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Abstract— This paper presents the IQ-ASyMTRe architec-
ture, which is aimed to address both coalition formation and
execution for tightly-coupled multirobot tasks in a single frame-
work. Many task allocation algorithms have been previously
proposed without explicitly enabling the sharing of robot ca-
pabilities. Inspired by information invariant theory, ASyMTRe
was introduced which enables the sharing of sensory and com-
putational capabilities by allowing information to flow among
different robots via communication. However, ASyMTRe does
not provide a solution for how a coalition should satisfy
sensor constraints introduced by the sharing of capabilities
while executing the assigned task. Furthermore, conversions
among different information types1 are hardcoded, which limits
the flexibility of ASyMTRe. Moreover, relationships between
entities (e.g., robots) and information types are not explicitly
captured, which may produce infeasible solutions from the start,
as the defined information type may not correspond well to the
current environment settings. The new architecture introduces
a complete definition of information type to guarantee the
feasibility of solutions; it also explicitly models information
conversions. Inspired by our previous work, IQ-ASyMTRe uses
measures of information quality to guide robot coalitions to
satisfy sensor constraints (introduced by capability sharing)
while executing tasks, thus providing a complete and general
solution. We demonstrate the capability of the approach both in
simulation and on physical robots to form and execute coalitions
that share sensory information to achieve tightly-coupled tasks.

I. INTRODUCTION & RELATED WORK

Tightly-coupled multirobot tasks (MTs) [3] refer to tasks
that require the cooperation of multiple robots. The under-
lying assumption is that individual robots may not have
all the capabilities required to accomplish a task; instead,
multiple robots need to share their capabilities. In order to
determine appropriate coalitions of robots from the robot
team, many architectures [2] [9] [4] reason about coalitions
by dividing tasks into subtasks or roles that individual robots
can perform. For example, in a robot insertion task [8], a
supervisor robot provides visual information to guide the
implementor robot to execute the insertion. One issue with
this approach is that subtasks or roles have to be predefined
for different tasks, as it is not feasible to define all possible
subtasks or roles for arbitrary tasks. Another issue is that
robots sometimes need to share sensory and computational
capabilities in order to accomplish a task. Defining robot
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semantic meanings (e.g., a robot’s global position).

capabilities in terms of subtasks or roles is often too coarse,
and is often not helpful for enabling capability sharing.

The work of [2] achieves fault-tolerant task allocation
with uncertain task specifications using a cooperative backoff
adaptive scheme. It defines robot capabilities in terms of
basic high-level tasks and allows robots to use task execution
histories to detect and adapt to device imperfections and
malfunctions. However, it does not explicitly enable capa-
bility sharing among robots and hence the flexibility of the
approach is limited. The work of [4] introduces a market-
based framework for tight coordination in multirobot tasks.
Passive coordination is used to quickly produce solutions
for local robots, while active coordination is used to pro-
duce complex solutions via coordination among teammates.
Although the robots need to tightly coordinate through
communication, robot capabilities are still not shared. The
work of [9] adapts a multiagent coalition formation algorithm
to the multirobot domain and aims at maximizing the overall
utility of the system. Again, robot capabilities are not shared
among the robot team members. Inspired by information
invariant theory [1], ASyMTRe [5] was proposed which
divides robot capabilities into sensory and computational
level schemas and motor schemas, and forms coalitions
by reasoning about the information required for activating
these schemas. Connections among communication schemas
enable information to flow through the system to where
it is required and capability sharing is implicitly achieved.
The ASyMTRe architecture enables a finer resource sharing
among heterogeneous robots through communication and is
hence more flexible. Thus, we build upon this approach in
the research described in this paper.

Another issue with tightly-coupled multirobot tasks is how
to physically execute the tasks while sharing capabilities.
This is especially challenging when the sharing of capabil-
ities within the coalitions introduces sensor constraints. In
a cooperative robot navigation task for example, the leader
robot shares its localization capability by communicating its
global position to the follower robot. In order to localize,
the follower robot is constrained to keep the leader within
its field of view (FOV) so that it can compute the relative
position of the leader. Only with both pieces of information
would the follower be able to compute its own global
position and then navigate to a desired goal position. Our
previous work [10] develops an information quality based
approach that provides a flexible way for maintaining sensor
constraints within the coalitions while executing tasks.

