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Abstract— Mimicry and deferred imitation have often been
considered as separate kinds of imitation. In this paper, we
present a simple architecture for robotic arm control which
can be used for both. The model is based on some dynamical
equations [1], which provide a motor control with exploring
and converging capacities. A visuo-motor map [2] is used to
associate positions of the end effector in the visual space with
proprioceptive position of the robotic arm. It enables a fast
learning of the visuo-motor associations without needing to
embed a priori information. The controller can be used both
for accurate control and interaction.

It has been implemented on a minimal robotic setup showing
some interesting emergent properties. The robot can reproduce
simple gestures in mimicry situation and finalized actions in
deferred imitation situation. Moreover, it can even show some
“intention” recognition abilities. Finally, the experiment of de-
ferred imitation which inherits from learning by demonstration,
also provides a good basis for cooperative and interactive
experiments.

I. INTRODUCTION

With the aim of discovering and learning new tasks,
imitation is an important advantage for autonomous agents.
It allows to speed up the learning process by reducing the
search space of the learner. It is also a very intuitive and
natural way to interact. As a result, in the field of robotics,
imitation is very often understood as a powerful behavior
corresponding to the ability to learn by observation [3], [4].
A robot can combine known actions to reproduce a behavior
that is done by somebody else. Interestingly, this notion
of learning by observation is very close to the notion of
“deferred imitation” intensively described in developmental
psychology. Deferred imitation [5] is the ability of a child
(from 18 months old) to reproduce an observed task but in a
different context (spatial and especially temporal). According
to Piaget, it also corresponds to the ability to memorize and
handle symbolic representations of the task. This approach
has been reinforced by the discovery of mirror neurons
[6] which fires whenever a specific action is observed or
done. More interestingly, the last 20 years of debate and
research in developmental psychology changed this notion
of imitation. Recent findings such as “neonatal imitation”
have stressed the importance of imitation for communication,
especially pre-verbal communication [7]. Initially described
as “mimicry”, or an “automatic response” with limited
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interest, this low-level imitation corresponds to a simple, im-
mediate and synchronous imitation of meaningless gestures
by the baby (from birth to a few years old). Immediate and
spontaneous imitation appears as a precursor of higher level
functions such as learning by observation.

Some research explores this bottom-up approach of imi-
tation. To avoid using a full model of other, [8] suggests to
use visual segmentation in a humanoid robot for mimicking
of a human. The a priori knowledge for the segmentation
of human body and the mapping from vision to motor can
be replace by self observation. This principle enables the
building of a forward and inverse kinematic model that is not
given a priori. This approach was used for imitation of hand
posture [9], or movement patterns [10]. It can also help the
robot to learn features of an object for grasping perspectives
[11].

We also defend that higher level behaviors can emerge
from the combination of simple low-level mechanisms cou-
pled with appropriate on-line learning rules and principles
like self observation [12]. In this paper, we propose a simple
architecture that uses a sensorimotor learning map [2] to
learn the backward model and dynamical equations [1] to
generate motor commands. It can provide a reliable control
for reaching an object using visual cues. It allows low level
imitation of meaningless gestures which are done by a human
in front of it. It also enables a deferred imitation where the
robot sees and then reproduces a finalized action ie. an action
that implies goals.
This architecture has been implemented on a minimal robot
composed of a robotic arm and a 2D camera (Fig. 1).
Visual information is extracted from captured images, using
color detection, and projected in a space invariant to the
movements of the camera. No depth information is provided.
Section II details the the learning rules and the dynamic
equation that build the kinematics models and enable the
control of the arm. In section III, this architecture is used in
a setup where immediate imitation can emerge. In section
IV, adding a simple sequence learner, we show that our
architecture can also reproduce finalized actions in situation
of deferred imitation. Finally, our architecture provides basis
for guiding the robot through visual interaction. The robot
can discover new perceptions that are necessary to build
higher level behaviors.
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Fig. 1. The robot used for all the experiments is composed of a Neuronics
Katana 6M180 with parallel gripper, one camera mounted on two servo-
motors controlled by a SSC32 card and a PC for computation. The two
servo-motors simulate the movement of a neck with a vertical rotational
axis and a horizontal axis. On top left is given a capture from the camera.

