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Abstract— The use of edge–related applications is important
in the field of computer vision. These applications help robots
with understanding their surrounding environments; the lane
or wall detection system is one of the most popular applications.
Numerous studies have recently been conducted for enhancing
the capabilities of robotic vision, but they typically lacked the
applications that were related to coping with the environmental
changes of the scenes. In this paper, we propose a method
that integrates a particle filter into the process of tracking the
camera’s parameters (the exposure and the focus) to find the
captured frame with the high edge quality. The relationship
between the current sequence of frames and the previous
sequence was given no consideration when all the possible
parameters were scanned. Our work attempts to find that
relationship and to increase the speed of the camera system.
The edge results are evaluated with using a line detection
algorithm – that is known as the Standard Hough Transform.
A test method is applied to analyze the correctness of the line
detection results. Furthermore, we propose the entropy of the
Sobel gradient method for measuring the image sharpness and
its contrast when the exposure and focus of a digital camera are
changed. Our experimental results show that our method can be
applied in real–time systems because of its low computational
requirements.

I. INTRODUCTION

Acquiring well edge images from a camera under various
environmental conditions is necessary for further processing,
because the images are then used as input of many of the
computer visual applications. Research has been conducted
on the automatic adjustment of camera exposure and focus,
and image contrast. The work in [1] presents an approach
that is based on a multi–layer feed–forward network with
a back–propagation learning rule for automatic illumination
correction. This can be used for scene enhancement and for
improving object tracking. The neural network learns about
the mapping between two illumination conditions, which are
the unknown and the canonical illuminations. The neural
network then applies this transformation to every pixel in
the successive frames that were captured by the camera. This
work provides the experimental results of hand tracking by
using a condensation tracker, and a contrast transformation
that is applied for color correction.
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A system for traffic–sign detection and classification is
shown in [2]. The work is divided into three stages: first,
the detection of the information about the edges of the
image by using the Hough Transform; second, the traffic-
sign classification by using a neural network; and third,
tracking by using a Kalman filter. The information about
the edge–images in the first stage is obtained with using the
Canny operator that is applied in a dynamic method that
uses two thresholds. This method depends on the histogram
distribution of an image. The threshold levels are taken
over the region with a wider distribution. Consequently, it
is possible to use the same algorithm under good visibility
conditions or under poor illumination.

The aforementioned two works can mainly process single
images or a sequence of frames. They merely consider
the data from the images without paying attention to the
parameters of the camera, even though they used camera
systems to track hand gesture and to monitor traffic signs.
The latter two works offer robust methods, but they may
fail under particular or extreme illumination conditions such
as over–exposure and under–exposure. If the scenes have
regions that are too bright or too dark, then the features
in these scenes cannot be correctly detected. There have
been recent studies on coping with extreme illumination
conditions. The idea proposed in [3] is for improving the
quality of the acquired images with non–optimal exposure.
This approach analyses the CCD/CMOS sensor Bayer data
or the corresponding color–generated image. It adjusts the
exposure level according to a camera–response–like function
after identifying specific features. The techniques of exposure
adjustment that are described in this paper are primarily
designed for mobile sensor applications. Similarly, [4] pro-
vides fast and accurate auto–exposure capabilities for the
digital–still cameras. The algorithm in [4] begins with an
electronics–centric auto–exposure approach. This adjusts the
exposure on the scene to alter the brightness of the image
to the appropriate level. The lighting condition of the scene
is identified using the main object and the background. The
algorithm calculates different weights for images’ areas that
contain the objects and the background until the brightness
of the scene reaches the proper exposure.

An optimal statistical measure for camera focus and ex-
posure is provided in [5]. Sharpness and contrast are the
two components that express the image quality. They can be
directly translated into camera focus and exposure. In [5],
measures are developed to independently adjust the focus
and the exposure independently. The statistical measures that
are computed with a gray–level histogram are the mean, the
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standard deviation, the entropy, the percentage of pixels, and
the absolute central moment (ACM). Experimental results
show that the ACM is the best measure of the image quality;
if the image has the best sharpness and contrast, then it will
yield high value image quality. The ACM was examined
and proven to be an excellent measure; however, there were
only a few test patterns, and they were not sufficient for
concluding that the ACM is a good measure.

