
Experiments in Decentralized Robot Construction

with Tool Delivery and Assembly Robots

Adrienne Bolger, Matt Faulkner, David Stein, Lauren White, Seung-kook Yun and Daniela Rus

Computer Science and Arti� cial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

enneirda@mit.edu, mfaulk@mit.edu, stein@mit.edu, llwhite@mit.edu, yunsk@mit.edu, rus@csail.mit.edu

Abstract— Our prior work [1] presented a decentralized
algorithm for coordinating the construction of truss shaped
objects out of multiple components (rods and connectors). In
this paper, we consider how to transfer the theory to practice,
implementing the algorithm to create a decentralized multi
robot construction system. The system is composed of mobile
manipulators and smarts parts with an embedded communica-
tion device. We discuss the delivery and assembly algorithms
that comprise this system and the assumptions behind them.
We present data from extensive hardware experiments with 4
robots coordinating an assembly task.

I. INTRODUCTION

Robot assembly control is a fundamental problem for

many robotics applications ranging from construction, to

manufacturing, and to search and rescue operations. We

are interested in robot group control strategies for assembly

operations that are (1) fully decentralized and distributed on

the group, (2) adaptive to changes in the environment and

the group, (3) provably convergent, and (4) experimentally

feasible. In our previous work [1], [2] we introduced a

controller for coordinated assembly that meets the first three

desiderata. In this paper we discuss the algorithmic implica-

tions of implementing this controller on a physical platform

consisting of arbitrarily large groups of robots specialized

as tool delivery and assembly robots, and we present results

of experiments with 4 robots. Specifically, we consider a

distributed algorithm that causes a network of robots to

coordinate the delivery of parts for a desired assembly, and

the activity required to create the assembly.

Specifically, we describe a distributed algorithm that takes

as input the specifications of an object to be assembled from

rods and connectors, causes the robots (1) to identify the

subassemblies that can be created in parallel, (2) deliver

parts to each subassembly team so that the subassemblies

get created in approximately the same amount of time, and

(3) place the parts in the required sequence to construct the

desired object. Our implemented solutions to these problems

rely on using smart parts for the assembly. The smarts

come from embedded two-way communication systems that

allow the parts to transmit their location (in the form of a

beacon) as well as their geometric and mass properties to

the robots. The robots use communication-enhanced grippers

to locate, identify and grasp the objects. Our solutions to

problems (1) and (2) are general with respect to this grasping

modality. Our solution to problem (3) applies to planar

objects and illustrates the correct position of the parts. The

actual assembly to create a rigid object is not yet solved.

The robot system for construction is composed of 4

mobile robots with a 4-dof manipulator and two kinds

of components (truss and connector) with embedded IR

beacon for communication with the robots. Each robot is

also equipped with communication devices for localization,

inter-robot communication, and robot-part communication.

The theoretical algorithms in [1], [2] guarantee stable and

convergent controllers, but moving from theory to hardware

implementation requires changing the original assumptions

and the algorithmic details that rely on them. We discuss

the differences between the theoretical and the practical

algorithms and present data from extensive subassembly par-

titioning and tool delivery experiments. We also discuss data

from a preliminary planar implementation of the assembly

algorithm that places the parts in the correct sequence.

A. Related work

Our work builds on prior research on robotic construction,

which includes several construction robots such as SM2

which is a truss-walking inspection robot developed for space

station trusses [3], and Skyworker for truss-like assembly

tasks [4]. Werfel et al. [5] described a 3D construction algo-

rithm for modular blocks in a distributed setting. Stochastic

algorithms for robotic construction with dependency of raw

materials were analyzed in [6]. Our previous work on robotic

construction includes Shady3D [7], [8], [9] utilizing a passive

bar and an optimal algorithm for reconfiguration of a given

truss structure to a target structure [10].

II. PROBLEM FORMULATION: COORDINATED ROBOTIC

CONSTRUCTION

We are given a team of robots, n of which are specialized

as assembly robots and the rest are specialized as part

delivering robots in Euclidean space Q ⊂ R
N (N = 2, 3).

The robots can communicate locally with other robots within

their communication range. The robots are given a target

shape represented as a target density function φt : Q →

R. φt represents the goal shape geometry by specifying

the intended density of construction material in space. For

example, in Figure 1 the yellow region has high density

(many materials) while the white region has low density.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5085

This formulation applies to any construction components.