II. LEARNING VISUO-MOTOR ASSOCIATIONS

The autonomous control of a multi-DoF robotic arm
requires that the architecture copes with both visual and
motor information. On a simple embodied robot, vision
delivers useful information about the task. The arm controller
must be able to link visual information with a command
in the motor space. Recently, [1] have proposed a solution
(Yuragi/fluctuation method) for arm control in the motor
space. This model is based on the use of a limited number
of attractors allowing the arm to converge reliably toward
one of the motor configurations which correspond to them.
Initially, these attractors were randomly distributed. Taking
inspiration from this model, our working hypothesis is that
proprioceptive configurations associated with the visual po-
sitions of the arm end effector can be used as attractors to
achieve the visuo-motor control. By doing so, we can obtain
a controller able to drive the arm in the working space using
visual information to select the motor attractor(s) that will
be used to compute the speed of the joints (see Fig. 2).

Following Langevin equation (see (1)) used to describe
Brownian movements, [1] proposed that using random con-
figurations expressed in the joint space of the arm (x is
the current proprioception) combined with a noise parameter
is enough to move a robotic arm toward any position by
controlling the speed ẋ .

τ ẋ = A · f(x) + ε (1)

Modulating the gain factor A of the command ẋ or the
noise level ε enables to switch from converging toward one
of the selected motor configurations (Fig. 3(a)) to exploring
randomly the working space by “jumping” from an attraction
basin to another (Fig. 3(b)) and vice versa. Adapting the
initial model described in [1], we propose to take into
account the contribution of visual stimuli for generating the
motor command with (1) and (2).

f(x) =
∑

xij attractor
Vij ·N(∆xij) ·∆xij (2)

τ is the time constant of the dynamical system, A is a
gain factor and ε is the noise level. Each gradient ∆xij to the
attractor xij is weighted by a normalized Gaussian function

N(∆xij) = G(|∆xij |2)∑
xi′j′ attractor

Vi′j′ ·G(| ∆xi′j′ |2)
which uses a

Gaussian expression G(x) = exp(−βx2) of the distance
| ∆xi′j′ |2 between the current proprioception x and the
attractor xi′j′ . β determines the slope of the attraction basin
around the learned attractors. The higher it is, the more
attracted by the closest attractor the arm is. Importantly, each
gradient ∆xij depends on a weighting by visual neuron1 Vij .
This enables to have a selection of the attractors according to
the visual stimuli. Therefore, one or several attractors can be
activated according to the implementation of Vij (e.g. hard
or soft competition).

Using (1) and (2) enables different control strategies that
are shown in Fig. 3 with a simulation of a 3 DoF robotic
arm. If A is strong as compared to the noise level ε, the
arm converges to the nearest attractor. When the noise level
is high, the arm explores the motor space. Modulating the
gain factor A and the noise level even allows to build virtual
attractors i.e. which weren’t previously learned.

In order to associate each attractor xij with the position
of the arm end effector in the visual space, we introduce
a sensorimotor map of cluster of neurons [2]. It is a Neural
Network model composed of a 2D map of clusters of neurons
which has the same topology as the visual input. Each
cluster of this map associates a single connection from one
neuron of the visual map with multiples connections from the
proprioception of the arm. Visual information (I) controls the
learning of particular pattern of proprioceptive input (Prop).
A cluster (i, j) is composed of:

• one input neuron Iij linked to the visual map. This
neuron responds to the visual information and triggers
learning.

• One cluster, ie. a small population of Y kij neurons
(k ∈ [1, n]), which learns the associations between N-

1For simplicity, we use a generical term because we do not want to refer
to a specific cortex area as these visual inputs can basically come from
detection of shape, color or movement...

(a) (b)

Fig. 3. Simulation of 3 DoF arm proprioception using (1). a: The trajectory
converges to the nearest attractors. Simulation parameters are following:
number of iterations=1000 ; beta (Gaussian parameter)=20 ; noise level
εmax=0 ; Number of attractors = 8; shading parameter=0.01; A=1. b: When
the ratio of A to noise level decreases, noise has a stronger effect on the
speed command and allows an exploration of the motor space with jumps
from an attractor to another. Simulation parameters are following: number of
iteration=about 5000 ; beta (Gaussian parameter)=20 ; noise level εmax=1
; A=1; shading parameter=0.01.
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Fig. 2. Model of the arm controller. The sensorimotor map can learn to associate visual stimulus and proprioceptive information of the arm. A competition
between visuo-motor neurons enable to associate current proprioception with the most activated visual input neuron (Ik). Visual weighting layer can support
a different processing. Thus, neurons on this layer can activate one or several attractors (constructed from visuo-motor neurons) in the motor space. There
is no constraints on the number of Degrees Of Freedom. If the current position of the arm is different of the generated attractor, a non-null motor command
is read out by Fukuyori’s adapted dynamical equations (1),(2) and given to the robotic arm.

Dimension proprioceptive vectors and 2D vision posi-
tion. This population is a small Self Organized Map
(SOM) [13].

