
Safety provisions for Human/Robot Interactions using Stochastic Discrete

Abstractions

Ruslan Asaula and Daniele Fontanelli and Luigi Palopoli

Abstract— We consider the problem of predicting the prob-
ability of an accident in working environments where human
operators and robotic manipulators co-operate. We show how,
starting from a stochastic discrete time system describing
human motion, it is possible to construct a discrete abstraction
of the system (a discrete time Markov Chain) to predict the
possible trajectories starting from an initial point. The DTMC
is used to predict the future evolution for the system, for a fixed
horizon, pinpointing the states that, at each step, can be marked
as dangerous. This way, the system estimates the probability of
an accident and stops the robot when the result is greater than
a threshold.

I. INTRODUCTION

The new frontier of industrial robotics is to create produc-

tion lines where human workers and robotics cells cooperate.

One of the main challenges along this way is how to

reconcile safety in human/robot interaction with productivity.

The issue has been considered in the past years, both

from the perspective of the labor regulation bodies and of

scientific research [1], [2]. The strategy typically adopted

to avoid accidents is to prevent any interaction by physically

restricting the access of human operators to the working area

of the robots. This extreme measure is frequently required

by the current regulations [3], but it severely hinders any

practical cooperation between robots and human workers. A

different alternative is the massive introduction of sensors on

the robot whose purpose is to halt the system as soon as a

potential danger is detected. This can be done by proximity

sensors [4] or a special sensorized skin that detects dangerous

force patterns on the surface of the robot arm [5]. While

this approach can be a valid replacement for fencing off the

working space of the robot, its application has still a big

impact on the productivity of the site. Another possibility is

to re-design the structure of the robots to reduce the injuries

deriving from an impact with the robot arm [6], [7], but these

specially designed machines are not available as yet.

A different approach is to anticipate a a potential danger

and take corrective actions as required [8]. This paper takes

a step in this direction proposing an effective way for

predicting the probability of an accident. This challenging

goal is attained by the coordinated action of two systems.

The first one detects the presence of human targets and tracks

their motion across the workspace of the robot. The second

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7 under grant
agreement n◦ IST-2008-224428 “CHAT - Control of Heterogeneous Au-
tomation Systems”

Authors are with Department of Information Engineering and Computer
Science (DISI), University of Trento, Via Sommarive 14, Trento, Italy
{palopoli,fontanelli}@disi.unitn.it

system is a real-time prediction engine that computes the

probability of an accident in a time horizon, given the current

detected position and velocity of the target and the plan of the

robot. In this paper we focus on the design of this component.

The starting point of our approach is a dynamic stochastic

model that describes the motion of a human target. The

model was inspired by the work of Bouthemy [9] and

Singer [10] and it is parametric with respect to the probability

distributions of the possible human accelerations. In our

approach, these distribution are identified on statistical data

of the trajectories of the human operators in the considered

working environment. To carry out the prediction, the model

is approximated by a discrete–time Markov Chain (DTMC).

The use of discrete abstraction for dynamic systems has

become quite popular in the last few years [11], as an

effective means to carry out control synthesis and verification

of complex properties. The particular technique that we use

in this paper is related to probabilistic model checking [12],

which has been effectively applied to the design of fault–

tolerant control systems [13] and to similar application. Our

work lies in the track opened by Prandini et al. [14], where

the authors show how to construct a DTMC to predict the

probability of collision between two aircraft flying at the

same altitude. This collision detection mechanism has been

extended to mobile robot applications [15]. In this work, we

extend this approach to the prediction of collisions between

human operators and manipulators, showing a very efficient

algorithm, which can be executed in real-time.

II. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

The specific setup considered in this paper is described in

Figure 1. A robot arm executes working tasks moving along

predefined trajectories with a very high precision. This is

not actually a loss of generality, since our model is able to

consider imprecise motion as long as the deviation can be

characterized stochastically. From the robot encoder readings

and the a-priori notion of the robot trajectories, our algorithm

reconstructs the posture on the plane of the factory floor.

