



Abstract— Steering maneuver is essential in robotic motion
planning. Despite a lot of steering mechanisms successfully
developed in past years, for miniature robots, real-time
computation is still a limitation for robot path tracking. The
design issues in cooperative control of battery-powered
nonholonomic robots rest with the complicacy of the control
strategies, the low power consumption and real-time processing
capability. Conventionally, the improvement of computing
speed mostly relies on the increment of the system clock and
often results in some transient loss. Thus, an elaborate control
algorithm developed for PC might not work on an embedded
system. This paper presents a comprehensive steering algorithm
which, via issuing predicaments for computation, will
dramatically reduce the resource usage in hardware circuit
design. The proposed algorithm is implemented on an
embedded system for ubiquitous robotics using the field
programmable gate array (FPGA) technology.

I. INTRODUCTION

HE most popular robotic steering systems of wheeled
robots are the differential-drive and Ackermann steering.

The motion of the differential-drive robots are controlled by
individually controlling the motors driving each wheel. The
same speed of motors produces straight line motion whereas
different speeds cause the robot to turn. On the other hand, the
Ackermann steering vehicles use two separate actuators for
driving and turning [1].

Steering control of non-holonomic robots in indoor
environments can be modeled by using the space coordinates
such as the turning angle, angular turning speed, and
orientation of robots due to their relatively slow speed of
motion [2]. The lateral sliding problem in an indoor
environment is not as serious as in a high speed car [3].
During an autonomous driving scenario, two essential
parameters can be considered for steering strategies. The first
parameter is called the look-ahead distance, i.e. the specified
virtual distance in front of the robot. In real-world
applications, the specified look-ahead distance helps a
vehicle to decide the deviation from the central line of road
[4], or it can also be extended to calculate accordingly the
speed with respect to ground [5]. The second critical

This work was supported by the ARC Centre of Excellence programme,

funded by the Australian Research Council (ARC) and the New South Wales
State Government.

The authors are with the ARC Centre of Excellence for Autonomous
Systems (CAS), Faculty of Engineering and Information Technology,
University of Technology, Sydney, PO Box 123 Broadway NSW 2007
Australia. (E-mail: {YingHao.Yu|sakoda|quangha}@eng.uts.edu.au).

parameter is the pursued point, which is the destination of a
look-ahead distance. Consequently, a long and sweeping
route can be composed from sequential pursuing points, and
the expected trajectory of robot is achieved by different
angles of turning. If we assume a wheeled indoor robot is
tracking on planned points, the shortest path tracking will
depend on the least swing of every look-ahead path.

There have been many techniques successfully developed
in past years to obtain optimal path tracking for
differential-drive and car-like vehicle steering [6,7].
Minimizing errors in vehicle path tracking can be achieved
via the use of rigorous control techniques [4,5]. However,
autonomous steering requires the availability of measurable
parameters from the robots and their environment, resulting
often in much computing effort for a higher accuracy. In an
indoor environment, real-time computation remains a
limitation for robot path tracking with miniature robots. The
complicacy of the control strategies, the low power
consumption and real-time processing capability are design
issues for cooperative control of battery-powered
nonholonomic robots. Even implementing complicated
strategies for vehicle control on an embedded system, the
overall motion may also inherit the problem of driving
stability. This problem has been discussed in [8], revealing
the swing of steering control with short horizons, and is
generally ascribed to the requirement of a drastic reaction to a
large deviated angle for error correction to maintain the
desired path. Reactive tracking for a group of robots is
proposed in [9] using the variable structure methodology, but
also facing implementation difficulties. The driving stability
problem could be alleviated by employing a larger
look-ahead distance [10]. Unfortunately, such long
look-ahead schemes may not be realistic in an indoor
environment where the driving space is limited.

In contrast to control theoretic solutions, the pure-pursuit
task executing the shortest path between two points can be
realized only with a single turning [10]. Although the
pure-pursuit algorithm is an efficient mechanism to reach the
expected destination, it does not guarantee the orientation of
the robot aligning with the path at the destination [11]. The
problem is originated from the curve steering nature which
always requires to maintain an incident angle to the path.
Towards a valid solution, the use of a behavior-based model
for robot steering seems to be feasible with small values of
speed and acceleration of a robot navigating in an indoor
environment. The steering behavior can be represented by
geometric representations which have been used to coin the

Slope-Based Point Pursuing Maneuvers of Nonholonomic Robots
using FPGA

Ying-Hao Yu, S. Kodagoda, and Q.P. Ha

T

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3694

shortest path planning in mobile robotics. Dubins first
estimated the shortest path between two points in an obstacle
free space by combining clockwise turning (R), anticlockwise
turning (L), and a straight line driving (S), e.g. RSL or LSR
maneuvers [12]. Although it proposed a good paradigm in
behavior-based steering, finding the start and end point of a
tangent between two turning arcs is not an easy task for
embedded systems [13].