Achieving adequate auto–focus (AF) depends on the de-
sign of a good focus measure. Investigations of the focus
measures that are presented in [6] showed that it is very
difficult to achieve an AF function with only one focus
measure. The AF algorithm that is proposed in [6] contains
two different stages of focus measures: the discrete variance
FMvar, and the energy of Sobel gradient. The FMvar is
used for finding the vicinity of the focus at the first stage,
while the energy of Sobel gradient is used for obtaining the
best focused images at the second stage.

A focusing algorithm that is based on non–uniform sam-
pling is proposed in [7] and [8]. Incorrect focus results occur
when the focusing window is too big or too small in a typical
automatic–focusing system. The algorithm that is proposed
in [7] and [8] adopts the non-uniform sampling and the
threshold gradient to obtain higher resolution at the image
center and to obtain a wider field of view. Non–uniform
sampling is applied to the digital image at the first step.
A derivative–based algorithm is then used as a measuring
method for finding the best focused image.

Most of the related studies attempted to inspect all the
obtained images or all the possible parameters. This process
takes a long time to determine the best sharpness and contrast
image; even the measuring method that is applied to image
quality is simple and it requires low computational resources.
This paper presents an auto–exposing and auto–focusing
method with using a particle filter (PF) for the edge–related
applications. The PF is integrated with the process of track-
ing camera parameters (the exposure and focus parameters)
to find the captured frame with the high edge quality. In the
case of scanning all possible parameters, the relationship is
not considered between the current and previous sequences.
Our work attempts to find that relationship and increase the
speed of the camera system.

Edge quality is usually high when an image has good
sharpness and contrast. The results of the edges that were
detected from the high sharpness and high contrast image
are evaluated through the Standard Hough Transform, which
is a line detection algorithm. A test method is applied to
analyze the correctness of the line detection results. This
correctness information forms the basis for judging the
quality of the edge. Furthermore, we proposes the entropy
of Sobel gradient method to measure the image sharpness
and contrast at the time when the exposure and focus of the
digital camera are changed. Experimental results showed that
our method can be applied in real-time systems because of
its low computating requirements.

This paper is organized as follows. In the next section, the
entropy of Sobel gradient method is presented. Section III

briefly describes a particle filter that is used for tracking the
exposure and focus levels. Section IV presents the image
evaluation for sharpness and contrast. Section V addresses
auto–exposing and auto–focusing with using a particle filter.
Section VI presents our experimental results. This paper is
drawn to a conclusion and future work in Section VII.

II. ENTROPY OF SOBEL GRADIENT

This section presents a method for measuring the image
sharpness and contrast when the exposure and focus of a
digital camera are changed. Statistical measures of gray–
level distribution have been based on the mean, variance,
or entropy [5], but they are not particularly useful, and they
are inconsistent. Therefore, we did not directly apply any of
these measures to the captured images.

A gradient method was employed to measure the image
sharpness and its contrast with respect to the edge feature.
The Sobel gradient has the advantage of its smoothing effect
when it is applied to many spatial gradient operations. It
tends to make the derivative operations less sensitive to noise.
Let I(x, y) be the original image, and Is(x, y) be the image
that is convoluted with a Sobel window s(x, y). We then
have

Is(x, y) = s(x, y) ∗ I(x, y). (1)

We measured the effect of the exposure and the focus pa-
rameter changes on images with respect to the edge feature.
When acquiring a series of images at different exposure and
focus levels, we picked the image with the best sharpness
and contrast based on entropy of the Sobel gradient image
Is(x, y). An intuitive understanding of information entropy
relates to the amount of uncertainty about an event that is
associated with a given probability distribution. Entropy can
serve as a measure of ”disorder”. A higher entropy value of
Sobel gradient denotes better image sharpness and contrast.
According to [9], the entropy is defined as:

h(X) =
n∑

k=1

p(xk) log2

1
p(xk)