A stereo vision system overlooking the robotic cell is used

to measure positions, velocities and accelerations of human

workers w.r.t. the robot base frame. The information on the

current position and velocity of the target is fed into the

predictor that uses a DTMC based abstraction to predict

the probability of a collision in a time horizon. If such

probability is above a predefined safety threshold, the robot

is halted. Clearly, the result is affected by the current posture

of the robot and by the future plan of its motion. Therefore,

the accuracy of this information is crucial for the precision of

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2175

Fig. 1. The robot cell with the vision system and the robot end–effector
trajectory.

the computation. To increase the robustness of the prediction

w.r.t. unpredicted events (e.g., working time may vary due

to unpredictable flaws on the material to be handled, or the

pick position can change in time due to a different spacing of

the materials on the conveyor), we use the vision system to

improve the evaluation of the posture of the robot by fusing

visual information with data from the robot encoders.

This scenario has been motivational for the development

of this work, but we believe that the methodology can be

applied to generic robots and automation tasks.

III. HUMAN MOTION MODEL

The motion of workers in a factory usually follows pre-

defined patterns determined by the working activity. In this

paper, we use a kinematic model for the prediction inspired

by previous work [9], [10]. The parameters of the model

are estimated from a data set collected by the camera in the

particular context of the application.

a) Kinematics of human motion: The measured posi-

tions of the human worker sp(∆t) = [x(∆t) y(∆t)]T are

referred to a fixed Cartesian reference frame (the coordinates

of a point on the plane of motion). Since the vision system

is not able to detect the orientation of the human body,

we choose to model the human as a moving point. In the

recent literature [16] the human body has been described as

a nonholonomic platform in which orientation plays a role,

but our solution is more general in that it permits sideways

motions of the body (incompatible with a nonholonomic

constraint). More in depth, denoting with t0 the time instant

in which human positions are firstly measured, velocities

sv(∆t) = [vx(∆t) vy(∆t)]T and accelerations sa(∆t) =
[ax(∆t) ay(∆t)]T are derived as follows

{

sv(t0 + k∆t) =
sp(t0+k∆t)−sp(t0+(k−1)∆t)

∆t

sa(t0 + k∆t) = sv(t0+k∆t)−sv(t0+(k−1)∆t)
∆t

, (1)

where k ∈ N. For notational simplicity, the explicit reference

to the sampling time ∆t will henceforth be dropped.

As customary in the literature [17] on human kinematics,

the accelerations are referred to a frame attached to the

human body. Therefore, a= represent the tangential accel-

eration, while a⊥ is the orthogonal acceleration (sa(k) =
[a=(k) a⊥(k)]T). Figure 2 depicts the described quantities in

terms of the fixed and moving reference frames. Recalling the

material point approximation of the human, the orientation

s(k)
s(k+1)

Human
trajectory

s
v
(k)

s
v
(k+1)

a
⊥
(k+1)

a
=
(k+1)

World
frame

β

Fig. 2. Fixed frame and moving frames along the human trajectory.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

Acceleration (m/s
2
)

pmf
Exps Sum
Gaussian

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Acceleration (m/s
2
)

pmf
Exps Sum
Gaussian

(a) (b)

Fig. 3. Experimental pmfs with the Gaussian and the sum of exponentials
approximations for a particular dataset.

of the moving frame is assumed given by the current velocity

direction. Hence sa(k + 1) = R(k)T sa(k + 1), where

R(k) =
1

‖sv(k)‖

[

vx(k) −vy(k)
vy(k) vx(k)

]

(2)

is a rotation matrix.

b) Stochastic Description of Accelerations: To predict

the possible configuration of the human, a stochastic model

for the accelerations is needed. We reasonably assume that

accelerations at a certain time step k + 1 are a function

of the current velocity and acceleration, i.e., sa(k + 1) =
f(‖sv(k)‖, sa(k)). For the purposes of prediction, sa(k)
are random variables associated with the stochastic process

S = {sa(k) : k ∈ N}.