In order to achieve a complete solution for tightly-coupled
multirobot tasks, we need both ASyMTRe for forming coali-
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tions as well as our previous approach for sensor constraint
satisfaction to physically execute the task. However, the
combination of the two approaches is not a simple addition.
Several links are missing and challenging. First of all, the
definition of information type in ASyMTRe is not suffi-
cient for task execution. Knowing that a robot can sense
the relative positions of other robot teammates and that a
teammate has a localization capability does not necessarily
imply a solution, since the two robots may not be within
the line of sight of each other. The definition of information
type has to be complete in the sense that the presence of
certain information types guarantees a solution. This requires
an extended architecture in which the reasoning process
can distinguish among different environment settings (e.g.,
where the robots are located) and provide feasible coalition
solutions accordingly. Furthermore, information conversion,
which is one of the key points of information invariant
theory, is not explicitly modeled. Without explicit modeling,
application-specific code needs to be designed in advance for
different tasks. Moreover, during the task execution, when
the information quality model identifies the situations in
which the satisfaction of sensor constraints may potentially
fail for certain coalitions, the robots must be able to search
and reform coalitions in a timely manner. Thus, dynamic
environments should also be taken into account.

This paper presents a new architecture that combines
ASyMTRe and our previous information quality based ap-
proach into a complete solution for tightly-coupled multi-
robot tasks. This approach, which we call IQ-ASyMTRe,
introduces the capability of dynamic-environment reasoning
for dynamic coalition formation. To the best of our knowl-
edge, this is the first attempt to create a complete and general
solution for tightly-coupled multirobot tasks addressing both
the formation of coalitions, as well as the execution of
those coalitions to address a specific task. After a review of
ASyMTRe and our previous work (Sections II and III), we
explain the new IQ-ASyMTRe architecture in detail (Section
IV). Afterwards, we present experiments in simulation and
with physical robots to demonstrate some aspects of the new
architecture (Section V). Finally, we conclude with some
discussion and plans for future work (Section VI).

II. ASYMTRE

The ASyMTRe architecture [5] defines basic building
blocks of robot capabilities to be collections of environmen-
tal sensors (ESs), perceptual schemas (PSs), motor schemas
(MSs), and communication schemas (CSs). A robot, Ri, can
be represented by Ri = (ESi, Si), where ESi is a set of
environmental sensors installed on Ri, and Si is the set of
schemas that are pre-programmed into Ri. According to a
set of rules, connections are created among the schemas on
the robots to allow information to flow through the system.
A set of information types F = {F1, F2, ...} is introduced
to label the inputs and outputs of each schema. A schema
can be activated if its inputs are satisfied either by sensors
or the outputs of other schemas with the same information

types. The ultimate goal is to activate the required MSs on
the robot coalition team members to accomplish the task.

For reasoning about coalitions, ASyMTRe uses an anytime
algorithm to search the entire solution space and return the
best solution found so far according to predefined cost mea-
sures. One of the most important contributions of ASyMTRe
is that it enables a finer resource sharing by dividing robot
capabilities into smaller chunks (i.e., schemas), and reasons
about how these schemas can be connected. Information can
flow through the system to where it is required such that
capability sharing is implicitly enabled through communica-
tion. ASyMTRe has been shown to provide more flexibility
for achieving tightly-coupled multirobot tasks. (Please refer
to [5] for more details of ASyMTRe.) However, several
limitations of ASyMTRe prevent its application to arbitrary
physical multirobot tasks. One of the most obvious limita-
tions is that ASyMTRe does not provide a solution for how
a coalition should satisfy the sensor constraints introduced
by the sharing of capabilities while executing the assigned
task. This issue has been addressed in our prior work [10],
which introduces an information quality based approach that
models sensor constraints explicitly and provides a general
method for satisfying the constraints, such that the coalitions
can be maintained during the execution.

