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Abstract— Terrain assessment and path planning are in-
trinsically linked. There exist a variety of terrain-assessment
algorithms and these methods follow the trend of low-fidelity
at low-cost and high-fidelity at high-cost. We present a modular
path-planning algorithm that uses a hierarchy of terrain-
assessment methods; from low-fidelity to high-fidelity. Using
all the available sensor data, the visible terrain is assessed
with the low-fidelity, low-cost method. The decision to assess
a piece of terrain with the high-fidelity, high-cost method
is made considering potential path benefits and the cost of
assessment. The result is a lower combined cost of the path
and terrain assessment that exploits the capabilities of the
robot chassis where prudent. We demonstrate the technique
on a large number of simulated path-planning problems using
fractal terrain, as well as provide preliminary results from an
experimental field test carried out on Devon Island, Canada.

I. MOTIVATION

The next wave of planetary exploration is going to include
rovers that need to travel great distances without constant
supervision by Earthbound operators. For Mars exploration,
the rover will require onboard autonomy to allow it to move
beyond its sensing horizon many times between command
cycles from Mission Control [1]. It is therefore imperative to
limit the time the terrain assessment and short-range motion
planning are under direct control of operators on Earth.

There are a significant number of terrain-assessment meth-
ods available to a mobile robot, ranging from simple methods
that can run onboard and in real-time, to more complex
simulations that include vehicle kinematics and terrain prop-
erties. These simulations can run onboard, but typically not
in real-time. Most costly is a call home to ask for human
intervention, and this is how much of the Mars Exploration
Rovers (MERs) operations are carried out [2]. The trend to
these terrain-assessment methods is low-fidelity at low-cost
and high-fidelity at high-cost, where we consider fidelity to
be a measure of how closely the assessment method is able
to model the costs of driving over any patch of ground.
We recognize that not all terrain requires a sophisticated
assessment to determine traversability. For instance, plane-fit
methods such as those used on the MERs [3], can confidently
classify smooth, flat ground as traversable, and tall cliffs as
not drivable. This is an example of a low-fidelity assessment
method as it is only accurate in certain types of terrain. The
difficulty arises when the rover must decide whether or not it
can pass over and into areas that are cluttered or steep; this is
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Fig. 1: Mobile robots can operate in terrain of varying
difficulty. Some areas are easily assessed (as in the top
image), while others require more advanced methods before
the traversability can be determined (bottom image).

exactly where much of the interesting science is located. The
challenging terrain includes areas where geological forces
and meteor impacts have naturally excavated the terrain and
revealed many interesting scientific targets.

The next robotic explorers may have many ways of deter-
mining terrain traversability, but there will always be a trade-
off between the cost of terrain assessment (computational
or communication time) and the fidelity of the assessment
method. We can also see that there is a fundamental rela-
tionship between path planning and terrain assessment; the
path depends on the traversability of the terrain and, ideally,
only the regions on the path need to be assessed.

In this paper, we present a novel, modular path-planning
framework that uses a suite of terrain-assessment algorithms,
limiting the application of the highest-cost (but highest-
fidelity) methods only to regions that may be on the optimal
path and that require a high-fidelity assessment.

II. RELATED WORK

The path planner must find an efficient route to an objec-
tive (scientific target, waypoint, etc.), if such a path exists. In
order to do this, the planner needs traversability information
for the surrounding terrain, including the traversal cost; the
planner therefore has an inherent dependence on the terrain-
assessment capabilities. In what follows we focus on the
planning aspect of this problem, acknowledging that there
are a variety of appropriate terrain-assessment techniques,
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but only explaining those examples in the test system.
Of particular note are some of the graph-based planning

techniques. A graph is a set of states connected by edges. In
the typical rover path-planning context, the states represent
the locations in a world at which a robot might exist, while
the edges contain the associated cost of driving between two
adjacent states. The start state corresponds to the current
position of the robot and the goal state is the desired robot
position. The A* search algorithm [4] is an intuitive optimal
planner, and when applied to a static, completely known
graph, the performance is quite good. However, when the
graph is unknown or changing, the A* algorithm is not
suitable as it must completely re-plan after graph updates.
The D* family of algorithms [5, 6], is designed to function
efficiently with dynamic graphs. The algorithms make local
repairs to the path as the graph is updated, thereby maintain-
ing an optimal path according to the known terrain model.
One extension, Field D* [7], allows for more direct routes
by planning a path between two adjacent states using linear
interpolation to determine the edge cost. This algorithm has
been successfully implemented on the MERs [8, 9].