In each cluster, the potentials of the neurons depends on the
distance between its proprioceptive weight connections and
the proprioceptive inputs. If the distance is null, the potential
is maximal and equal to 1. The greater is the distance, the
lower is the potential.

The learning of a cluster is dependent on the activation
of the maximal trigger IMij from visual input (3). Thus,
each cluster learns the different proprioceptive configurations
independently.

IMij =

{
1 if Iij = max

i,j
(Iij)

0 otherwise
(3)

When a cluster receives learning signal, each of its neurons
Y kij performs the learning rule :

∆WProp
ij = α · (xm −WProp

ij ) · distweight, (4)

where α is a learn factor, xm is the mth component of
the proprioception vector and WProp

ij is the weight of the
link between the proprioception neuron and the sensorimotor
neuron. distweight is looked up from a Difference of Gaus-
sian table according to the topological distance between the
kth neuron Y kij and the neuron with the maximal potential
(the topology of the SOM is used). Therefore in a visually
activated cluster, a sensorimotor neuron will encode on its
weights the associated proprioception.

In an extreme case, each cluster can be reduced to a single
neuron if the task to be learned does not need the learning
of two positions that could only be separated according to
the depth information. Positions that have close coordinates

x,y in camera image activates to the same cluster in the
sensorimotor map and the same proprioceptive configuration.

The architecture has been tested on our robotic setup. To
test the precision of the controller, a point is selected in the
visual space (160x120 pixels). This point simulates a target
to be reached by the robot.
The visual space is uniformely divided into few areas so that
selected proprioceptive configurations can be associated with
them. Only the 120x120 pixels on right side of the visual
field are reachable by the robotic arm. Nine proprioceptive
attractors are learned on this area. Each one of them is
associated with a 40x40 pixels areas.
During the test, visual neurons Vij are set to 1 if the distance
between visual target and the center of the visual area
associated to Vij is lower than 30 pixels. Otherwise, Vij is set
to 0. This enables to select few attractors around the target.
The distance d between the target point and the robot hand
is also measured. The gain factor A is chosen proportional to
this distance d: A = K · d if the distance decrease ( δdδt < 0)
and null otherwise. ε is defined by ε = εN ·d. The modulation
of the speed ẋ by the distance to the target introduces a bias
in the movement which generates a virtual attractor at the
target position. According to the constants K and εN the arm
will be able or not to move from one attractor to another in
order to get closer to the target. If εN is too low as compared
to K the arm can be trapped in a distant attractor. The value
of β is chosen low to make the random exploration between
the learned attractors easier.

After verifying the convergence of the arm to a position
learned during the learning phase, we tested the convergence
to a visual position spotted between four learned attractors
(Fig. 4 and 5). If the arm/target distance is lower than 3
pixels then the movement is stopped, the target is reached.
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Fig. 4. Trajectory of the robot arm end effector in visual space. The black
circles correspond to the learned attractors and the black cross is the visual
target to be reached. The stars are the starting positions for each trial. Left:
reaching a learned attractor, 2 attractors activated. Right: reaching a not
previously learned position, 4 attractors activated.

Fig. 5. Reaching a target. The figures show the result of experiments where
the robot arm had to reach a target in the visual space. Experiments are made
of several trials. For each trial the arm is initialized at a different position.
We record the distance between the arm end effector and the target in the
visual space (number of pixels). Dark gray dash-line shows the average
distance to the attractors. The light gray line shows the threshold underwhich
the target is reached. Left: Reaching a learned position, 2 trials. Right:
Reaching a not previously learned position, 6 trials.

Fig. 5 shows the results when the robot has to reach a
not learned position. The target position is at a distance of
about 25 pixels of the visual location of the four activated
attractors. By using a single learned attractor, the precision in
visual space would be limited to 20 pixels (visual distance to
the closest attractor). In this experiment, the visual distance
between the position of the arm after convergence and the
target is under the precision of visual localization (3 pixels).
This shows that the cooperation of the sensorimotor map
and the Yuragi method (1) offers an interesting basis for
the control of a robotic arm with a self learning of the
associations between visual and motor spaces.