III. THE INFORMATION QUALITY APPROACH

In order to flexibly control robots while maintaining
sensor constraints through the environment, a mechanism
is needed to quantify the utility of these constraints being
satisfied. For this purpose, inspired by [6], our previous work
[10] uses measures of information quality to describe the
fitness for using the information in the current environment
settings, including the retrievability and usefulness of the
information. We divide the computation of the information
quality measurement into two parts. First, the sensor quality
measurement is used to describe the retrievability and/or
usefulness of the information using the sensor based on
sensor characteristics; second, environmental influence is
modeled as a weight to the sensor quality measurement
to capture how the environment affects the retrievability
and/or usefulness of the information. For example, in a robot
tracking task, the information quality for tracking is higher
when the target is in the center of the tracker robot’s FOV
than if the target is on the edge of the FOV; in a box pushing
task, when the box is pushed too close to an obstacle, the
information quality for tracking the box is reduced since the
obstacle can potentially block the view of the box. To handle
the application-specific environmental influence, instead of
exact geometric reasoning, we compute the influence based
on environment samples. To compute a motion command for
execution, we sample the motion space into motion vectors
using a motion model. Then for each motion vector, we
predict the information quality measurement for the robot’s
predicted configuration after executing the vector. After-
wards, we simply choose the motion vector that leads to the
best information quality (for more details, please see [10]). A
constraint model is also implemented to provide alternative
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coalitions when certain sensor constraints are unsatisfiable.
For example, in a cooperative robot navigation task, when the
view of the leader robot is blocked, the follower robot can
relax the original constraint to follow another robot which
is also following the leader. The relaxation of constraints
enables robot coalitions to dynamically change formations.
This capability is important for robots to execute tasks
in different environment settings. For example, to navigate
through narrow hallways, the robots need to change from the
original formation into a line formation while maintaining
the relaxed constraints for achieving the same task.

Experimental results have illustrated that this approach
works for applications such as robot tracking and cooperative
navigation tasks. However, one obvious limitation of this
approach is that the constraint model has to be designed in
advance to control how the constraints should be relaxed for
alternative coalitions. The dynamic coalition formation capa-
bility of ASyMTRe can reason about alternative coalitions
based on the information required; the alternative coalitions
can be used to control the constraint relaxation process.
Hence, a general solution for constraint relaxation is achieved
by combining the two approaches.

IV. THE IQ-ASYMTRE ARCHITECTURE

We next describe the IQ-ASyMTRe architecture, including
a discussion of the incorporation of information quality. We
then present the solution space for the new architecture and
discuss the advantages and disadvantages of this approach.
Coalition formation and execution are discussed afterwards.

A. Extensions of Representation

The incompleteness of the definition of information type
in ASyMTRe is due to the fact that the relationships between
entities and information types are not specifically captured.
Entities can be locations, agents or anything that can be
identified in the environment. Intuitively, information must
be specified with a set of referents. For example, the in-
formation of rA’s global position is meaningless without
specifying rA. Furthermore, ASyMTRe does not explicitly
model conversions among information types. Our approach
to overcome these limitations is discussed in the following.

1) Referents for Information Types: For a particular infor-
mation type Fi ∈ F (see section II), there are Ni referents
associated with it. We represent the information type by
Fi(Ref1:Ni), where Refj is used to refer to the jth referent
for the information type Fi. Each referent, Refj , can be
instantiated to a particular entity or remain uninstantiated
for future instantiations. Fully instantiated instances of in-
formation types represent actual information that can be
used. Partially instantiated instances of information types
represent a class of information. For example, FG(X) can
be the global position information of any entity that X
is instantiated to. Specifying referents for the information
types makes the definition of information type complete. For
example, the relative position information type FR has two
referents. After instantiating the two referents to robot rA

and rB respectively, the reference of information FR(rA, rB)

TABLE I
RULE PS USED IN COOPERATIVE ROBOT NAVIGATION TASK

Rule PS Description

FG(X) + FR(Y, X)→ FG(Y ) global + relative → global

FR(Y, X)→ FR(X, Y ) relative → relative

FR(X, Z) + FR(Y, Z)→ FR(X, Y ) relative + relative → relative

has a unique meaning (i.e., rA’s position relative to rB), no
matter how the information is retrieved or used.

The advantage of a complete definition for information
type is that infeasible coalitions can be excluded from
consideration. For example, one way for robot rA to compute
its own global position is to acquire another robot’s global
position and the relative position of the robot to itself. Given
that rA has a camera to detect robot teammates and robot
rB has a localization sensor, ASyMTRe would believe that a
coalition with rB is a solution even though rB is not in rA’s
camera’s FOV. IQ-ASyMTRe would exclude the coalition
with rB since the information FR(rB , rA) is not retrievable.

