the position of the centre of mass of a
chick group (red). The horizontal sections on the robot
displacement, which do not correspond to the robot resting
in the corner of the arena (maximal and minimal values of
the position), mark the situations when robot does not move
and waits until chicks join it

VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we have presented a set of tools for the

experimental study on interaction between chicks and robots
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in mixed groups – the PoulBot mobile robot, the audio-visual
monitoring and recording system and the visual data analysis
system.

At the present stage we have shown that the robot can be
accepted by chick groups using the filial imprinting learning
process modulated by the patterns that are displayed by the
robot and its sound emission. Thanks to the tracking tools
we are able to quantify the strength of the imprinting and
hence the level of leadership the robot has on the chicks. It
also allows us to quantify both the individual and the group
behavior and to study the impact of the individual behavioral
parameters on the collective level. In future work we will
concentrate on further development of the experimental setup
by adding specific sensors and actuators such as feeders and
humidity and temperature sensors as well as on the PoulBot
robot, providing the robot with the hardware and software
extensions to carry out more complex interactions with the
chicks and to control a wider range of behaviors. The use
of the robot allows to carry out experiments that are very
difficult or even impossible to do with natural hens. For
example, since the pattern displayed by the robot is dynamic,
we will be able to study the cognitive processes of pattern
recognition in chicks. The sound perception system can
detect the origin and location of sound calls emitted by the
chicks. The robots would then adapt their behavior according
to this sound perception. The next step will be to analyze
the sound calls and to categorize them according to the
chicken vocal repertoire. This will allow the robot to respond
appropriately to specific calls like, for example, distress calls.
This experimental approach will be useful to entangle the
impact of the various cognitive and communication processes
on collective behavior.

We have experimentally verified the applicability of our
system in scientific experiments to study animal social be-
havior. As it is possible to change the behavioral models
and parameters of the robots, various hypotheses can be
tested. After behavioral models are build and validated, it
is possible to implement them in the robot to control the
whole group behavior by interacting with the animals [6].
This form of modulation or control is based on the natural
behavior observed and will take into account animal natural
constraints and welfare.

Moreover, one of the forthcoming challenges will be to
build cognitive processes performed by the robot to be able
to establish cooperation with animals. The advantage of
this approach is that a form of AI has to be developed in
a real application context with clear metrics provided by
collective behavioral tests allowing to assess its success. The
comparison between the kind of AI performed by the robot
and the kind of animal intelligence in presence is direct. This
line of research could produce a framework for designing
hybrid collective intelligence between natural and artificial
systems. We will speculate about designing cooperation in
mixed societies of animals and robots that will produce novel
collective intelligence in which the animals and robots make
use of their respective and different capabilities and enhance
the global performance of the group. Furthermore, on the

long term, the results obtained in our studies could become
the foundation to design novel intelligent robotic system
based on natural behaviors and used in farming to improve
breeding conditions of poultry.
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