To simplify exposition and better illustrated the connection

to the implemented system we focus on truss structures

built with two types of components: connectors and links

in order to simplify exposition and figures. To represent

truss structures, φt is defined point-wise on the grid that

corresponds to the truss. The point density is proportional

to the number of possible truss connection at the point. We

assume that the robots move freely in an Euclidean space

(2D and 3D) which of course is tackled in our experiments.

We developed a decentralized algorithm that coordinates

the robot team to deliver parts so that the goal assembly can

be completed with maximum parallelism [1]. Algorithm 1

and Figure 1 show the main � ow of construction in a cen-

tralized view. In the first phase (Figure 1(a)), assembly robots

locate themselves using a distributed coverage controller

which assigns to each robot areas of the target structure that

have approximately the same assembly complexity. In the

second phase (Figure 1(b)) the delivering robots move back

and forth to carry source components to the assembly robots.

They deliver their components to the assembly robot with

maximum demanding mass ∆MV . The demanding mass is

defined as the amount of a source component required for

an assembly robot to complete its substructure. After an

assembly robot obtains a component from a delivering robot,

it determines the optimal placement for this component

in the overall assembly and moves there to assemble the

component. The assembly phase continues until there are no

source component left or the assembly structure has been

completed. In this paper, we implement the second phase.

Algorithm 1 Construction Algorithm

1: Deploy the assembly robots in Q

2: Place the assembly robots at optimal task locations in Q

3: repeat

4: delivering robots: carry source components to the

assembly robots

5: assembly robots: assemble the delivered components

6: until task completed or out of parts

A. Delivery and Assembly Algorithms

Once the assembly robots are in place, construction may

begin. During construction we distribute the source com-

ponents (truss elements and connectors) to the assembly

robots in a balanced way. Global balance, which is defined as

balance of delivery to all the assembly robots, is asymptoti-

cally achieved by a probabilistic target selection of delivering

robots that uses φt as a probability density function. For local

balance defined for only neighboring robots, the delivering

robots are driven by the gradient of demanding mass defined

as the remaining structure to be assembled by the robot.

Robots with more work to do get parts before robots with

less work. Each assembly robot waits for a new truss element

or connector and assembles it to the most demanding location

in its Voronoi region. Therefore, construction is purely driven

by the density function regardless of the amount of the source

Q

p1 p2

p3

l12

l13

l23

p4

l24

l34

(a)

1

4
t

V
M'

2

0
t

V
M'

3

2
t

V
M'

4

1
t

V
M'

(b)

Fig. 1. Example of the equal-mass partitioning and delivery by the gradient
of the demanding mass. 4 mobile manipulators (assembly robots) are
displayed in a convex region Q that includes the A-shaped target structure.
The yellow region has high density φt. The mass of a robot is the size of the
total yellow region in its partition (Voronoi region.) pi(i = 1, 2, 3) denotes
the position of the assembly robots and the red-dotted lines lij are shared
boundaries of the partitions between two robots. ∆Mt

Vi
is the demanding

mass.

components. We ensure all control processes are distributed

and robot communication is restricted to direct neighbors.

Details of the control algorithms are explained in [1].

III. EXPERIMENTAL SYSTEM

In this paper, we focus on delivery and assembly ex-

periments. Experimenting equal-mass partitioning is left for

future work. Similar algorithms have been implemented

before in our previous work [11].

A. Experimental Testbed

Our hardware system consists of a team of mobile manip-

ulators, smart parts each with an embedded communication

device, and a motion capture system. The robots operate on

a square area, and a source cache is located at the end of the

workspace (The blue half-circle plate in Figure 13). Trusses

and connectors are manually supplied to the cache during

experiments. In order to help grasping, each 3D-printed smart

part contains a custom IR chip and a battery designed to talk

to the robots. The robots localize using data from the motion

capture system broadcast over a mesh network.

1) Mobile manipulator: The robot consists of a commer-

cially available iCreate mobile platform and a CrustCrawler

robotic arm with a custom chassis as shown in Figure 2.

Specifications of each component are in Table I. The gripper

of the arm has been replaced by an instrumented gripper

which contains an infrared communication transceiver and

is contoured to align a grasped part as the gripper closes.

The special design allows the gripper to reliably grasp parts

despite centimeter-scale uncertainty in a position of the parts,

by passively aligning the grasp point into a unique orientation

as the gripper closes. The robot has three communication

protocols: IR, UDP and xBee, which are used for communi-

cation with the smart parts, other robots and motion capture

system, respectively. We equipped each robot with a small

Dell Inspiron Mini 10s netbook which runs a Java-based

controller.