The idea of using two different terrain-assessment methods
has been developed in the Terrain Adaptive Navigation
(TANav) system [10]. TANav is designed for operation in
areas where the robot may experience unpredictable wheel
slippage. The initial method of assessment identifies terrain
as definitely traversable, definitely not traversable, or uncer-
tain. The path is planned on a goodness map created by
this assessment. If the path goes through an uncertain region
the second level of assessment, High-Fidelity Traversability
Analysis (HFTA), is used to determine the cost of that
section. The cost of the HTFA is never considered, though it
is acknowledged that it is more computationally expensive.

Multiresolution path-planners [11] limit detailed map rep-
resentation to complex areas of the path. They do not
consider the representation cost during planning since it is
small, unlike the cost of higher-fidelity terrain assessment.

Nabbe and Herbert [12] have work that deals with plan-
ning beyond the sensor horizon or through areas where in-
sufficient data has been collected. When determining a path,
the cost of acquiring data is considered during path planning.
The actual assessment cannot be carried out until sufficient
data is collected. However, when a robot has already acquired
a great deal of data in these complex areas, the decision is
whether to spend time doing a costly assessment.

The PAO* algorithm for planning with hidden state in-
troduces the idea of pinch points [13]. Pinch points are
areas of uncertain traversability that may significantly impact
the optimal path. Here the option of performing a deeper
assessment with a more capable method is not considered.

To the best of our knowledge, there are no path-planning
frameworks that account for the cost of terrain assessment
at the path-planning stage.

III. METHODOLOGY

In this paper we present our new path-planning framework
called the Second Opinion Planner (SOP). The SOP frame-

work has two major components: (i) a hierarchy of terrain-
assessment methods, and (ii) the planning framework itself.
In Section III-A we briefly discuss the assessment hierarchy.
In Section III-B we present the theory of the SOP framework
before discussing the SOP algorithm itself in Section III-C.

A. A Hierarchy of Terrain-Assessment Methods

We wish to construct a hierarchy of terrain-assessment
methods. For illustrative purposes we use a two-level hierar-
chy, but in practice there can be a great number of terrain-
assessment methods as long as they are ordered by increasing
cost and fidelity. At the bottom is the low-cost, low-fidelity
method. This method is applied to all the data and the output
must be a cost graph. The assessment must be able to mark
uncertain areas (areas where the method cannot ascertain if
the terrain is traversable or not) and give the corresponding
edges in the cost graph a probability of being an obstacle.

The highest-fidelity assessment method is at the top of
the hierarchy and is the highest-cost method. The idea is
for the planner to prudently use this method only in areas
that: (i) are labeled uncertain by the low-fidelity method,
and (ii) potentially lie on the optimal path. We assume that
the assessment methods are consistent. For example, a high-
fidelity assessment on an area deemed traversable by the low-
fidelity method must also find the area to be traversable.

We can consider the extreme cases of how the two methods
may be used. If the high-fidelity terrain assessment is never
used, the result is a long path as we only allow paths through
certainly traversable terrain. If the high-fidelity assessment is
used on all the terrain the robot will spend a huge amount of
time processing, and the shorter path will unlikely be worth
the effort. Therefore we require a method to select where to
use the high-fidelity terrain assessment.

B. Theoretical Foundations of the SOP

We have already established that not all terrain needs to be
assessed with the same level of fidelity in order to determine
if it can be successfully traversed by a mobile robot. This
suggests the use of a framework that judiciously uses expen-
sive techniques. The SOP is a novel, modular framework that
uses various terrain-assessment methods and a path planner
in an efficient package. SOP is also formulated to facilitate
a probabilistic extension that is still under development.

We have used a graph-based planning paradigm, where an
edge can be one of three types: viable, uncertain or obstacle.
Viable edges can be traversed for a known cost, uncertain
edges have an unknown cost (possibly infinite) and obstacle
edges cannot be traversed, giving them an effective weight
of infinity. We will omit obstacle edges from graphs and
plots. The start state corresponds to the current location of
the robot, while the goal state is the desired location.