The stochastic description of S is derived starting from

a set of data. In particular, for all the measured pairs

(‖sv(k)‖, sa(k)), we construct the histograms for the tan-

gential and orthogonal accelerations sa(k + 1) and, hence, a

Probability Mass Function (pmf) (see Figure 3).

In order to filter out noise and to smooth out the his-

tograms derived from raw data, the pmfs are approximated by

continuous Probability Density Functions (pdf). This step can

be done in different ways. A first possibility is to use a single

Gaussian for pdf approximations, changing the mean and

the standard deviation as a function of (‖sv(k)‖, sa(k)) [9],

[10]. Although the result can be quite accurate in some

cases (see Figure 3-(a)), the visual inspection of Figure 3-

(b) evidently shows that such an approximation may also be

very rough when the experimental distribution is multi-modal

and/or asymmetric. To address this problem, a possible

approach is the approximation by a sum of three exponential

2176

Error Figure 3-(a) Figure 3-(b)

Single Gaussian

Kolmogorov-Smirnov 0.0678 0.4811

Kullback-Leibler 1.2943 0.8758

Sum of Exponentials

Kolmogorov-Smirnov 0.5596 1.1404

Kullback-Leibler 0.5024 0.2878

TABLE I

COMPARISON OF PDFS ERRORS.

terms, similar to Gaussian kernels. More precisely, each term

is of the form e−(x−m

c
)2 , where the values of m and c

depend on (‖sv(k)‖, sa(k)) (see [18]). The derived pdfs (for

orthogonal and tangential accelerations) are given by
∑

i W i
⋆(‖sv(k)‖, sa(k))Bi

⋆(‖sv(k)‖, sa(k))
∑

i W i
⋆(‖sv(k)‖, sa(k))bi

⋆(‖sv(k)‖, sa(k))
,

where W i
⋆(·) are weight functions (specialized for tangential

and orthogonal accelerations), Bi
⋆(·) are the exponential

terms, and bi
⋆(·) are normalization functions, i.e., integrations

of Bi
⋆(·) on the region of interest. In Figure 3-(b) we observe

a much closer resemblance of the pdf with the data set.

Generally speaking, pdfs with multiple exponential kernels

are able to describe multimodal and asymmetric densities.

To make a numerical comparison with the approximation

with a single Gaussian, we adopt the metric defined by the

Kolmogorov-Smirnov hypothesis testing [19]. In particular,

we compute the distance according to the Kolmogorov-

Smirnov metric between the estimated pdfs and the original

collected data (the larger is the value, the better is the

approximation). In both cases reported in Figure 3, the

estimates with the three kernels produce better metric values.

An additional evidence is offered by the computation of the

Kullback-Leibler divergence [20], for which the larger is

the divergence, the worse is the approximation. Results are

summarized in Table I.

c) The Complete Model: Because the acceleration at

step k + 1 depends on the acceleration at step k, we need to

include the acceleration in the system state. Therefore, the

system state comprises six variables, s ∈ R
6, s = [sp sv sa]T .

Assuming that the inputs to the motion model are given by

sa(k), for which a stochastic description is given, the system

equations derived from (1) and (2) are given by

s(k + 1) = As(k) + B(sv(k))U(k), (3)

where

A =

I2 ∆tI2 0
0 I2 0
0 0 0

 and B(sv(k)) =

∆t2R(k)
∆tR(k)
R(k)

 . (4)

where U(k) is a two dimensional random variable dis-

tributed according to pdfs g=(α=, ‖sv(k)‖, sa(k)) and

g⊥(α⊥, ‖sv(k)‖, sa(k)), computed using the previously de-

scribed approximation. I2 is the 2× 2 identity matrix. It has

to be noted that the accelerations sa(k) are needed in (4)

for determining the input value U(k). Finally, notice that

the model here derived is discrete time in nature, since it is

related to the sampling time of the available tracking system.

IV. DISCRETE STOCHASTIC ABSTRACTION

In order to efficiently compute the probability of a col-

lision between a human target (that moves according to

a stochastic model), we use a technique called stochastic

abstraction [21], [22]. We first discretize the state space

reachable by the human choosing a grid of suitable size.