III. EMERGENCE OF LOW LEVEL IMITATION

We consider a system that is not able to discriminate visual
information about self movements from the movements of
others (perception ambiguity). In such a system, imitative
behavior can emerge easily. Whereas this hypothesis can
be seen as very speculative, numerous psychological works
show comparable human behaviors when visual perception
is ambiguous. In 1963, Nielsen proposed an experiment in
which subjects were placed in front of a semi-reflecting
mirror [14]. In a first condition the mirror is transparent,
and the subject sees his own hand placed on a table under

the mirror. In a second condition the mirror reflects, and the
subject sees another hand (the demonstrator’s hand) that he
will mismatch for his own hand. Because a black glove has
been put on both hands, the subject has the feeling to see
his own hand and does not imagine there is another hand in
the experiment. During each trial, the subject has to draw a
straight line with a pen in the direction of his own body axis.
When the perceived hand is his own hand, the performance is
perfect. When the mirror reflects, the subjects “imitate” the
other hand movements and do not perceive any difference if
both hands are almost synchronous. If the perceived hand
moves in a quite different direction, the subjects tend to
correct the error by drawing in the opposite direction but
they never suspect the presence of another arm (they believe
that the “wrong” trajectory is due to their own mistake).
In our robotic transposition of this experiment, a robot is
able to imitate simple movements performed by a human
demonstrator by using directly our visuo-motor controller.

Since the visual processing of our robot is based on color
detection, its vision system can’t differentiate its extremity
(identified by a red tag) from another red target like a
human hand (because of the skin color). As a consequence,
moving the hand in front of the robot will induce visual
changes that the robot interprets as an unforeseen self
movement. Besides, the architecture which uses a simple
perception-action control loop is designed with respect to
the homeostatic principle. The system tends to maintain the
equilibrium between vision and proprioceptive information.
If a difference is perceived then the system tries to act in
order to reach an equilibrium state. To do so, the robot moves
its arm so that its proprioceptive configuration corresponds
to the perceived visual stimuli according to its sensorimo-
tor learning. This correction induces the following of the
demonstrator’s gesture.

To perform the homeostasic control, the gain factor A is
set to 1 and the noise ε is set to 0. The visual weighting
neurons Vij now perform a hard competition (Winner-Take-
All) so that Vij = 1 if Iij = max

i′,j′
(Ii′j′) and 0 otherwise.

Therefore, only the most visually activated attractor is used
to control the arm. We tested the architecture with the
basis of 16 learned attractors: the robot moves its arm in
all the workspace and learns the visuo-motor associations
corresponding to 16 different visual positions of the arm’s
end effector. The positions are chosen with respect to the
visual sampling. This procedure takes approximately two
minutes which corresponds to the time necessary for the
end effector to visit the 16 positions, one by one. Then,
the camera is shifted so that the robot only see the human’s
hand. Color detection2 activates a visual neuron which selects
a proprioceptive attractor. The arm moves to reach the
learned configuration. Thus, the ambiguity of perception of
the system starts to drive the hand along a trajectory similar
to the human’s hand (Fig. 6). The gesture imitative behavior
emerges as a side effect of the perception limitation and the
homeostatic property of the controller [2].

2In previous work the movement was used in the same way.
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Fig. 6. Trajectories during low level imitation.

IV. DEFERRED IMITATION OF FINALIZED ACTIONS

Fig. 7 presents an experiment where the same architecture
as in previous section is used for catching and manipulating
a can. As in low-level imitation, color detection activates
visual neurons. As each neuron encodes for a specific area
of the visual field, the activated neurons can be used as visual
states. Thus, the robot translates an observed action into a
sequence of such visual states. A simple temporal sequence
learning module based on discrete transition learning [12]
enables the robot to memorize the action.
The learned task is composed of only four visual states. The
first state is the visual position of the hand of the professor
before he catches an object, the second one is the visual
position of the hand when the professor catches the object,
the third one is and intermediary point on the trajectory and
last state is the position of the hand when the experimenter
releases the object.
The temporal sequence learner can output a predicted visual
state thanks to the learned transition. This prediction is
timing dependent. The output is fedback to the sequence
learner. Therefore, it can replay internally a complete action
with its learned timing. Once the temporal sequence has been
learned, seeing the hand at a learned visual state (eg. the
first one) induces the prediction of the next visual state. The
internal loop enables the robot to continue this replay until
the end. Besides, the output visual state from the sequence
learner can activate an attractor just like if the visual in-
formation comes directly from vision processing. The same
homeostatic principles are respected. Given a visual state, the
arm will try to reach the proprioceptive configuration which
best corresponds according to the sensorimotor learning.
Thus, the robot, stimulated by the human hand at the first
position, reproduces the reaching and grasping (reflex3) of
the object. It then moves it to the final position following
approximately the same trajectory as in demonstration.

This setup is very similar to the one used in learning from
demonstration paradigm [15], [16] and [17]. First, during a
demonstration phase, the architecture learns the action to be

3Grasping issues were strongly simplified, using an ad-hoc procedure
driving the robot to close its gripper whenever an object is detected by the
proximetric sensors of the fingers.