1) Determining the Distance Matrices: Consider a high-
resolution graph, GH := (VH , EH), that encodes traversabil-
ity information for all the visible terrain based on the low-
fidelity terrain-assessment results. The states, VH , and the
edges, EH are defined as

VH := VL ∪ VH−L, and EH := EC ∪ EU , (1)
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Fig. 2: A summary of the available operators, their commu-
tativity and the option for batch updates.

where EC is the set of edges with known weight, w(e), and
EU is the set of edges with uncertain weight. These disjoint
sets contain all the edges in the graph GH . The lumped states,
VL, are the set of states consisting of the start, vS , the goal,
vG, and all states touched by at least one edge in EU . The
remaining states, VH−L, are the states of VH not in VL.

We can solve the all-pairs-shortest-paths (APSP) problem
for GH and store the results in DH , which we will call the
high-resolution distance matrix. A distance matrix contains
the shortest-path weight between all states. The operation to
create the distance matrix for the graph is represented by a
state-lumping operator, denoted by L, acting on the graph
and the states that are to be included. We introduce another
distance matrix, the lumped-edge distance matrix, DL, which
can be constructed in a similar manner to DH , but starting
with VL instead of VH :

DH := L(GH , VH), and DL := L(GH , VL). (2)

Since VL ⊆ VH , all path-weights contained in DL are also in
DH . This means that an equivalent way to find DL is to take
the relevant elements from DH using a projection matrix P ,
which is determined based on the set of lumped states VL.
The P operator is introduced to represent this operation:

DL = PDHP
T = P(DH). (3)

The lumped-edge distance graph, GL, is just another way of
representing DL, where the cost of an edge connecting two
states is given by the corresponding entry in DL.

2) Assessing Edges of Uncertain Weight: Uncertain edges
cannot be traversed and are therefore assigned a naı̈ve
weight of infinity, as would an edge representing an obstacle.
However, the weights of uncertain edges may be determined
by assessment with a higher-fidelity method. The assessment
operator, A, denotes the process of updating a distance
matrix by reassessing edge e(va, vb) connecting states va
and vb. Therefore, DH is updated as

D′H = A(DH , e). (4)

3) Updating the Lumped-Edge Distance Matrix: If the
size difference between VH and VL is large, and it will be
if the ratio of uncertain edges is relatively low, it is highly
desirable to directly update DL.

Theorem 1:: P and A commute, P◦A = A◦P , therefore
DL can be updated directly.
Proof: The weight being updated, w′(e), by A always
decreases but remains non-negative. The weight is associated

with an edge, e(va, vb) that joins states va and vb in VL where
VL ⊆ VH , so

D′L = A(DL, w
′(e)) = A(P(DH), w′(e)). (5)

Let δ(vx, vy) be the weight of the lowest cost path from vx
to vy for every pair of vertices (vx, vy) in VL so that,

δ(vx, va) + w′(va, vb) + δ(vb, vy) < δ(va, vb). (6)

Then update the weight according to,

δ′(vx, vy) = δ(vx, va) + w′(va, vb) + δ(vb, vy). (7)

This guarantees D′L represents the true lowest weight paths.
Since taking the alternate approach yields

D′L = P(A(DH , (x, y))) (8)

and also guarantees that lowest weight paths are represented,
P and A commute. �

The commutativity can be seen as part of Figure 2. It
is also desirable to be able to directly update DL with the
results from multiple high-fidelity assessments of uncertain
edge-weights. Let EA be the set of n edges of the form
e(va, vb), that are to be reassessed. Since only uncertain
edges can be updated, EA ⊆ EU . Instead of updating
DL with each edge weight individually to get D(n)

L , where
superscript (n) denotes the nth update, the A operation can
directly produce D(n)

L . This leads to the following theorem,
whose proof is omitted due to space constraints.

Theorem 2:: Batch updates to DL are possible, so multi-
ple edge assessment results can be incorporated at one time.

4) Selecting Appropriate Edge Weights to Reassess:
Potential path improvements can be detected by checking
if the total path cost from start to goal is improved if
uncertain edges are traversable. Uncertain edges are assigned
a heuristic minimum possible cost, h, augmented by the
cost of the next highest-fidelity assessment method, ca. The
distance matrix DL, which contains the solution to the APSP
problem is then updated using these new weights. If the
path cost from start to goal in D′L, is less than that in DL

then there are possible path improvements. We then state the
following theorems, omitting proofs due to space constraints.