Then we construct a DTMC in which each state is associated

with the presence of the target in a cell of the grid. The

rationale behind this approach is to predict (discretized)

future positions, velocities and accelerations of the human

worker, up to a certain confidence, using the model in

Equation (3).

a) Gridding the Space: Denoting with ∆x and ∆y
the grid position distances and with ∆vx = ∆x/∆t
(∆vy = ∆y/∆t) and ∆ax = ∆x/∆t2 (∆ay = ∆y/∆t2)

the velocity and acceleration distances between grid in-

tersections respectively, the discrete state vector S(k) =
[Sp(k)T , Sv(k)T , Sa(k)T]T is defined, where Sp(k) =
[X(k), Y (k)]T , Sv(k) = [Vx(k), Vy(k)]T and Sa(k) =
[Ax(k), Ay(k)]T . The discrete position Sp(k) is associated

to the range of coordinates:

x(k) ∈

(

X(k) ±
∆x

2

)

, y(k) ∈

(

Y (k) ±
∆y

2

)

. (5)

We proceed in a similar way for velocity and acceleration.

b) Transition Probability Matrix: The main problem

here is to derive a stochastic model that, given current

human configuration discretized to the state S(k), is able

to predict S(k +1) according to the stochastic model in (3).

The discretized space reduces the number of possible future

positions. More precisely, let Sp = {Spi
|i ∈ {1, . . . , np}} be

the set of all the positions reachable in the environment of

interest (usually the sensing range of the sensor). Similarly,

let nv = #Sv and na = #Sa be respectively the total num-

ber of possible velocities Sv and accelerations Sa between

grid intersections. The possible configurations of the human

are then given by the set S = Sp × Sv × Sa.

It is now possible to describe the human dynamic consid-

ering each state of S as a state of a DTMC and encoding

its stochastic variation in the transition probabilities. More

precisely, let σ(k) be a finite-state discrete-time Markov

chain taking values in the finite state space S, with transition

probability matrix P = (pij)n×n
, pij , Pr{σ(k + 1) =

Sj | σ(k) = Si} (Si and Sj are two configurations of the

human in S), and with initial probability measure πσ(0). The

evolution of the probability distribution πσ(k) of the process

σ at time k is given by

πσ(k + 1) = πσ(k)P. (6)

The probability to be in the state Si ∈ S at a certain time

instant k is then given by the i–th entry of πσ(k).
The transition probability matrix P is derived by the

stochastic description given previously. To this end, let Si =
[Si

p Si
v Si

a]T and Sj = [Sj
p Sj

v Sj
a]T be the configurations

for two states of the DTMC. Notice that, the transition

between Si and Sj (Si → Sj) imposes six constraints

on the continuous random variables a= and a⊥. Let Pi,j

2177

represent the set of orthogonal and normal accelerations that

drive the position from the grid cell Si
p to the grid cell Si

p.

Likewise, let Vi,j and Ai,j respectively denote the sets that

drive the velocity from the grid cell Si
v to the cell Sj

v and

the acceleration from the grid cell Si
a to the cell Sj

a. In view

of model (3), such sets are given by:

Pi,j =

{

sj
a = R(Si

v)
T

(

sj
p

⋆
− Si

p

∆t2
−

Si
v

∆t

)}

Vi,j =

{

sj
a = R(Si

v)T

(

sj
v

⋆
− Si

v

∆t

)}

Ai,j =
{

sj
a = R(Si

v)T sj
a

⋆
}

where sj
p

⋆
ranges in the two–dimensional region defined

in continuous space
{

(X(k) ± ∆x
2), (Y (k) ± ∆y

2)
}

. In a

similar way, sj
v

⋆
and sj

a

⋆
are two two–dimensional regions

for velocity and acceleration respectively. Therefore, the

transition Si → Sj requires the accelerations to be in the set

I = Pi,j∩Vi,j∩Ai,j . By I= we denote the projection of I on

the space of tangential acceleration and by I⊥ the projection

on the set of normal accelerations. Using this notation, the

transition probability pi,j associated to Si → Sj is then

computed as:

pij = Pr{σ(k + 1) = Sj | σ(k) = Si} =
∫

I=

g=(α=, ‖Si
v‖, R(Si

v)
T Si

a)dα=

∫

I⊥

g⊥(α⊥, ‖Si
v‖, R(Si

v)
T Si

a)dα⊥.