5086

Fig. 2. Side view of robot hardware with the Crustcrawler arm. From a
fixed base, the arm allows for grasping an object on the ground in a half-arc
in front of it with a depth of about 20cm.

Mobile iRobot iCreate

Arm

Model CrustCrawler SG5-UT
DoF 4
Reach 0.5 m
Payload 0.6 kg

Communication IR, UDP, xBee

TABLE I

SPECIFICATIONS OF THE ROBOT

2) Smart parts: Instrumented trusses and connectors:

Smart parts enable grasping for robotic delivery and assem-

bly via communication. We explore the use of communi-

cation as an alternative to using computer vision for part

identification and grasping. IR communication devices are

instrumented as shown in Figure 4 on the robots and within

each parts. A part can guide a robot to its location and tell

the robot its part type.

Figure 3 shows two types of the smart parts: truss and

connector. The connector is capable of connecting 6 trusses

in the North, South, East, West, Up, and Down directions.

Figure 5 shows a cube built from 8 connectors and 12 trusses.

With a rechargeable 3.7v 210mAh lithium polymer battery,

the parts weigh 60 grams. The truss is 18 cm long.

B. Infrastructure for localization and communication

For delivery and assembly, the robots receive precise

location information from a Vicon motion capture system

Fig. 3. Smarts parts to be delivered: (LEFT) a red connector (RIGHT) a
blue truss

Fig. 4. The small IR communication modules on a PCB that can be
embedded in parts to create a smart environment for the robots to sense.
Figure reproduced with permission [12]

Fig. 5. This 3D-rendered image of a cube is constructed from 8 junctions,
and 12 struts. Picture reproduced with permission [12].

providing the 2D positions and the rotational heading with

accuracy to the millimeter and milli-radian respectively at 10

Hz using a commercial xBee RF (radio frequency) wireless

mesh network. Between the robots, a UDP multicast channel

on the local network is implemented with a singe WLAN

router. The UDP packets contain a logical time-stamp, a

robot ID number, their current positions, and their current

target robot. The robots also broadcast their states such as

whether or not they are currently carrying or dropping off

a part, which part type they are carrying, where they are

carrying this payload, and the knowledge of any other known

placed parts.

C. Software architecture

The software architecture is structured hierarchically. The

highest level planner can be swapped while using the same

underlying modules. We use this modularity to create as-

sembly and delivery planners, either of which can control

the robot functions as shown in Figure 6.

Each software module is implemented in Java and runs in

its own Java thread. The planner thread controls manipulation

and motion of a robot. The planner gives the robot only an

end destination and information on any obstacles, such as

moving robots or parts on the ground. The planner waits

for the motion to finish before trying to manipulate the arm,

and gives the robot arm two commands: pick up the part

or put down the part. The planner makes the decisions on

where and when to move and manipulate parts by updating

with the information received by the communication module.

The communication module contains the most up to date

information for the planner, which the planner uses to

5087

Fig. 6. The hierarchical software architecture of the robot platform.

determine where to move next. The planner is responsible

for navigation, manipulation and communication modules

commands , and these three modules handle low level control

for the mobile, the arm, the manipulating IR sensors, and the

communication messaging hardware.

IV. FROM THEORY TO PRACTICE

Implementing Algorithm 1 on the robot system requires

revisiting its assumptions with respect to what can be mea-

sured, implemented, and computed efficiently, and making

corresponding changes to control loops. The main differences

between the theory and the practice are listed in Table II. The

most important components are manipulation and navigation,

used both for assembly and delivery.

A. Navigation

The theory assumes point-sized robots that move through

each other and already built structures, and we extend the

algorithm to deal with physically moving around other robots

and parts by passing more information in our communica-

tions messages. The robot motion and navigation software

module, shown in Figure 7 takes commands from the high

level planner and moves the robot as close to a desired

position as possible. The 5m×5m sized map is divided

into the equally sized grids each of which has 0.1m side

length. Location data completely rely on the external motion

capture system, and A* navigation algorithm which updates

every second has the delivery robot navigate to approach

a destination location. Using a simple proportional motion

controller appropriate for the iCreate platform. Along the

way, it checks for collision avoidance, and will not move

to a location blocked by an obstacle or other robots. The

algorithm has a failure mode which stops the robots when

the location sensor data has not been updated for more than

3 seconds.