, (2)

where X is a discrete random variable with possible out-
comes x1, x2,... xn, and p(xk) is the probability of the
outcome xk. The outcome is a gray level in the gray scale
image, and its probability is calculated by

p(xk) =
nk

n
, (3)

where k = 1, 2, ...L, L is the total number of possible gray
levels in the image, n is the total number of pixels, and
nk is the number of pixels that have the gray level xk.
Consequently, the entropy of Sobel gradient is defined as
h(Is(x, y)).

The entropy itself is inconsistent when it is used for
measuring image sharpness and contrast, so we have to
take the gradient of the image before calculating its entropy.
This method is particularly useful in algorithms relating to
detecting edges.

1178



III. PARTICLE FILTER

Particle filters [10], [11] enable the robust tracking of
moving objects in a cluttered environment. They are used
for nonlinear and non–Gaussian problems that focus on the
detection and tracking of moving objects. In our work, a
particle filter is used as an algorithm to track the positions of
the camera’s intrinsic parameters, when we control them, in
order to adapt to the changes of the environmental conditions.
The parameters are on the exposure and focus levels.

In our system, the target state at time index k is defined
as

xk � [xk, yk, ẋk, ẏk]T . (4)

Here, xk and yk are the positions of the camera exposure
and focus levels. Components ẋk and ẏk are the velocity
components in the x and y axes at time k. The components
xi

k and yi
k of the ith sample xi

k, i = 1, 2, ...N , where N is the
number of particles that are drawn from p(xk|xi

k−1) in the
sampling importance resampling (SIR) filter, are generated
as follows:

xi
k = xi

k−1 + ẋi
k−1 + ui

k−1,x

yi
k = yi

k−1 + ẏi
k−1 + ui

k−1,y
(5)

Here, ui
k−1,x and ui

k−1,y are zero–mean Gaussian processes
with standard deviations σx and σy , respectively.

The weight w̃i
k of sample xi

k is calculated as

w̃i
k =

1√
2πσ

exp

(
− 1 − γ[p, q]

2σ2

)
, (6)

where σ is the variance of a zero–mean Gaussian process,
and

γ[p, q] =
m∑

u=1

√
puqu (7)

is the Bhattacharyya coefficient of the sample histogram p
and the target histogram q, and u is the bin index of the
histogram. The similarity of the histogram of the sample
to the target histogram (the appearance model) and the
“motion” measurement of this sample are weighted using
alpha blending to obtain an integrated similarity measure.
The appearance model is updated by the histogram of the
sample with the maximum weight [12].

The components ẋi
k and ẏi

k of sample xi
k are drawn from

p(xk|xi
k−1) as displacements from the previous position to

the estimated position of a moving level, in accordance with
the following expression:

ẋi
k = (xk − xk−1) + 0.5(xk − xk−1)ui

k−1,ẋ

ẏi
k = (yk − yk−1) + 0.5(yk − yk−1)ui

k−1,ẏ
(8)

where ui
k−1,ẋ and ui

k−1,ẏ are zero–mean Gaussian processes
with unit standard deviations. Components xk and yk are the
means of position components, xk and yk, respectively, and
they are determined as follows:

xk =
∑N

i=1 wi
kxi

k

yk =
∑N

i=1 wi
kyi

k

(9)

where wi
k is the normalized weight of sample xi

k.

IV. IMAGE EVALUATION FOR SHARPNESS AND
CONTRAST

In our work, the result of the edges that were detected
from an image with high sharpness and contrast qualities
was evaluated through a line detection algorithm. We utilized
the line extraction algorithm to the edge–image which is
applied the Canny edge detector. Many algorithms have been
proposed for extracting the line features from 2–D images.
There are two popular approaches: the Split–and–Merge
algorithm [14] and the Hough Transform [15], [16]. The
Split–and–Merge algorithm has several desirable properties;
especially, its exploitation of the local structure, whereas the
Hough Transform algorithm considers only exploiting the
global structure. The Hough Transform is chosen in this
paper because it is robust to noise, and it is successfully
used with intensity images.