c) Accuracy of the DTMC abstraction: The grid choice

has a strong impact on the accuracy of the DTMC abstraction

(i.e., on the convergence in probability of the discrete model

to the continuous one). In this paper, we have followed the

approach suggested by Prandini et al. [14] and come up with

a numerically evaluated grid choice of ∆x = ∆y = 1 cm,

given ∆t = 0.33 s.

A validation of this choice was carried out by comparing

the probability computed using the DTMC with that resulting

from a Montecarlo simulations. In particular, we considered

as a benchmark the probability of reaching a state from

another after ∆t. The Montecarlo simulation required 108

iterations to stabilize the result, which was the same to an

error of 10−5. Interestingly, the time required to carry out

the computation in the two cases was different by an order

of magnitude, with the DTMC being the faster.

V. ALGORITHM

After constructing a DTMC that abstracts the system

model, we can use it to determine the probability of an

accident in a given time horizon. A possible way to do this

is by using a model checker for stochastic system identifying

by a logic formula the states to be marked as “bad”, i.e., bad

states. This method allows us to specify a wide range of error

conditions. In this paper, we restrict a simple verification task

(collision), for which we developed an efficient checker that

can be used in real-time. A collision is (for the purposes of

this paper) associated with an impact between the robot and

a target. An impact occurs if: 1) the position of the target

(current or predicted) lies in a space occupied by the robot,

2) the relative velocity between the two is above a threshold

(contacts with moderate relative velocities can be permitted).

In the discrete abstraction, detecting a collision amounts

to finding intersection between the grid cell occupied by the

human and the grid cells occupied by the robot. Hence, the

impact condition can be dynamically associated with some

of states of the DTMC, which encode position, velocity and

acceleration of the human. Since a human is here modelled as

a single grid cell, the actual shape of the person is modelled

by increasing the dimension of the robot. The determination

of the grid cells occupied by the robot is done adapting the

Bresenham algorithm [23], commonly used to draw a straight

line using “quantized” pixel.

a) Computing the probability of collision: Within the

framework of DTMC, each state has an associated prob-

ability at time step k expressed in πσ(k), which evolves

according to (6). The collision condition is described with a

bad state, in which the DTMC is forced to switch whenever a

collision is detected. In order to keep track of a collision, the

bad state is an “absorbing” one, i.e., it has a self transition

marked with probability 1. In such a way, the bad state

collects the probability of collision in time. To increase

the performance of the proposed safety system, we also

define a similar absorbing state, a safe state, that collects the

states with zero probability of collision during the prediction

horizon. This way, the prediction of these states is no more

propagated. Hence, π⋆
σ(k) = [πσ(k)T , πbad(k), πsafe(k)]T ,

with associated transition probability matrix P ⋆, that is the

matrix P of (6) “hemmed” with two additional columns and

rows of zeros, plus an identity matrix, i.e.,

P ⋆ =

[

P 0
0 I2

]

.

The additional entries correspond to the absorbing bad and

safe states. Even though bad states and the associated pred-

icates change in time, P ⋆ is time invariant by construction.

Let Si be the initial state of the prediction at a certain

time k∆t and consider a prediction horizon of m steps. In

practice, m =
⌈

Ts

∆t

⌉

, where Ts is the time needed to stop the

robot in the worst case. If the robot motion does not intersect

the region spanned by all the possible reachable states from

Si within the time horizon m∆t (this region is computed

offline for each Si) , then πσ(k∆t) = 0, πbad(k∆t) = 0
and πsafe(k∆t) = 1. Conversely, if Si is already on the

position occupied by the robot at time k∆t, πσ(k∆t) = 0,

πbad(k∆t) = 1 and πsafe(k∆t) = 0.