B. Manipulation

Once a robot is docked at the supply station, or parked

near enough to a part, the task planner uses the arm module

Fig. 7. The motion planning FSM of the robot software.

to find and pick up the part. Algorithm 2 is implementation

of the search-and-pick motions based on the robot-part

communication.

Algorithm 2 Arm Manipulation Part Search Algorithm

1: repeat

2: Open gripper for wide FOV

3: while IR sensor does not see part do

4: Arc scan back and forth π radians

5: end while

6: startTheta = current arm position

7: while IR sensor still sees part do

8: Radial scan forward.

9: end while

10: endTheta = current arm position

11: Narrow gripper field of view

12: while IR sensor does not see part do

13: Move arm in and out along radius while arc-

scanning

14: between startTheta and endTheta radians

15: end while

16: Open gripper wide.

17: Lower arm on top of part

18: Close gripper

19: until Arm closed over part

The field of view of the IR sensor attached to the inside

of the arms end is widened and narrowed by physically

widening and narrowing the gripper on the end of the arm,

and the arm finds parts by iteratively scanning smaller and

smaller areas for an IR signal. Snapshots of grasping is

shown in Figure 10.

C. Communication

The communication module of the robot runs constantly

in its own thread to provide the latest whole-system state to

the task planner. The module maintains the latest state of

every other robot broadcasting in the signal range. It stores

the most recent message (determined by packet timestamps

implemented using distributed logical time) received from

each robot, and broadcasts out its own state on the same

5088

Experiment Controller from [1]

• Nonholonomic robot dynamics arises position errors and turning
delays

• Holonomic robot

• Noisy measurement of global position • Knowledge of exact global position
• Robots with volume and dynamics, path planning required • Robots are point masses
• Collision avoidance algorithm required • Robots pass through the environment
• The next part to be delivered is dependent of the current structure • No dependency between trusses and connectors
• Pickup causes a bottleneck • Picking up parts from supply cache takes very short time
• IR beacons for communication between robots and materials • Pin-point knowledge of types and locations of materials
• UDP messaging system using acknowledgements and logical time
to recover packet loss

• Synchronous communication for complete information about sur-
roundings

• Asynchronous propagation of information • Immediate update of information from neighbors
• Hardware failure causes part to be dropped • Parts never lost or dropped on map

TABLE II

CONTROLLER FROM [1] VS. EXPERIMENT

Fig. 8. The task planning event loop for the delivery robots. The main
loop pauses and loops back on itself at points where continuing requires
asynchronous communication from other robots.

channel. The communication module also keeps track of

parts that other robots have reported putting down on the

field of construction already so the robot knows to avoid

them while navigating the environment. Finally, in an effort

to provide a handshake mechanism between two robots, the

communication module keeps track of parts expected by an

assembly robot, whether or not a delivery robot has delivered

them yet, and whether or not the target assembly robot has

acknowledged the delivery.

D. Delivery

The delivery algorithm, constructed as a finite state ma-

chine in Figure 8, follows the theory and takes steps to ac-

count for the real world challenges of multiple robot systems

such as collision avoidance, asynchronous communication,

and part dependencies. The robots have theoretical access

to perfect information about the locations and demanding

mass value of the surrounding robots, which we replace with

a fault tolerant, asynchronous communication protocol to

allow robots to learn about the surrounding parts and robots.

Finally, the original algorithm assumes that the delivery order

of parts will have no affect on the assembly of the structure.

Algorithm 3 Delivery Robot Part Delivery Algorithm

1: repeat

2: Move to supply source

3: Pick up part

4: Move to random location on map

5: repeat

6: Listen for demanding mass from nearby assembly

robots

7: until Sufficient network time passes.

8: Target assembly robot with highest demanding mass.

9: repeat

10: Inform target robot of our intent to deliver a part

11: until We receive a response from target

12: Move to delivery location

13: Put down part

14: repeat

15: Inform target that part has been delivered

16: until We receive a response from target

17: until No more assembly robots asking for parts.

The practical delivery algorithm replaces the notion of parts

as simple blocks with a model of parts as part of a blueprint,

where the order in which parts are delivered can be factored

into demanding mass calculated at any given time. These

extensions to the algorithm allow it to be carried out on the

physical system.

The system follows Algorithm 3 to complete its task, with

the sub-modules taking over much of the error-handling.