2) Information Rule PS: Information rule PS is a special
kind of perceptual schema that specifically models the con-
versions among information types. ASyMTRe handles the
conversions by hardcoding them into different perceptual
schemas. The introduction of these rule PSs is especially
useful when information types are specified with referents.
With referents instantiated to different entities, two instances
of the same information type represent two different pieces
of information, while they are considered to be the same
in ASyMTRe. This distinction is important when multiple
pieces of information of the same information type can be
used in the conversions to create other information. For ex-
ample, from the relative position of robot rB to robot rA and
robot rC to robot rA, we can compute the relative position
of rB to rC . The rule PS representation for this conversion
is FR(rB , rA) + FR(rC , rA) → FR(rB , rC). ASyMTRe
cannot represent such conversions, which may lead to the
loss of possible solutions. Table I shows some basic rule
PSs. The conversions are general since the referents can be
instantiated to different entities. However, we require that the
same referent labels be instantiated to the same entities.

B. Incorporation of Information Quality

Our previous work [10] introduces measures of informa-
tion quality to describe the fitness for using the informa-
tion in the current environment settings. Information quality
measurements are used to guide motion selections such that
the robots can execute tasks through the environment while
maintaining certain levels of information quality for sensor
constraints within the coalitions. To incorporate information
quality, a function is defined for each information type
that a sensor can produce, which returns the information
quality measurement with respect to the current environment
settings in the sensor’s FOV. Qi(Conf1:Ni

) represents the
information quality measurement for Fi given the current
environment settings (i.e., work space settings and the current
configurations for entities Ref1:Ni

) in the sensor’s FOV,
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whereas Confj is the current configuration of the entity that
Refj is instantiated to. The information type must be fully
instantiated for the measurement to return non-zero values.

C. Solution Space and Potential Solutions

Potential solutions represent the possible alternative ways
that schemas can be connected to achieve a certain task.
Potential solutions can be extracted from the solution space.
In order to create the solution space, the IQ-ASyMTRe
reasoning algorithm starts from the goal motor schemas
(MSs) and checks all schemas that can provide inputs for the
MSs. The algorithm then checks recursively for the inputs
of those schemas until the path either ends in a conflict state
(i.e., the same referent is instantiated to different entities)
or in a terminal state (i.e., communication schema (CS)
or environmental sensor (ES) that can be the source of
the required information). One important difference between
our IQ-ASyMTRe reasoning algorithm and the reasoning
algorithm in ASyMTRe is that we allow multiple activations
of the same schemas for individual potential solutions. This
is due to the fact that in IQ-ASyMTRe, information can
be different for the same information types with different
instantiations of the referents. Hence, the same schemas can
be used to accept and produce different information having
the same information types. This may seem at first to lead to
a clumsy representation of the solution space. However, the
fact that the information types can be partially instantiated
enables us to represent the space more concisely; meanwhile,
instantiations of the information types can also be specific
enough to exclude infeasible solutions.

As an example, Figure 1 shows a typical solution space for
computing the global position information. Each schema or
sensor acts as a connection node in the solution space. The
algorithm processes from left to right, from top to bottom;
while information flows from right to left, from bottom to
top as the arrows indicate. Two special connection nodes
are created to indicate the AND and OR relationships among
nodes in different levels. This solution space encodes two
potential solutions. While the ASyMTRe architecture needs
to introduce two schemas that distinctly work for these
two scenarios, the rule PS we introduce in IQ-ASyMTRe
provides a more comprehensive and extensible approach.
Figure 1 also demonstrates the representation power of the
partially instantiated information types. In this figure, the
referent X can be instantiated to any entity as long as all
references of X are instantiated consistently.

A solution space is usually composed of more than one
potential solution. The potential solutions can be extracted
and represented as:

PoSk
h = (Sk

1 , Sk
2 , ..., F k

1 , F k
2 , ...,Mapk) (1)

where PoSk
h is the hth potential solution for robot rk.

Sk
1 , Sk

2 , ... are the schemas that need to be activated and
F k

1 , F k
2 , ... are the pieces of information that need to be

communicated. Mapk records the current instantiations for
how the referents are instantiated to entities, and is used to
determine whether future instantiations are valid or not.

Fig. 1. A typical solution space for a robot to obtain its global position
with only a camera sensor. The referent local refers to the robot itself. The
solution space encodes two solutions. One solution is to have another robot
send over its global position (CS: FG(X) ⇒ FG(X)) and (AND) use
the camera sensor to sense the relative position of the robot to itself (PS:
Camera ⇒ FR(X, local)). A rule PS (PS: FR(Y, X) ⇒ FR(X, Y )) is
used to convert FR(X, local) to FR(local, X). The other solution (OR)
is to have both pieces of information (CS: FG(X) ⇒ FG(X) and CS:
FR(local, X)⇒ FR(local, X)) sent over by another robot.