In all the other cases, the probability π⋆
σ(k) have to be

propagated for m steps. Denoting πi
σ(k) as the “i–th entry

of the vector πσ(k)”, π⋆
σ(k) is iteratively computed over the

chosen horizon by the following steps:

1) π⋆
σ(k + 1)T = π⋆

σ(k)T P ⋆;

2) For each i = 1 to n:

a) if πi
σ(k +1) > 0 and if Si is a bad state for time

instant (k+1)∆t then πbad(k+1) = πbad(k)+

2178

πi
σ(k + 1) and πi

σ(k + 1) = 0.

b) if πi
σ(k+1) > 0 and from Si any of the reachable

states is not a bad state for the m steps horizon,

then πsafe(k + 1) = πsafe(k) + πi
σ(k + 1) and

πi
σ(k + 1) = 0.

Since our goal is to stop the robot whenever the probability

is above a threshold, we can interrupt the computation when-

ever the accumulated probability overcomes the threshold.

VI. SIMULATION RESULTS

We developed an ad-hoc software tool in C++ to im-

plement the prediction algorithm, using additional libraries

for sparse matrices handling. The software development has

been optimized exploiting the information on the known

finite time horizon of the prediction and on the human

motion model. The predictor was executed on a standard

2.5 GHz processor with 2 GB of memory. The dynamic

model for human motion was identified by collecting data

with a visual based tracker using a stereo camera. A com-

plete experimental setup is still under construction. For the

purposes of this paper, the prediction was executed using

data from previously acquired trajectories, while the motion

of the robot was simulated considering realistic trajectories,

as resulting from the scenario illustrated below. The sampling

time that we considered was 0.33s and the time horizon

for the prediction is of three steps. Therefore, we predict

the events for a second from the current time (which is

reasonable for the typical dynamics of a human).

a) The considered Scenario: We considered the fol-

lowing scenario: a six degrees of freedom anthropomorphic

arm is used to pick objects (partially crafted shoes) from

a conveyor, take it in front of a laser tool used to rough

the sole, then take it to a gluing machine and finally take

it back to the conveyor. This scenario takes the inspiration

from a true application of a shoe manufacturing, for which a

close interaction between the robotic manipulator and human

workers is essential.

Since we are interested on motions constrained on a plane

in order to conservatively consider all the possible impacts

with the same level of dangerousness, the plane projection

approximation of the six d.o.f. manipulator turns to be a two

d.o.f. planar robot, with a revolute joint (the base joint) and

a prismatic joint. Indeed, the joint of the torso corresponds

to the base revolute joint of the 2 d.o.f. approximation, the

shoulder and elbow revolute joints, having the two axis of

rotations that are both parallel to plane of motion maps to

the prismatic joint of the 2 d.o.f. approximation. Finally, the

additional three d.o.f. of the wrist are neglected since only

the posture, and not the dexterity, are meaningful for impacts.

The robot task is subdivided in steps, executed at different

velocities. For instance, in the first phase the robot picks a

shoe from the conveyor. This phase has a random duration

(since the distance between the shoes can change) and the

motion is slow. In the second phase, the robot moves to the

first working station and the motion is fast. The program con-

tinues with an alternation of fast and slow motions. Without

loss of generality, simulation results assume collisions only

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.2

0.4

0.6

0.8

1

Execution time (s)

P
r
o
b
a
b
i
l
i
t
y

Threshold 10
−4

Threshold 10
−5

Threshold 10
−6

Threshold 10
−7

Threshold 10
−8

Threshold

Fig. 4. Cumulative distribution function for the prediction algorithm
computation times given different safety thresholds.