The navigation module, as discussed earlier, handles possible

collisions while moving to the source and to robots, and

it waits for the source to be clear of other robots before

docking. The delivery robot acquires a specialized part from

the supply source as noted in Algorithm 2. Asynchronous

communication takes the place of actual gradient following

when picking a location to deliver a part.

The model of the system as a blueprint of parts, chained

together with dependencies, allows the assembly robots to

look at the map, determine which parts are still needed

at a given time, and request that number of parts to the

delivery robots. This implementation does not change the

delivery algorithm and helps prevent bottlenecks in spots

5089

BROADCAST

DEMANDING MASS
PICKING UP

PART
ACKING

COMPUTING

CONSTRUCTION

LOCATION

RECOMPUTING

PARTITION

RECOMPUTING

DEMANDING MASS

ADD PART TO

STRUCTURE

Delivery Request Success

No remaining work or
 some neighbor has no work

Store new masses

Fail

Non-zero mass

Zero demanding mass

Init

Fig. 9. The task planning event loop for the assembly robots.

where the demanding mass for the completed structure and

the demanding mass at that moment are different.

E. Assembly

The assembly algorithm, demonstrated as a finite state

machine in Figure 9, adds to the original algorithm similar

systems as in the the delivery algorithm, including collision

avoidance and awareness of the local structure. We also

completely replace the computation of the optimal edge to

place next, and change the delivery mechanism from a direct

handoff to a passing of parts within the general vicinity of

the assembly robot. In the original algorithm we compute the

least connected edge in our structure and add a part, and also

as the model does not consider collision it assumes there is

always space for multiple robots to perform a handoff. In our

implementation we take advantage of a blueprint, and only

allow the placement of parts that both depend on no other

parts to hold them up and that do not prevent a robot from

reaching the location of an unplaced part. Among these parts,

the optimal part is the one that most increases the number of

placeable parts in the partition. We also determine handoff

points rather that requiring the delivery robot to directly

access the assembly robot inside the structure.

A structure is now represented as a blueprint of inter-

dependent parts, where each part maps to a node on both

a directed graph representing the physical dependencies of

parts (with an edge from any part to any part that directly

requires it to be placed) and an undirected graph of the

part’s proximity to other parts (with an edge between any

two parts within a robot’s radius of each other). We define a

part p as active if it has no parents on the directed graph and

that a path exists from every part the robot is responsible

for to the edge of the map which does not pass through

p. By assuming that the density of parts is bounded, we

can provably recompute the set of parts which is active in

sublinear time using discrete gradients. As the only parts

which can be placed without adding imposable constraints

to the task are active ones, we only use active parts when

computing demanding mass, meaning the total mass of a

partition can both increase or decrease significantly after each

placement. We uniquely weight the contribution of a part on

the blueprint to the demanding mass by the net change it

would have on the size of the set of active parts and break

ties by assigning more weight to parts which would remove

more constraints from inactive parts, breaking further ties by

preferring the centroid of the robot’s Voronoi partition. The

optimal part placement is determined by the active part with

the greatest weight, which means robots place parts in such

a way as to allow more parts to be placed, if possible.

V. EXPERIMENTAL RESULTS

For testing platform, we use 2 assembly robots (labeled

with robot 4 and 5) and 2 delivery robots (labeled with robot

2 and 3) in a 5x5 meter rectangle. The testing platform

also involved a motion capture system to provide robot

localization information and a GUI that gathers all the

activities with communication and displayed them. Below

we discuss the behavior of our robots over the course of

these runs in terms of both our algorithm and practical

considerations. Note that the system is decentralized except

for the locational information from the Vicon motion capture

system.

A. Delivery

1) Test Scenario: For evaluation, a single blueprint is

chosen demonstrating different features of a real system and

the number and locations of the assembly robots change for

different runs. We specialize the delivery robots further: one

picks up truss parts only and one picks up connector parts

only. The supply dock for parts is located at position (0,0),

however the parts at the supply dock are moved around to

test the robots’ ability to pick up reachable parts. The robots

could sense the different types of parts 100% of the time by

communicating with them over IR.

2) Robot Adaptation: In an ideal setup and execution, the

delivery robots alternate between the two assembly robots.

To test adaptivity, we also run a variation in which one robot

stops demanding parts halfway through the test. This failure

of the assembly robots causes the delivery robots to adapt,

delivering parts only to the remaining robot.