Fig. 7. Deferred imitation based on visual sequential learning : an emergent
cooperative behavior. The robot is shown the action : grasping and moving
an object to a given location. In each picture, two successive positions of the
arm are superposed with the black arrow showing the performed movement.
Up : Learning phase. The robot sees the teacher doing the action. Middle
and Bottom : Reproduction of the action. The robot sees the visual trigger
from the hand on left side of the visual field. It then completes the action
previously demonstrated according to its motor capacities. An accompanying
video to this paper details the experiment.

done. Then, an operator switches the robot in reproduction
mode. In [16] and [17], the task learning is a behavior
model training which needs several sets of data. Besides, this
training is based on the proprioception. A backward model
must be provided a priori when using vision to recognize
and monitor the task. On the contrary, our architecture
uses one-shot learning. It needs to learn previously the
backward model but it can then learn the action directly in
the visual space. No model was given a priori by a human. So
our robotcan perform more autonomously deferred imitation
based on observation.

Our robot reproduces a sequence of known gestures with-
out specific meaning. This sequence drives the robot to catch
an object and move it to another place but the robot has
no representation of the task. Even, the robot discovers that
there is an object only when it closes its gripper on it and
starts to move it. Interestingly, the robot is not trying to
reach the experimenter’s hand. This latter is outside of the
working space of the robot and no visuo-motor attractor were
learned there. For an exterior observer, the robot performs
deferred imitation. An observer can make the link between
the human’s intentions (here the apparition of the hand
toward the object) and the robot’s behavior (responding by
grasping the object) and he can interpret it as some intention
recognition and cooperation. This is an emergent property
that comes from the interplay between what the robot can
and cannot do and the ambiguity of its perception.

V. CONCLUSION

In this paper, we proposed a simple architecture which can
deal with both low-level and deferred imitation.
When considering imitation from a classical point of view,
the following important issues are usually raised:

1) the issue of the elementary motor repertory, and how
to combine actions to form new behaviors. If the
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actions are defined at a too high level (for example
using symbols), there is a risk of a symbol grounding
problem [18], otherwise it remains a complex issue of
motor control.

2) the issue of being able to link actions of self, with those
of others. This issue is known as the correspondence
problem [19]. The morphologies and dynamics of the
imitator and imitated can be slightly different.

3) the issue of using notions such as “self” and “other”
in the control architecture of a robot.

In this paper, we have adopted a developmental approach
of robotics. with the goal of understanding the mechanisms
underlying the various forms of imitations, and being able
to obtain imitation as an emergent behavior from the in-
terplay of low-level mechanisms. Adopting such a bottom-
up approach have allowed us to avoid to have a top down
analysis and to cope with these issues. With ambiguity of
perception, our robot has no idea of “self” or “other” (3).
Even, this ambiguity is necessary for the emergent imitation.
The correspondence problem (2) is completely left aside as
the robot will imitate only according to its own capacities.
The robot has no special symbols used to pre-categorize and
combine motor actions (1). However, these actions could help
it to build progressively some representation of this world
according to the bottom-up approach.

We tested this architecture on a simplified robot (one arm,
one 2D camera) and showed the emergent imitating abilities.
Of course, a unique 2D camera can not deal with positions
visually similar but different in depth. In the case of tasks in
a horizontal plane (over a table) with the 2D camera placed
on top of the robot (human like configuration), this issue is
not a major problem. Though, future work should develop
the capacities of the robot and its multimodal perception.
The robot should be able to memorize positions at different
depth at the same visual position. With several configurations
possible for a given visual target, the robot should be able
to rely on other modalities (touching, another camera,...)
to disambiguate its visual information and select the right
action. As in [11] and [20], new perceptions can raise interest
of the robot and influence its actions. Discovering an object
by touching it should raise the curiosity of the robot as a new
range of possible actions is discovered. In [21], one of the
caregiver roles is to provide a guidance to infants so that they
can feel new perceptions that require to learn new behaviors.
Imitation, like a complement to passive manipulation, allows
to help a robot to explore its environment and find new
perceptions. How new perceptions should modify the internal
dynamics of the robot to generate learning of new abilities
is a major and challenging issue.

Finally, it is very interesting to use a visual task space for
memorizing the task while the control is performed in the
motor space. Playing with the limitation between what can
be see and what can be done, the robot can get for free some
intention recognition ability. When it sees the human hand at
a specific position, it can trigger the action of catching and
moving the object as observed in the demonstration. This
intention recognition can easily be used for cooperative tasks

like completing an action which is initiated by the human.
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