In order to simplify the solution space, apart from the
basic connection constraint that the inputs and outputs of
the connecting schemas must have the same information
types, additional constraints are created. First, we require
that information of the same type appearing further to
the right of a reasoning path must not have fewer or the
same uninstantiated referents than the set of uninstantiated
referents from the information further to the left. Secondly,
the Localness in Reasoning constraint states that no schema
connection except for CS should be created if none of the
referents for the information type of concern is instantiated to
the local entity. Given this constraint, for example, robot rA

would not directly provide the relative position of robot rB to
robot rC , even though rA can compute the information from
the relative positions of rB and rC to itself. However, the
required information for the computation would be available
upon request. The External Communication constraint states
that a CS can be used only when not all referents are instanti-
ated to the local entity for the information type. For example,
if robot rA needs its global information, FG(rA), it cannot
request it directly. Instead, it must first seek other ways (e.g.,
computing it from another robot’s global position and the
relative position of the robot) to obtain the information.

D. Coalition Formation & Execution

Coalition formation is performed in a distributed manner.
We use the same request-and-wait negotiation protocol for
coalition formation as the distributed version of ASyMTRe
uses. However, this method often comes with latency. (Anal-
ysis of the latency will be performed in our future work.)
For robots to maneuver through dynamic environments,
this latency is especially hazardous since environments can
change unexpectedly and rapidly. When sensor constraints
are unsatisfiable in certain situations, the robots must react
in real time to search for alternative coalitions. The fact that
the IQ-ASyMTRe architecture enables dynamic-environment
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reasoning by eliminating infeasible coalitions may alleviate
the problem, since the delay for processing these infeasible
coalitions is avoided. Dynamic-environment reasoning is
not possible in ASyMTRe since entities related with the
information types are not specified. Upon request, if the robot
being requested has the information, it will notify the request
sender of the availability. When there are multiple possible
coalitions for a potential solution, the possible coalitions can
be sorted by the quality of the coalitions (which we call
coalition quality henceforth), which can be computed using
the information quality measurements for the information
types related to the coalitions. After the coalition is deter-
mined, the requesting robot would send a request to set up the
coalition (for details, see [5]). During the execution, in cases
that the coalition quality drops continuously due to changes
in the environment that may potentially lead to unsatisfiable
sensor constraints, the coalition formation process can be
activated dynamically to search for alternative solutions.

For every robot in a certain coalition, a goal command
vector is computed. When the coalition quality is above a
risk threshold, the robots directly execute the goal command
vector. When the coalition quality falls below the risk
threshold, the robots would try to improve the quality. If the
coalition quality deteriorates below a danger threshold, the
coalition formation process would be re-activated to search
for alternative solutions.

E. The Algorithm

The overall algorithm for IQ-ASyMTRe is shown in
Algorithm 1. The algorithm starts with collecting sensory
information related to the current potential solution and
information communicated to it. It then checks the current
potential solution against the information collected and sets
up a coalition when possible. If the information is not suf-
ficient, then the robot will send out requests for the missing
pieces of information and check the solution again later.
One important characteristic of the algorithm, which differs
from ASyMTRe, is that the information collected using
sensors and through communication is used in the planning
(coalition formation) phase to exclude infeasible coalitions
when relevant information required is not retrievable.

V. SIMULATION & EXPERIMENTAL RESULTS

In simulation, we first show the solution spaces for differ-
ent robot configurations in a cooperative robot navigation
task. Afterwards, we present the capability of dynamic-
environment reasoning enabled by the IQ-ASyMTRe archi-
tectue and explain how such a capability is used to eliminate
infeasible coalitions. We then show the architecture in action
for a robot navigation task. Physical robot experiments are
provided afterwards. For all the following experiments, un-
less specifically mentioned, we use only the first and second
rule PSs given in Table I.