The basic Hough Transform that known as the Standard
Hough Transform (SHT), has established itself as the default
technique for the straight line Hough Transform evaluation.
Its popularity comes from its robustness to noise and simple
algorithmic implementation. In SHT, all the points (x, y)
were calculated by using the following equation that is
expressed in polar coordinates:

ρ = x cos θ + y sin θ, (10)

to obtain ρ as θ changes successively in the parameter space.
Having the values (ρ, θ), the SHT algorithm then looks for
the accumulator cells into which the parameters fall. The
SHT then increases the values of those cells. After some
edge pixels considered to constitute a straight line have
been accumulated, the distribution of the parameter space
is shaped like a butterfly. The most likely straight line in
the image domain is represented by the highest value in the
parameter space. The present accumulator has peaks that may
have values that are greater than the specified threshold. The
simplest way to find these peaks is to compare the values
of the peaks with the threshold value. We can draw straight
lines from these peaks.

The quality of the detected edges is not intuitively eval-
uated, but it can be evaluated through the Standard Hough
Transform algorithm, with which we can count the number of
detected lines and the number of correct lines. The evaluation
was executed on real–world images and their corresponding
ground-truth data, which are considered as criteria. The two
correctness measures are defined as follows:

• The number of the possibly detected lines by the
algorithm (Ndet.).

• The number of correct lines (Ncor.), which is an im-
portant parameter of correctness. In order to count the
lines, we must decide if two close lines are near each
other in an allowed range. We base this on the precision
of ρ and θ. The condition to increase the total number
of correct lines is

(|ρi − ρj | ≤ Δρ) ∧ (|θi − θj | ≤ Δθ), (11)
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Fig. 1. Sony EVI–D100 CCD video camera.

where ρi, θi are ρ, θ of the ith detected line; ρj , θj are
ρ, θ of the jth true line; and Δρ, Δθ are the resolutions
of ρθ–space.

V. CAMERA AUTO–EXPOSING AND AUTO–FOCUSING

Our method works on gray level frames that are captured
from the camera where the exposure parameter is contin-
uously changed. We used a Sony EVI–D100 CCD video
camera (see Fig. 1) and a frame grabber board. The EVI–
D100 camera was connected to the frame grabber and to a PC
through its RS–232C port, through which all settings of the
camera were made. The gray scale that are images captured
by the frame grabber board had a resolution of 640 × 480
pixels. This camera supports many useful commands such as
panning, tilting, zooming, focusing, exposure compensating,
etc. [13]. We adjusted only the aperture, exposure, and focus
parameters. The aperture parameter was set to obtain the
deepest depth of field (DOF). Instead of only focusing on
an object or a shallow DOF, we attempted to detect the
background and the other objects in the scene. The exposure
compensation parameter includes 15 positions to change,
and the focus parameter contains 14 levels. The lowest
position of the exposure parameter represents darkness, and
the highest position represents brightness. To obtain the best
focus frame, the focus value must be the lowest when the
object is farthest from the camera, and the focus value must
be highest when the object is nearest to the camera. Fig.
2 shows 1–D representation for the exposure and focus
levels. Furthermore, the camera also allowed us to control
the backlight, which was used to increase the brightness.
However, the backlight can over-expose some regions in the
captured images, so we did not use it.

We have a total of 210 levels of exposure and focus
parameters. As our initial step, all possible images were
captured with different camera parameters. The entropy of
Sobel gradient was applied to every image in a sequence of
the captured images to find the best sharpness and contrast
image with respect to the edge feature. The exposure and
focus levels were saved as criteria for the second sequence
of the captured frames. They were used as input to the
particle filter (PF). The PF bases on these parameters to
scatter particles with respect to the standard deviations. The
processes of measurement and prediction in the PF algorithm
were repeated over the sequences of the captured frames. The
results of each image sequence were evaluated through edge
detection. Fig. 3 demonstrates the initial step (t = 0) when

Fig. 2. A 1–D representation of the exposure and focus levels.