We ran the scenario with two assembly robots on the

platform 12 times. All runs produced the correct alternating

delivery behavior. Both the joint delivery robot and the

truss delivery robot alternated targets and delivered to both

assembly robots, seen in Figure 13. The delivery robots

alternate targets in response to the demanding mass reported

to them by the assembly robots, shown in Figure 11.

We ran the same scenario as before 3 times with a

simulated failure, in which one of the assembly robots was

taken off the map. Even when the assembly robot removed

had a higher demanding for parts, its failure resulted in the

delivery robots delivering to the remaining robot. In all cases,

the communication between delivery and assembly robots

confirmed the deliveries and changed the demanding masses

of the assembly robots. Over all 12 test scenario runs, the

2 delivery robots completed 45/48 delivery attempts. Three

failed deliveries were the result of arm hardware failure on a

single robot. A summary of test runs can be seen in Table III.

5090

Fig. 10. Snapshots of grasping. The arm moves along an arc to find a rough position of a part and does fine search by radial motion. Grasping is done
after confirming the part.

0 10 20 30 40 50 60 70 80
4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Experiment time in minutes

D
e
m

a
n
d
in

g
 m

a
s
s

Experimental
Assembly Robot Demanding Mass over Longest Test Run

Demanding Mass
for robot 4

Demanding Mass for
robot 5

Fig. 11. The demanding mass of assembly robots, named robots 4 and 5,
drops whenever a part delivery occurs. Delivery robots changed targets to
whichever robot had the highest demanding mass at the time. The unit
of demaning mass is undimensional and proportional to amount of the
partitions.

Trial
Runtime Avg.

Success Failure
(MM:SS) Runtime

1 06:05 06:05 1/1
2 07:36 07:36 1/1
3 07:20 07:20 1/1
4 13:58 06:59 2/2
5 37:33 06:16 6/6
6 21:40 07:13 3/3
7 14:18 04:46 3/3
8 23:04 04:37 5/5
9 41:28 06:55 6/6
10 15:49 05:16 1/3 gripper weakened
11 71:05 05:55 11/12 dropped a part
12 23:17 04:39 5/5

Total 04:43:13 06:54 45/48

TABLE III

SUMMARY OF ROBOT DELIVERY TEST RUNS

3) Run Time Empirical Analysis: Each delivery robot

averaged 7 minutes for a round trip delivery, spending much

of its time dealing with the supply dock rather than the other

robots in the system. The summary is in Table III. The robots

spent a significant amount of time parked in the supply dock,

searching for parts: the robotic arm requires an average of

2.75 minutes (32% total time)to search for and pick up the

correct type of part. This large amount of time caused a

backup in the system: for all test runs in which both delivery

robots ran at once, each delivery robot spent an average time

of 2.57 minutes per delivery waiting for the other delivery

−1000 −500 0 500 1000 1500
−500

0

500

1000

1500

2000

2500

3000

Robot Position (mm)

Movement path of a delivery robot responding to Assembly robot failure

Path before
robot 4 failure

Path after
robot 4 failure

Robot 5Robot 4

Supplies

Fig. 12. Adaptive behavior of the system: a delivery robot begins by
delivering parts fairly to robot 4 and robot 5. When robot 4 (on the left)
fails in the middle of the test, the delivery robot begins delivering only to
robot 5.

robot to move out of the way.

B. Preliminary assembly

Preliminary tests of the assembly system includes handoffs

of a part and putting down the part at the designated location

We tested 7 trials of handoffs and 2 trials of put-down with

100% success.

Note that actual assembly is not implemented yet. We have

are currently conducting additional tests to ensure that the

algorithms in this paper are, in fact, robust.

C. Communication

1) UDP among robots: Over 12 delivery test runs, on

each round trip delivery, the delivery robot required 4.8

message packets total to deliver 2 messages to the target

assembly robot, meaning each message from a delivery robot

had to be resent at least once on average before a response

was received from a target assembly robot. The assembly

robots spend part of each delivery robot’s delivery round

asking for parts at a rate of 1Hz, meaning that during the

average delivery, each assembly robot sent out an average of

180.5 messages before a delivery robot could pick up a part

and respond to a needy assembly robot.