Theorem 3:: If after reassessment of edges contained in
the path considered in D′L(vS , vG), the total path cost is
equal to D′L(vS , vG)−

∑
ca, then the shortest path from the

start to goal has been found.
The order that uncertain cells are reassessed influences the

number of assessments and therefore the cost of the path and
terrain-assessment combination.

Theorem 4:: Assuming there is a potential improved path
that uses n uncertain edges (n > 1), a minimum average path
cost occurs when the next-highest-fidelity edge assessments
are ordered according to

p1 ≥ p2 ≥ · · · ≥ pn−1 ≥ pn, (9)

where pi is the probability that the ith edge, assessed at the
next level of fidelity, is an obstacle.
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(i) Fractal terrain

(ii) Simple example

1. Gather raw 
sensor data

2. Assess terrain 
at low fidelity

3. Create high-
res. graph
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7. Update
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Pipeline:

Fig. 3: The pipeline view of the Second Opinion Planner algorithm with examples showing the data product at each step:
(i) on the top is an example using simulated fractal terrain (using the same terrain map as in Figure 4), and (ii) the bottom
shows a simple case to better illustrate the steps of the algorithm. The start and goal states, corresponding to the current and
desired positions of the robot, are shown as green and red circles or S and G, respectively. Gray areas are viable, yellow
areas are uncertain, and red areas are obstacles. Each step is a major stage of the SOP algorithm.

C. The Optimistic Second Opinion Planner Algorithm
The pipeline of the algorithm is shown in Figure 3. There

are two examples: (i) a case using simulated fractal terrain
on the top, and (ii) on the bottom, a simple case used to more
clearly show the steps. Step 1 of the pipeline is to gather raw
sensor data. Step 2 is to use all the data to assess the terrain
using the low-fidelity assessment method. The result is a
map where all regions are either known or uncertain. The
known areas are either viable (traversable) or an obstacle.
Step 3 is to use the low-fidelity assessment results to create
a high-resolution cost graph, GH , where edges are viable or
uncertain. Each uncertain edge also has probability, p > 0, of
being an obstacle. For the viable edges p = 0. In this version
of the framework, we discretize the terrain as regular, square
cells such that GH is an eight-connected graph.

Step 4 is to simplify the high-resolution graph, GH , to
create a graph that can be used to both speed up re-planning
and to efficiently look for potential path improvements. The
simplified graph is the lumped-edge distance graph, GL,
and it contains the subset of states connected by paths of
uncertain cost, plus the start and goal. The edges between
the states of GL are the edges of uncertain cost and the edges
representing the cost to travel between the states along edges
of known cost in GH . Part of this step is to find the shortest
path from the start to the goal going through only viable
edges and states, this is the naı̈ve path and its cost is cn.

A large GL can greatly increase the computational effort
required to run SOP. Therefore, at many points in the
algorithm we take steps to keep GL small. For example here,
during the construction of GL, we use cn as an upper limit
when deciding the states and edges to include. The minimum
cost of using an edge must be less than cn, and the minimum

cost of using an edge from state va to vb is

h(va, vb) + ca + h(vS , va) + h(vb, vG), (10)

where h(va, vb) is the heuristic minimum cost of traversing
the edge, and ca is the cost of terrain assessment at the
next level of fidelity. The minimum possible cost of getting
to va from the start state, vS , is h(vS , va). Similarly, the
minimum cost of traveling from the edge to the goal state, vG
is h(vb, vG). We use the Euclidean distance between states
vx and vy for the heuristic distance, h(vx, vy). If a state other
than the start or goal is not directly connected by an uncertain
edge, it is not added to GL. In this paper we assume a naı̈ve
path always exists, if this is not the case, GL will contain
more states and the computation will be more taxing.

Step 5 has the planner look for path improvements. To
do this, consider the two extreme cases of what GL may
represent: (i) the pessimistic GL where all the uncertain
edges are not traversable, or (ii) the optimistic GL where all
the uncertain edges are traversable at the minimum heuristic
cost plus the cost of carrying out the terrain assessment at
the next highest level of fidelity. If the start-to-goal path cost
in the optimistic GL is less than the lowest cost start-to-goal
path in the pessimistic GL, then there are uncertain edges
that may be part of the optimal path and terrain-assessment
combination. If the start-to-goal path changes when the path
is allowed to go through uncertain regions, there must be
uncertain regions that are on the optimistic optimal path.