A. Simulations

In a robot navigation task, each robot needs to localize
in order to navigate to the goal position. For this purpose,

Algorithm 1 The Algorithm for IQ-ASyMTRe
Reason about the MSs required for the task and create the
solution space using the reasoning algorithm.
Extract potential solutions and order solutions according
to the predefined cost measures for schemas.
while true do

COLLECT: collect sensory information related to the
current potential solution.
Collect information communicated by other robots.
Process requests from other robots.
Share requested information when available.
if a coalition is set up then

goto EXECUTION.
end if
Retrieve the next solution from the ordered list.
Check the solution against all information collected.
if the information collected is sufficient then

if some information needs to be communicated then
Request to set up a coalition with related robots.
if the coalition is set up then

Reset the next solution to be the first solution.
goto EXECUTION.

else
goto COLLECT.

end if
else

Set up a coalition by itself and goto EXECUTION.
end if

else
Send requests for the missing information and set the
next solution to be the current solution and wait for
some time, then go to COLLECT.

end if
EXECUTION:
if coalition quality is below the danger threshold then

Break the coalition and goto COLLECT.
else if coalition quality is below the risk threshold then

Execute the motion vector produced by the informa-
tion quality model and goto COLLECT.

else
Execute the goal command.

end if
end while

robots can use sensors onboard and/or request help from
other more capable robots. The robot can also help other
robots upon request. We next show the solution spaces in
the robot navigation task for different robot configurations,
and using different rule PSs as listed in Table I. To order
the potential solutions in the solution space, we assign costs
to schemas that reflect the complexity of using particular
schemas. Due to space limitations, we omit the listing of
perceptual schemas that are required for each solution. We
assign a cost of 0.5 to PSs (including rule PS) since they
solely involve computation. The costs of ES and CS are
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TABLE II
SOLUTION SPACE USING FIRST TWO RULE PS’S IN TABLE I

Fiducial Only Fiducial & Laser

1. ES:FG(local)

1. CS:FG(X), ES:FR(X, local) 2. CS:FG(X), ES:FR(X, local)

2. CS:FG(X), CS:FR(local, X) 3. CS:FG(X), CS:FR(local, X)

3. CS:FG(X), CS:FR(X, local) 4. CS:FG(X), CS:FR(X, local)

4. CS:FG(X), CS:FR(local, X) 5. CS:FG(X), CS:FR(local, X)

TABLE III
SOLUTION SPACE USING ALL RULE PS’S IN TABLE I

Fiducial & Laser

1. ES:FG(local)

2. CS:FG(X), ES:FR(X, local)

3. CS:FG(X), CS:FR(local, X)

4. CS:FG(X), CS:FR(X, local)

5. CS:FG(X), CS:FR(local, X)

6. CS:FG(X), CS:FR(local, Y ), CS:FR(X, Y )

7. CS:FG(X), CS:FR(X, Y ), CS:FR(local, Y )

assigned to 1 and 2 respectively. The cost of a CS is set
higher to discourage the robots from requesting help.

Tables II and III list the ordered potential solutions for
robots with different configurations and using different rule
PSs in the robot navigation task. In these tables, ES rep-
resents the use of environmental sensors. Fiducial sensors
can sense the relative positions to special markers and
are often used to retrieve the relative position information
between robots, while laser sensors can support localization
using a Monte Carlo method. CS represents the use of
communication schemas to transfer information from one
robot to another. The ultimate goal in such tasks is to
obtain the global position, FG(local), such that the robot can
localize and navigate to the goal. Table II shows the potential
solutions for robots with a fiducial sensor only and with a
laser and a fiducial sensor. Table II shows that the reasoning
process generates different solution spaces for different robot
configurations. ASyMTRe needs to build a PS for each po-
tential solution listed in the tables, since conversions among
information types are not specifically modeled and must be
hardcoded into different PSs. Such an approach would work
for cases with few potential solutions as in Table II. However,
for cases with more complicated solution spaces or more
potential solutions, as in Table III, a more flexible solution
as our approach is required. One note is that the ASyMTRe
architecture actually cannot be used to produce solutions
6 and 7 in Table III. This is because ASyMTRe cannot
distinguish information of the same information type, which
is due to the lack of referents associated with the information
types. One of the disadvantages of the new solution space,
however, is that there can potentially be duplicate solutions.
Notice that solutions 3 and 5 (as well as solutions 6 and 7)
in Table III represent the same solution even though they
are generated from different branches in the solution space
and have different costs. In future work, we will analyze the

(a) (b)

(c) (d)

Fig. 2. (a) No robots are within the FOV of the red robot. (b) Only the blue
robot is within the FOV of the red robot. (c) Both the blue and yellow robots
are within the FOV of the red robot. (d) The same robot configurations as
in (c) with an obstacle, shown in black.

impact of the duplicates on the searching performance. To
resolve the issue, we can always design a post-processing
algorithm to remove the duplicates.