10
−8

10
−7

10
−6

10
−5

10
−4

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

Collision probability threshold

%

w
.
r
.
t
.

p
r
o
x
i
m
i
t
y

s
e
n
s
o
r
s

Fast motion (20%)
Fast motion (100%)

Fig. 5. Desired probability of collision against ratio between the amount
of time the robot is halted by proximity sensors and by the prediction
algorithm. Multiple curves, related to the percentage of processing time
(slow motion) w.r.t the manipulator motion time (fast motion), are shown.

during fast motion phases. Due to the robot dynamic, we

assumed that the robot needs at most one second to stop.

b) Computation time: We collected statistics of the exe-

cution times of the predictor (with various input data). Since

the computation terminates when the threshold is reached,

the computation time depends on the chosen threshold.

Therefore, the statistics for different thresholds have been

computed and depicted in Figure 4. For reasonable values

of the threshold, we find an average computation time in

the order of a few millisecond, which is compatible with a

real-time execution.

c) Simulations and Comparisons: We simulated a typ-

ical working day of the robot. Human operators enter the

scene randomly in time and randomly select among a set of

pre-computed trajectories (that are obviously unknown to the

collision detection algorithm). Each trajectory is assumed to

be close to the robot and sometimes to enter into the working

area of the robot. We evaluated the frequency the machine

is halted, depending on different choices for the probability

threshold for which the halting command is emitted. To make

a comparison with traditional approaches, we also considered

the application of proximity sensor, whose range was chosen

equal to the maximum distance travelled by a human in one

second (i.e., the time needed by the robot to stop). Figure 5

shows the dependency between the collision probability

threshold and the ratio between the amount of time the

robot is halted by proximity sensors. When the threshold

decreases (i.e., the safety increases) the robot is stopped for

a larger amount of time. Furthermore, if the portion of time

2179

Fig. 6. Example of the manufacturing process. Different thickness and
colors of the human trajectory are used for the stop times given by the
collision detection algorithm and the proximity sensor. Corresponding stop
points on the robot trajectory are also shown. One stop is induced by the
prediction algorithm.

in which the robot moves faster (i.e., when it moves between

two working stations) increases with respect to the time in

which the robot moves slowly (i.e., when it is almost still

to carry out the working operations), the advantages of the

presented solution are reduced. Nevertheless, the algorithm

displays a very good performance with respect to proximity

sensors: the efficiency improvement is at least 80%. Again,

this number decreases if the robot moves with a higher speed.

In this evaluation, we also display how we can strike different

tradeoff between risk and productivity by simply tuning the

threshold in the probability (the abscissa of Figure 5).

As an example, Figure 6 reports a sample human trajectory

chosen among the ones used to derive the curves of Figure 5.

The figure depicts the view of the working area from the roof.

Circles on the robot end–effector trajectory represent the

manufacturing places. Travelled human path is represented

with a black thin line. The path is superimposed with a

thicker dashed black line for all the points in which the

passive safety system is active (hence the robot would be

stopped with the standard policy). Thick red and blue lines

represent instead the points in which the collision detection

algorithm stops the robot. The manipulator moves with

high velocity only 20% of the overall cycle time. Robot is

uselessly stopped by proximity sensors while it performs the

second manufacturing process, while the collision detection

algorithm stops the robot only during the returning path from

the placing position to the picking one, hence a considerable

gain in the robot operational time.

VII. CONCLUSIONS

In this paper, we have proposed a methodology for active

recognition of dangerous situations in working environment

where robotic manipulators and human workers cooperate.

The procedure is based on the computation of a stochastic

abstraction of human motion (a DTMC), which is used

in an algorithm to predict the probability of an accident.

Our simulation results, obtained for a 6 d.o.f. manipulator

inspired to a real manufacturing scenario, show that for

typical tasks the advantage of such a system in terms of

productivity could be significant.

As a future work, we plan to study more deeply the

theoretical aspects underlying the Markov approximation of

the stochastic differential equation describing the human

motion and to test our technique in a real robotic system.

REFERENCES

[1] J. Versace, “A review of the severity index,” in Proc. 15th Stapp Car

Crash Conference, 1971, pp. 771–796.
[2] A. D. Santis, B. Siciliano, A. Luca, and A. Bicchi., “An atlas of

physical human-robot interaction,” Mechanism and Machine Theory,
vol. 43, no. 3, pp. 253–270, 2008.