The pessimistic start-to-goal path cost is available in the
pessimistic distance matrix as the entry corresponding to the
start and goal states, DL(s, g). To find the optimistic path we
can use the pessimistic GL and the uncertain edges to find the
start-to-goal entry of the optimistic DL. Recall that DL is a
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Naïve path cost: 1 500.6 s

SOP cost: 1 203.8 s

Edge reassessed as an 
obstacle using high-fidelity 

terrain assessment

1 189.7 s driving
9 @ 1.0 s = 9.0 s assessing

4.9 s planning

Start

Goal

Edge reassessed as 
traversable using high-

fidelity terrain assessment

1 500.6 s driving

Low-fidelity terrain assessment

Fig. 4: A SOP plan on simulated fractal terrain. In the center is the low-fidelity terrain assessment with the resulting paths
and high-fidelity assessment locations. The naı̈ve path (dashed) goes through only viable regions (gray) while the SOP path
(solid) crosses through areas that were uncertain (yellow) according to the low-fidelity assessment. High-fidelity assessments
of edges that were found to be obstacles are red while viable edges are green. Sample high-fidelity assessments of an obstacle
and traversable edge are shown on the left and right respectively. The true shortest path is the same as the final SOP path.

representation of the graph GL, where the states correspond
to the rows and columns of DL, and the cost of the edge
connecting state vi to state vj is the value of entry DL(i, j).
The uncertain edges (with augmented cost) can be added to
the pessimistic GL and the planner can find a path from vs to
vg on this new graph. The path is the optimistic start-to-goal
path. If this is different than the pessimistic GL path, there
are uncertain edges that could yield path improvements.

Step 6 is to reassess the uncertain edges in the optimistic
path (in order of decreasing p) using the terrain-assessment
method at the next-highest level of fidelity. The result is that
we now know the actual cost of the reassessed edge. If the
reassessment result is that the edge is traversable (as hoped
for in the optimistic DL), then the shortest path has been
found. If an edge is assessed as an obstacle, the assessments
are immediately stopped, even if there are other assessments
pending, as the optimistic path is now not traversable.

When necessary, step 7 is to update the graph GL with
the reassessed edge costs. We then return to step 5 and the
planner can again look for further improvements. The planner
will continue to seek a second opinion on pieces of terrain
until the assessment costs outweigh the possible path benefit.

IV. RESULTS
A. Tests on Simulated Fractal Terrain

We generated fractal terrain (a planner test method similar
to that of Stentz [5]) to test the performance of the algorithm
and to compare it to other potential methods. Each gener-
ated terrain model is 1008 × 1008 pixels, with each pixel
value corresponding to the local terrain height. The low-
fidelity terrain-assessment method divides the terrain model

into coarse, square cells that are 21 pixels per side. The
traversability of a cell is estimated based on the roughness
(variance of the height) of the pixels in the cell. There are
two roughness thresholds: (i) a limit below which a cell is
definitely traversable, and (ii) a limit above which the cell is
an obstacle. If the roughness is between the two thresholds,
the cell is deemed uncertain. The states in the high-resolution
graph correspond to the cell centers. The edges, based on an
eight-connected graph, are added if the associated states are
not obstacles and if the difference between the mean heights
is below the maximum step threshold. If both cells are viable,
the edge is viable; otherwise, the edge is marked as uncertain.
The probability that an edge is an obstacle is modeled using
a function based on the roughness.

The high-fidelity assessment operates on an uncertain edge
in the high-resolution graph. The pixels associated with the
edge are grouped into square cells of three pixels per side,
breaking the low-fidelity assessment cells into a grid of 7×7
smaller cells. A local cost graph is created using the same
method as the low-fidelity assessment, except there is no
uncertain option since the high-fidelity method is at the top
of the assessment hierarchy. On the local cost graph we
search for a path from the tail to the head of the uncertain
edge. Recall that this is simply an example of a high-fidelity
assessment method. Other examples include simulation with
vehicle kinematics, or manual assessment.