To illustrate the capability of dynamic-environment rea-
soning for coalition formation, we provide four scenarios for
a robot in a cooperative robot navigation task to determine
which coalitions to set up, as shown in Figure 2. In all
scenarios, we assume that the red robot has only a fiducial
sensor for sensing relative positions of other robots. Figure
2(a) shows a scenario in which no other robot is within the
FOV of the red robot. The reasoning algorithm searches the
potential solutions from the left column in Table II, from top
to bottom, until it finds a feasible solution. For solution 1,
the algorithm successfully reasons about the current situation
and moves to solution 2, since no other robot is within its
FOV. ASyMTRe, on the other hand, cannot identify that one
related entity (i.e., another robot) for the information type
FR is not available, as it does not associate entities with
the information types. (Actually, ASyMTRe would treat all
four scenarios equally, assuming that all other robots are
within the red robot’s FOV.) Solution 2 then requires the
robot to broadcast a message requesting the information of
FG(X) + FR(rred, X). The referent local is instantiated to
the red robot itself. In Figure 2(b), the blue robot is within
the FOV of the red robot and the reasoning process identifies
the feasibility of solution 1 and broadcasts a request for
FG(rblue). In Figure 2(c), the red robot understands that
both the blue and yellow robots are within its FOV, so it
broadcasts a message requesting FG(rblue) or FG(ryellow).
If both the blue and yellow robots reply with their global
positions, the red robot would choose the one with the
better coalition quality (refer to section IV.D). The robots in
Figure 2(d) are in the same configurations as in Figure 2(c),
except that an obstacle is added such that the blue robot can
potentially be blocked. The reasoning process ignores the
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coalition with the blue robot due to the low coalition qual-
ity and requests only FG(ryellow). This experiment shows
the dynamic-environment reasoning capability for coalition
formation enabled by the combined approach.

We next show in simulation a cooperative robot nav-
igation task that combines the previous perspectives and
demonstrates how IQ-ASyMTRe completely solves a tightly-
coupled multirobot task from the beginning to end. In this
experiment, three robots are to navigate to the same goal
position. Among them, only the red robot can use the laser
sensor to localize. The other two robots have a fiducial sensor
to sense the relative positions of other teammates and a
laser sensor for environment sampling. They cannot use the
laser sensors for localization since the perceptual schema
for localization (i.e., software for Monte Carlo localization)
is disabled. Figure 3 shows snapshots from the experiment
with the execution time shown in seconds. The robots start
with the initial configurations as in Figure 3(a). Both follower
robots search for solutions from the left column of Table II,
from top to bottom. As they both can sense the leader robot’s
relative position using the fiducial sensors, they both set up
a coalition with the leader using solution 1. The coalitions
navigate through the environment in a triangle formation
as shown in Figure 3(b). When the environment becomes
narrower due to obstacles on both sides of the corridor, there
is risk of collision for the yellow robot to navigate through
without adjusting its moving direction. Furthermore, the
obstacle nearest to the yellow robot also reduces its coalition
quality with the leader due to potential blocking risk. The
blue follower robot goes through first as the obstacles are
further away. The yellow robot, on the other hand, first tries
to improve the coalition quality after it drops to below the
risk threshold, while avoiding obstacles. However, as the
coalition quality deteriorates due to the potential blocking
risk from the blue robot and obstacles, the yellow robot
breaks the coalition with the leader robot and searches the
solution space from the start again. It then realizes that the
blue robot is in its FOV and tries to set up a coalition with
it. Since the blue robot knows that it can localize with the
help from the leader robot, the coalition is confirmed and
the blue robot becomes the leader of the yellow robot as
Figures 3(c) and 3(d) show. One interesting note is that the
yellow robot does not need to know how the blue robot
achieves localization. The rest of the snapshots show that the
robot coalitions navigate through the environment in a line
formation and reach the goal position successfully. Notice
that after they start navigating in a line formation, unless the
yellow robot’s coalition with the blue robot is at risk and it
regains sight of the leader, the yellow robot would not try
nor is it necessary to rebuild coalition with the leader robot.
A supplementary video file for this entire task execution is
also available for downloading.

This experiment presents an important capability which
we name dynamic-environment reasoning for dynamic coali-
tion formation. Our previous work [10] achieves dynamic
coalition control by hardcoding the alternative coalitions in
the constraint model. The IQ-ASyMTRe architecture uses

the dynamic coalition formation capability of ASyMTRe for
reasoning about alternative coalitions based purely on the
information required, hence providing a more general and
flexible solution. The information quality model is essential
since it helps the robots maintain the sensor constraints and
determines when a coalition needs to be reformed.