Fig. 3. A 2–D representation of the exposure and focus levels with the
process of finding suitable frames by using particles.

applying the entropy of Sobel gradient, and the next two
steps with the particles being scattered. At times t = 1 and
t = 2, the particles (the solid small circles) were distributed
to surround the position that was obtained from the previous
step with different weights. The current exposure and focus
levels were estimated based on the particles.

VI. EXPERIMENTAL RESULTS

In this experiment, we used the Sony camera and the frame
grabber board, as was described in the previous section. The
PC was an AMD Athlon 64 X2 Dual Core Processor 3800+
2.00 GHz with 2 GB RAM.

The experiment was run in an indoor environmental setting
under normal light conditions. The frames were taken from
a scene at a corner of our laboratory. Fig. 4 shows the frame
that represents the scene of the experiment. For the purposes
of this test, we put a desk lamp in front of the camera. One
object is close to the camera, while several objects are far
from it. All these things are used to simulate the environment
where a mobile robot with a mounted camera moves back
and forth. All the tests that are described in this section were
performed with using this scene, and we have the following
six cases for the experiment:

1) The normal case: We did not pan/tilt the camera,
change focus, or compensate exposure in this test
case. All camera parameters were set to their default
values. The automatic exposure mode was turned off.
The aperture, exposure, focus and zoom parameters
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Fig. 4. The scene of the experiment.

were all set to their initial values, and there was no
movement or sudden light.

2) The pan/tilt case: This case was based on the normal
case. We pan/tilt the camera in order to examine our
method’s ability to adapt to the changes in the scene.
For simplicity, we only pan the camera to the left for
which the angle of one pan action is approximately 10
degrees.

3) The test–focus case: Based on the normal case, we
put an object (a box) in front of the camera, and then
we moved the box from the farthest distance to the
neareast distance. Fig. 5 shows four sample frames
that were captured from the scene with the object
placed near the camera. We hoped to see the change
of the camera’s focus level as the camera adapted to
the object’s movement.

4) The test–exposure case: Similar to the test–focus case,
this case is based on the normal case. We used a
desk lamp to create over-exposed regions in the scene.
The test scene is the same as that in Fig. 4, but the
lamp is turned on or off to control the light. Adjusting
the exposure parameter in the camera reduces the
brightness of the captured frames when the lamp is
turned on, and it reduces their darkness when the lamp
is turned off. Thus, image sharpness and contrast are
both maintained.

5) The pan/tilt and test–exposure case: We experimented
with panning and with changing the light of the envi-
ronment simultaneously.

6) The test–focus and test–exposure case: We moved an
object from the farthest distance to the nearest distance
to the front of the camera, and then we simultaneously
turned on or off the desk lamp to control the light. This
test case clearly reflects the changes in the focus and
exposure levels.

We tested each case with 100 captured images. Ground–
truth data are built along with the test images in order to
evaluate the edge results. We used four methods to find the
best sharpness and contrast image:

1) No exposure compensation and no focus change: all

(a) (b)

(c) (d)

Fig. 5. The four sample frames of the scene with an object for testing
focus changes.

camera parameters were set to their default values; the
exposure compensation and focus parameters modes
are set to manual.

2) Auto–exposure of the camera: the camera was config-
ured with the automatic exposure mode.

3) Auto–focus of the camera: the camera was configured
with the automatic focus mode.

4) The scanning of all possible parameters: the exposure
and focus levels were successively changed. We cap-
tured a frame with each pair of parameters. After 210
captured frames, we found the best frame with using
the entropy of the Sobel gradient method.

5) Applying a particle filter: our proposed algorithm.
Table I shows the edge evaluation results for six test

cases and four methods of finding the best image. The input
parameters that were used in all experiments are as follows:

• Canny edge detection: the low threshold Thrlow = 50,
and the high Thrhigh = 200.