Figure 4 shows a low-fidelity assessment with a detailed
look at two examples of high-fidelity assessment. Also shown
is a SOP path plan, which is an improvement over the naı̈ve
path plan. The SOP plan uses uncertain cells that required
assessment using the high-fidelity assessment method.

304



TABLE I: Results for three cases corresponding to three different values of the cost of assessment, ca. Case 1, 2 and 3 use
high-fidelity assessment costs of 0.03, 3.5 and 100 s/assessment respectively. The methods considered are: (i) low-fidelity
assessment used everywhere, (ii) high-fidelity assessment used on all uncertain edges, (iii) high-fidelity assessment applied
to the uncertain edges in GL, (iv) the cost of assessment is not considered during planning, (v) the Second Opinion Planner,
and (vi) the best possible case which is a fortuitous lower bound created if high-fidelity assessment is only carried out on
uncertain edges on the final path (this is not achievable on average). The table presents the average cost of each contribution
and case over all 1 089 fractal terrain maps and gives one standard deviation.

Path Length High-fidelity Planning Time Cost of Cost of Cost of
(pixels) Assessments (#) (s) Case 1 (s) Case 2 (s) Case 3 (s)

(i) Low-fidelity 1 253.2± 177.3 0.029± 0.0079 1 253.2± 177.3 1 253.2± 177.3 1 253.2± 177.3
(ii) High-fidelity-all-uncertain 1 146.9± 111.3 1 843.9± 118.9 0.031± 0.0091 1 202.2± 110.9 7 600.7± 419.0 185 540± 11 876
(iii) High-fidelity-on-useful

Case 1: ca = 0.03 s 1 146.9± 111.3 893.0± 459.8 0.046± 0.012 1 173.9± 120.4
Case 2: ca = 3.5 s 1 146.9± 111.3 876.0± 468.9 0.046± 0.013 4 228.1± 1 717.1
Case 3: ca = 100 s 1 146.9± 111.3 556.0± 639.8 0.045± 0.013 56 843± 64 074

(iv) Ignoring cost of assessment 1 146.9± 111.3 15.4± 12.3 0.031± 0.0091 1 147.4± 111.5 1 200.8± 135.0 2 685.9± 1 279.3
(v) Second Opinion Planner

Case 1: ca = 0.03 s 1 146.9± 111.3 8.7± 7.2 4.7± 4.6 1 151.5± 113.5
Case 2: ca = 3.5 s 1 147.0± 111.4 7.1± 5.6 4.6± 4.6 1 173.2± 120.1
Case 3: ca = 100 s 1 220.8± 142.2 0.29± 0.94 2.2± 3.4 1 249.1± 169.7

(vi) Best possible
Case 1: ca = 0.03 s 1 146.9± 111.3 4.8± 2.9 1 147.1± 111.3
Case 2: ca = 3.5 s 1 147.0± 111.4 4.4± 2.8 1 162.1± 113.3
Case 3: ca = 100 s 1 220.8± 142.2 0.21± 0.69 1 242.1± 152.9

The start and goal were placed in locations similar to
those shown in the sample, and if there was not a naı̈ve
path (i.e., all certainly traversable edges from the start to
the goal) the map was not used. We ran the SOP algorithm
on 1089 fractal terrain maps and compared the results with
the some alternative options that are described later. The
results are summarized in Table I, it provides the average
and standard deviation of the costs across all the maps for
three different values for the cost of high-fidelity terrain
assessment. The total cost is broken down into the three
main components: (i) path length, (ii) number of high-fidelity
assessments, and (iii) planning time. We also provide a total-
time cost that combines the three components by assuming
a driving speed and time for each high-fidelity assessment.
The speed of the robot is 1 pixel/s and three cases are
considered with different costs of assessment, ca. The cases
use ca as: (1) 0.03 s/assessment, (2) 3.5 s/assessment, and
(3) 100 s/assessment. The cost has a dramatic influence on
the choices made by the SOP algorithm. The tests were
carried out on one core of an Intel R©CoreTM2 Duo 2.4 GHz
processor with 3 GB of RAM. The average distance between
the start and the goal is 959 pixels with a standard deviation
of 32.6 pixels.