B. Physical Experiments

To demonstrate the flexibility and robustness of the IQ-
ASyMTRe architecture with physical robots, we design two
scenarios for the cooperative robot navigation task in which
two robots have the same goal position. Both robots have
a camera sensor pointing forward to determine the relative
position of other robots and only one of them (the helper,
labeled ‘1’ in Figures 4 and 5) has a localization capability.
The motivation is that the helper robot may be in front of the
requesting robot (i.e., the robot that needs help), or the helper
robot may be behind the requesting robot, in which case the
requesting robot cannot detect the helper in order to compute
its relative position. ASyMTRe would consider these two
cases equal and hence would provide the same coalition
solution, which is for the helper robot to communicate its
global position to the requesting robot. However, in the
latter case, even with the helper robot’s global position, the
requesting robot cannot compute its global position since
the helper’s relative position is not retrievable, as the helper
robot is behind it. The snapshots for the execution of these
two scenarios are shown in Figures 4 and 5. To show that the
robots can set up coalitions in a timely manner, we start the
two robots without delay for the initial coalition setup. For
both scenarios, the helper robot starts execution first since it
is self-sufficient for this task. In Figure 4, the helper starts
in the front and the coalition is set up for the helper robot to
communicate its global position to the requesting robot. In
Figure 5, the helper starts at the back and the IQ-ASyMTRe
architecture successfully reasons about the situation; the
coalition is set up for the helper robot to communicate both
its global position (via laser) and the relative position (via
camera) to the requesting robot. After the coalitions are set
up, the robots execute the coalitions while maintaining the
sensor constraints and successfully reach the goal positions.
The elimination of infeasible coalitions through dynamic-
environment reasoning makes the coalition formation more
robust to various situations. The coalition formation and ex-
ecution are all performed dynamically and in real time. This
experiment shows that the dynamic-environment reasoning
capability can distinguish among different environment set-
tings (including robot configurations) and provide feasible
coalitions accordingly.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the IQ-ASyMTRe approach, which
is aimed for a complete solution for tightly-coupled multi-
robot tasks in which robots share capabilities. This approach
combines an extended ASyMTRe architecture and our pre-
vious information quality based approach such that coalition
formation and coalition execution are accomplished within
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(a) t = 2.5s (b) t = 25.5s (c) t = 35.5s

(d) t = 49.0s (e) t = 65.5s (f) t = 89.5s

Fig. 3. (a) Initial configurations. (b) Both follow robots set up a coalition with the leader (red) and robots navigate in a triangle formation. (c) The
environment becomes narrower due to obstacles and influences the yellow robot. The yellow robot breaks the coalition with the leader and sets up a
coalition with the blue robot. (d) Robots navigate through the environment in a line formation. (e) and (f) Robots navigate around the corner and reach
the goal position.

(a) (b) (c)

Fig. 4. (a) Initial configurations with the helper robot (labeled ‘1’) in the
front. (b) The helper robot goes to the goal while the requesting robot
is trying to set up a coalition with the helper. (c) The coalition is set
up and the robots navigate through the environment with the helper robot
communicating its global position to the requesting robot at the back.

(a) (b) (c)

Fig. 5. (a) Initial configurations with the helper robot (labeled ‘1’) at the
back. (b) The helper robot starts first while the requesting robot is trying to
set up a coalition with the helper. (c) The coalition is set up and the robots
navigate with the helper robot communicating both the global information
of itself and the relative position to the requesting robot in the front.

the same architecture, with sensor constraints introduced
by capability sharing within the coalitions. This approach
introduces the capability of dynamic-environment reasoning
for dynamic coalition formation and demonstrates how such
a capability enables autonomous and dynamic cooperative
control. To the best of our knowledge, this is the first attempt
to create a complete and general solution for tightly-coupled
multirobot tasks that involves capability sharing.

In future work, we plan to apply IQ-ASyMTRe to more
complex tasks and with more robots, in order to further prove
the feasibility and show the scalability of this approach.
The properties of the new architecture will be analyzed in
detail to include the real-time computational requirements

of this approach. We will also provide a formal analysis
of the performance of coalition formation and compare it
with other approaches. Other interesting aspects include
developing more complete definitions of information quality,
as well as addressing sensor fusion [7].
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