• Line detection (the Standard Hough Transform): vote
threshold Thrvote = 100 with accumulation of 1; θ
resolution Δθ = 1.15 degrees; ρ resolution Δρ = 1
pixel; the Hough space size: Nθ = π/Δθ and Nρ =
(2(Iwidth + Iheight) + 1)/Δρ; and the local maxima
window size is 5 × 5.

• Particle filter: the number of particles Nparticle = 40;
σx = 2 and σy = 1.

The average number of detected lines Ndet. and of correct
lines N cor. are shown in columns of Table I. The number
of detected and correct lines was obviously lower than that
in the other four methods in the case where there was no
exposure compensation and no focus change. In particular,
the number of correct lines was more important than the
number of detected lines in assessing the clear edges. The au-
tomatic exposure and the focus mode the were implemented
in the camera were executed for comparison with other
methods. These two methods achieved adequate processing
time results because they were directly implemented on the
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TABLE I
RESULTS OF EDGE EVALUATION FOR THE CASE OF NO EXPOSURE COMPENSATION AND NO FOCUS CHANGE, AUTO–EXPOSING, AUTO–FOCUSING OF

CAMERA, SCANNING OF ALL POSSIBLE PARAMETERS, AND APPLYING A PARTICLE FILTER

No ExpCom, no
focus change

Auto–exposing
of camera

Auto–focusing
of camera

Scanning of all pos-
sible parameters

Applying a
particle filter

Ndet. Ncor. Ndet. Ncor. Ndet. Ncor. Ndet. Ncor. Ndet. Ncor.

Normal 5.2 4.2 13.8 8.2 8.4 6 16.2 9.6 15.6 9.2

Pan/tilt 13 7.8 25.1 11 14.6 7.6 27 13.3 25.22 13

Test–focus 4.9 4.2 11.4 8 4.9 3.7 14.2 9.78 13.11 8.89

Test–exposure 4.8 3.9 5.3 4.2 4.9 3.8 8.33 6 6.11 5

Pan/tilt and test–exposure 4.3 3.2 10.59 7.24 3.7 3 11.4 6.67 11.56 7.33

Test-focus and test–exposure 7.7 5.7 19.9 9 9.9 6 20.7 8.56 17.78 9.22

hardware. Their processing time is lower than 1 ms; however,
their results of edge evaluation are not as good as those of
the method that involves scanning all the possible parameters
and the particle filter based method.

The method of scanning all possible parameters yielded
good results in most test cases, but the results in the latter
two test cases were worse than the result of applying a
particle filter method. This is because there is no relationship
between the two successive sequences of the images in the
method of scanning all images. It takes an average of 2542
ms to process 210 images of a sequence in the case of
scanning all images. In the results our proposed method, the
first four cases are approximated to the method of scanning
all images. Two other cases of applying a particle filter
gave slightly better results than the other methods, because
the measurements from the previously captured frames were
used. Furthermore, the particle filter significantly contributes
to reducing the computation time of finding the best image
in comparison with the method of scanning all images: 107
ms and 2542 ms. The advantage of applying a particle filter
is most clearest in complicated test cases, which represent
real environments.

VII. CONCLUSION AND FUTURE WORK

We described a method for integrating a particle filter
with using the processes of tracking the exposure and focus
camera parameters to find the captured frame with high
edge quality. The average processing time per frame for an
image size of 640 × 480 pixels is 107 ms. This processing
time can be reduced by implementing the algorithm on
specific devices instead of a computer, which is what we
used. The strengths of our method are emphasized in the
complicated test cases that simulate common situations in
real environments. Our experimental results showed that our
method can be applied in real–time systems because of its
low computational requirements.

For future work, we plan to investigate the results in
an outdoor environment. We hope to build a mobile robot
with a mounted pan/tilt camera and apply our method to
a lane detection system. Moreover, the camera aperture
parameter was not exploited in this paper. Thus, we also
plan to automatically change the aperture to assist robots

with following the tracking objects in a constant depth of
field.
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