2) IR between a robot and a part: The smart parts used

in this experiment broadcast data about what they are and

their relative orientation to receivers mounted on the robot

5091

Fig. 13. Snapshots of a test run of the even demanding mass delivery
scenario. Assembly robots begin positioned at 2 different points of highest
demand for parts. As the red connector parts are delivered, the maximum
demanding mass for the entire map changes, causing the delivery robot to
change delivery targets, first to robot 5, then to robot 4.

grippers. The parts also allow transmitters to modify a

message portion of the data they broadcast. In over 1000

tests, robots were able to autonomously locate and grasp a

part and modify its message with the part randomly placed

in a semi-circular region with a 33cm with a 99.3% success

rate.

VI. CONCLUSION

This paper describes our experience with transition of a

complex decentralized algorithm from theory to practice The

coordinated assembly by a multi robot system consists of

four mobile manipulators and smart parts with the IR beacons

to help communication between a robot and a part. In order

to make the system demonstrate the desired algorithmic

behavior, we combined the high-level algorithms controlling

the actions of the robots with lower level controllers for

viable communication channels, stable robot localization and

navigation, collision avoidance, and part manipulation. The

resulting system demonstrated a use for distributed robotics

in industry that involved distributed control, autonomous

and mobile robots, and an active ability to change their

environment. Our next steps are focused in improving the

capability of the assembly system, to demonstrate the use of

the system for building of truss-like objects such as boxes

and bookshelves.

VII. ACKNOWLEDGEMENTS

This project has been supported in part by The Boeing

Company, the U.S. National Science Foundation, NSF grant

numbers IIS-0426838, Emerging Frontiers in Research and

Innovation (EFRI) grant #0735953, MURI SMARTS grant

#N0014-09-1051, MURI ANTIDOTE grant #138802, and

MURI SWARMS grant #544252. Seung-kook Yun is sup-

ported in part by Samsung Scholarship. We are grateful for

this support.

REFERENCES

[1] S. kook Yun, M. Schwager, and D. Rus, “Coordinating construction
of truss structures using distributed equal-mass partitioning,” in Proc.

of the 14th International Symposium on Robotics Research, Lucern,
Switzerland, August 2009.

[2] Seung-kookYun and D. Rus, “Adaptation to robot failures and shape
change in decentralized construction,” in Proceedings of IEEE Inter-

national Conference on Robotics and Automation, 2010.
[3] M. Nechyba and Y. Xu, “Human-robot cooperation in space: SM2 for

new spacestation structure,” Robotics & Automation Magazine, IEEE,
vol. 2, no. 4, pp. 4–11, 1995.

[4] S. Skaff, P. Staritz, and W. Whittaker, “Skyworker: Robotics for
space assembly, inspection and maintenance,” Space Studies Institute

Conference, 2001.
[5] J. Werfel and R. Nagpal, “International journal of robotics research,”

Three-dimensional construction with mobile robots and modular

blocks, vol. 3-4, no. 27, pp. 463–479, 2008.
[6] L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for a

swarm robotic assembly system.” in Proceedings of IEEE International

Conference on Robotics and Automation. IEEE, 2009, pp. 1953–1958.
[7] S. kook Yun and D. Rus, “Optimal distributed planning for self

assembly of modular manipulators,” in Proc. of IEEE/RSJ IEEE

International Conference on Intelligent Robots and Systems, Nice,
France, Sep 2008, pp. 1346–1352.

[8] S. kook Yun and D. Rus, “Self assembly of modular manipulators with
active and passive modules,” in Proc. of IEEE/RSJ IEEE International

Conference on Robotics and Automation, May 2008, pp. 1477–1482.
[9] Carrick Detweiler, Marsette Vona, Yeoreum Yoon, Seung-kook Yun,

and Daniela Rus, “Self-assembling mobile linkages,” IEEE Robotics

and Automation Magazine, vol. 14(4), pp. 45–55, 2007.
[10] S. kook Yun, D. A. Hjelle, H. Lipson, and D. Rus, “Planning the

reconfiguration of grounded truss structures with truss climbing robots
that carry truss elements,” in Proc. of IEEE/RSJ IEEE International

Conference on Robotics and Automation, Kobe, Japan, May 2009.
[11] M. Schwager, J. McLurkin, J. J. E. Slotine, and D. Rus, “From theory

to practice: Distributed coverage control experiments with groups of
robots,” in Proceedings of International Symposium on Experimental

Robotics, Athens, Greece, July 2008.
[12] M. Faulkner, “Instrumented tools and objects: Design,algorithms,

and applications to assembly tasks,” Master’s Thesis, Massachusetts
Institute of Technology, CSAIL Distributed Robotics Laboratory, June-
Aug. 2009.

5092