In Table I, the low-fidelity assessment case employed the
low-fidelity assessment method everywhere and plans on
the resulting graph without allowing the path to traverse
uncertain edges (i.e., the path is the naı̈ve path). As we
would expect, the path length is relatively long and is the
major factor in the total cost. The high-fidelity-all-uncertain
assessment case begins with the same graph, but then uses the
high-fidelity assessment method on all the uncertain edges.
The result is that the path taken is the shortest possible path,
but there is a huge cost associated with carrying out all
the high-fidelity assessments. In the high-fidelity-on-useful
case, the high-fidelity assessment is only carried out on the

smaller set of uncertain edges included in GL. The result
is again the shortest possible path, but with fewer high-
fidelity assessments than the high-fidelity-all-uncertain case.
The number of assessments varies with ca because ca is
used when selecting the states and edges to include in DL.
For ignoring the cost of assessment the cost of high-fidelity
terrain assessment is neglected during planning. Therefore
the planner will plan along uncertain edges if that is the
shortest path. There is no consideration for the eventual cost
of assessment that must be incurred; this method is most
similar to the TANav framework [10] mentioned previously.
In all these cases the cost of planning is negligible.

SOP, on average, finds the lowest cost combination of path
and terrain assessment, or is quite close for all cases. It is
only slightly more costly at low ca due to the SOP planning
overhead. Of course, if the high-fidelity terrain assessment
were this cheap it would be used as the low-fidelity method,
allowing for even more capable methods higher in the
assessment hierarchy. The SOP costs are 1151.5 s, 1173.2 s,
and 1249.1 s, this corresponds to improvements of 101.7 s
(8.12%), 80.0 s (6.38%), and 4.1 s (0.33%) for cases 1, 2
and 3 respectively. SOP uses the shortest path most of the
time and uses very few high-fidelity assessments, though
clearly to good effect. The cost of planning is small but
not insignificant. SOP offers an advantage over the other
options shown, finding what is quite close to the minimum
possible path/assessment combination. The minimum pos-
sible path/assessment combination would be to only assess
uncertain edges that are on the final path, but it is impossible
to know in advance if an edge will turn out to be an obstacle
or traversable after high-fidelity assessment.

Looking critically at the results there are some opportu-
nities for improvement. The planning time can be reduced
with a more efficient implementation and is dependent on
the computing power. The number of assessments may be
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Fig. 5: A sample SOP plan at a planetary analogue site is shown on the left. A long-range point cloud was collected using
an Optech ILRIS, shown mounted on the test robot at the right. Plane-fit terrain assessment was used for the low-fidelity
assessment. The gray, yellow and red planes respectively show traversable, uncertain and obstacle regions of the terrain.
The naı̈ve (dashed) and SOP (solid) plans are shown. The initial reassessments requested by SOP yielded obstacles so an
alternate path was proposed, assessed, and found to be traversable. Times are the total of all cost contributions.

also be reduced by moving away from an optimistic model
and making better use of the probability that an edge is an
obstacle. In contrast, the path length cannot be appreciably
reduced since it is already quite close to the minimum.
Further improvements are going to be relatively small, and
in practice, only noticeable on large maps where the cost of
high-fidelity terrain assessment is large (but not too large)
relative to the driving speed. We have been considering a
probabilistic extension to the SOP but further development
may be at a point of diminishing returns.

B. SOP at a Planetary Analogue Site

We have used SOP on real data collected at a planetary
analogue site. In Figure 5 we can see the terrain assessment
and SOP plan using a long-range LIDAR scan from an area
near the Haughton Crater, Devon Island, Nunavut, Canada.
The low-fidelity assessment used 10 × 10m cells and the
high-fidelity method is the same as the short-range guidance
system on the robot shown in Figure 1. The purpose of
the field trials was to validate an assessment hierarchy. We
carried out nearly 10 km of autonomous driving and have
collected over 40 long-range LIDAR scans to achieve this
objective. The initial results are promising and further testing
using this data is ongoing.

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel path-planning framework that
considers the cost of terrain assessment in the planning
process. It attempts to limit the use of high-fidelity terrain as-
sessments to areas that can result in a shorter path (including
the cost of assessment). We presented the theory behind the
framework and results of using our implementation, the opti-
mistic Second Opinion Planner, on simulated fractal terrain.
The SOP plans are quite close to the minimum possible cost,
though some improvements are possible. We are working on
more efficient implementations of the algorithm and also a
probabilistic version that uses the probability that an edge is

not traversable to better model the actual driving costs before
carrying out a costly high-fidelity terrain assessment.
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