[3] D. of Labour, “Robot safety,” 1987.
[4] E. Cheung and V. Lumelsky, “Proximity sensing in robot manipulator

motion planning: system and implementation issues,” IEEE transac-

tions on Robotics and Automation, vol. 5, no. 6, pp. 740–751, 1989.
[5] M. Frigola, A. Casals, and J. Amat, “Human-robot interaction based on

a sensitive bumper skin,” in Proc. IEEE/RSJ Intel. Conf. on Intelligent

Robots and Systems, Beijing, China, October 2006, pp. 283–287.
[6] A. Bicchi and G. Tonietti, “Fast and soft arm tactics: Dealing with the

safety-performance trade-off in robot arms design and control,” IEEE

Robotics and Automation Magazine, vol. 11, no. 2, pp. 22–33, 2004.
[7] S. Wolf and G. Hirzinger, “A new variable stiffness design: Matching

requirements of the next robot generation,” in Proc. IEEE Intl. Conf.

on Robotics and Automation, May 2008, pp. 1741–1746.
[8] D. Kulić and E. Croft, “Pre-collision safety strategies for human-robot

interaction,” Autonomous Robots, vol. 22, no. 2, pp. 149–164, 2007.
[9] Y. Ricquebourg and P. Bouthemy, “Real-time tracking of moving

persons by exploiting spatio-temporal image slices,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 797–808,
2000.

[10] R. Singer, “Estimating optimal tracking filter performance for manned
maneuvering targets,” IEEE Trans. Aerospace and Electronic Systems,
vol. 6, no. 4, pp. 473–483, July 1970.

[11] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic
models for nonlinear control systems,” Automatica, vol. 44, no. 10, pp.
2508–2516, 2008.

[12] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen, “Model-checking
algorithms for continuous-time Markov chains,” IEEE Transactions on

Software Engineering, vol. 29, no. 6, pp. 524–541, June 2003.
[13] M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependabil-

ity analysis by probabilistic model checking,” Control Engineering

Practice, vol. 15, no. 11, pp. 1427 – 1434, 2007, special Issue on
Manufacturing Plant Control: Challenges and Issues - INCOM 2004,
11th IFAC INCOM’04 Symposium on Information Control Problems
in Manufacturing.

[14] J. Hu, M. Prandini, and S. Sastry, “Aircraft conflict prediction in the
presence of a spatially correlated wind field,” IEEE Transactions on

Intelligent Transportation Systems, vol. 6, no. 3, pp. 326–340, 2005.
[15] R. Asaula, D. Fontanelli, and L. Palopoli, “A Probabilistic Method-

ology for Predicting Injuries to Human Operators in Automated
Production lines,” in Proc. IEEE Int. Conf. on Emerging Technologies

and Factory Automation (ETFA), Mallorca, Spain, 22-26 September
2009, pp. 1–8.

[16] G. Arechavaleta, J. Laumond, H. Hicheur, and A. Berthoz, “On the
nonholonomic nature of human locomotion,” Autonomous Robots,
vol. 25, no. 1, pp. 25–35, 2008.

[17] X. Li and V. Jilkov, “Survey of maneuvering target tracking. Part I:
Dynamic models,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 39, no. 4, pp. 1333— 1364, 2003.
[18] H. Wang and H. Yue, “A rational spline model approximation and

control of output probability density functions for dynamic stochastic
systems,” Trans. of the Institute of Measurements and Control, August
2003.

[19] E. Lehmann and J. Romano, Testing statistical hypotheses. Springer
Verlag, 2005.

[20] Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with applications

to tracking and navigation. Wiley-Interscience, 2001.
[21] H. Kushner and P. Dupuis, Numerical Methods for Stochastic Control

Problems in Continuous Time. Sringer Verlag, 2001.
[22] R. Durrett, Stochastic Calculus. CRC Press, 1996.
[23] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”

IBM Journal of Research and Development, vol. 4, no. 1, p. 25, 1965.

2180