From [7], one can see that the shortest path for
nonholonomic robots in an obstacle free environment
comprises in general a trajectory combining three labels.
Motivated by this framework and Dubins’ turning
mechanisms, we introduce in this paper a slope-based
are-line-arc (SBALA) algorithm, aiming at implementation
of robot steering on a programmable chip for a compromised
shortest path that is feasible for the chip capacity. Notably,
this algorithm involves reduced computing effort, and hence
allowing the steering maneuvers to be realized directly on an
embedded system with hardware circuit design. This targets
directly the rising trend of ubiquitous robotics, which mainly
entails embedded systems with limited computational power.
Therefore, the possibility that the proposed algorithm can be
implemented on an embedded system using the FPGA
technology underlines the significance of the idea [14].

The remainder of this paper is organized as following:
Section II describes the SBALA geometric algorithm. Section
III provides the development of the proposed steering
mechanism on an FPGA kit for a differential-drive platform,
the Eyebots. Experimental results and discussion are included
in Section IV. Finally, Section V concludes the paper.

II. SLOPE BASED ARC-LINE-ARC ALGORITHM

A great deal of research has been devoted to the problem of
planning collision-free optimal trajectories for nonholonomic
mobile robots that move forward only [12] or move forward
and backward [15], whereby the shortest paths comprise
straight line segments and arcs subject to bounded turning
radius [6].

A. SBALA Algorithm

By considering the least computing effort and resource
usage on embedded systems, particularly for hardware circuit
design, the angular and trigonometric representations are
firstly replaced by the instant tangent slope of the robot
trajectory on a 2D plane. Figure 1 shows an example of the
slope based arc-line-arc algorithm (SBALA) in 2D
representation. Here, we consider only cases when a
nonholonomic mobile robot is pursuing a target that is away
at least by four minimal turning radii.

The SBALA is mainly composed of seven critical points,
from A to F. Point A is the expected pursuit destination, and B
is the central point of the robot at its initial location. Slope m
represents the trajectory tangent at point A in
(x,y)-coordinates, and another slope, denoted m’,
perpendicular to the trajectory at A in the direction AF . The

look-ahead distance shown in Fig. 1 is the straight distance
between point A and B. Point C is the perpendicular
intersection point from B and the desired orientation at point
A. To provide the turning reference of the robot, AC is
separated into four equal sections, and R0 is the turning radius,
equal to 1/4AC at point B. More division numbers may be
used for differential-drive robots while a section length will
be limited by the maximum turning curvature of a
vehicle-like robot. The orientation of the robot at B shown in
Fig. 1 is conveniently set aligned to BC .

Fig. 1. A representation of SBALA on 2D plane.

Next, the robot starts to pursue the point A with an initial

anticlockwise turning (L). Line DG is the tangent of the
robot’s first turning arc. After the robot has reached point G,
it starts a straight line driving (S) toward point D, which is
determined by AD =1/4 AC . Point E is the starting off point
of second arc, located on the ring which circles point D with
radius 1/4AC. Once the robot reaches point E, the second arc
can be derived with radii AF=EF, completing the path B to A
with an aligned orientation, where point F is the center of the
second arc.

B. General Cases of SBALA Algorithm

Considering cases of robots moving ahead only, Figure 2
shows four examples of SBALA maneuvers using R, S and L
combinations. Those diagrams show realistic steering to the
pursued point. Different turnings on both sides of AC can be
represented as LSR, RSR, RSL, and LSL. Thereby, even on
the straight path, the curvature of the second arc will be
approximated to zero, so the robot nearly keeps a straight line
for driving on the look-ahead path.

From Fig. 2, a question may be asked as to which turning
path (L or R) can be chosen from SBALA algorithm. As the
variant length on the second arc is limited for a small range
operation, this problem can be discussed for finding the
shortest path for the first arc toward point D, then determining
the second turning by R or L maneuver, see Fig. 3. The
shortest turning rules for the first arc with arbitrary initial

3695

orientations of the robot are summarized in Table I by
comparing the slopes of the straight line BD and at the
starting point B.

(a) LSR on right side of AC . (b) RSR on right side of AC .

(c) RSL on left side of AC . (d) LSL on left side of AC .

Fig. 2. Examples of SBALA algorithm.

Fig. 3. Point pursuing for different locations of point D.

Table I
The shortest turning rules for the first arc toward point D.

m1 m1
’ m1 － m1

’
D(y)  B(y) D(y) < B(y)

Up Down Up Down

+ +
 0 L R R L
< 0 R L L R

－ －
> 0 L R R L
 0 R L L R

－ + x L R R L

+ － x R L L R

In Table I, m1 is the slope of BD , and m1’ is the slope at
point B for an arbitrary initial orientation of the robot.
Notation “Up” is for the robot is moving forward on 2D plane
while “Down” is for the reverse direction. D(y) and B(y)
represent the coordinates in y axis at D and B. The turning
rules on Table I will reverse with different longitudinal
driving directions or when point D crosses the horizontal axis
at B corresponding polar angle 0 or  .

III. SBALA IMPLEMENTATION ON FPGA

The FPGA platform used in our study is the Altera DE2-70
equipped with Cyclone II FPGA which is shown in Fig. 4(a).
The camera utilized is a 5-Mega pixels digital camera module
from Terasic shown in Fig. 4(b) setting shutter speed of 34fps
and 1024x1280 pixels resolution. In the test scenario, the
monocular digital camera with a FPGA platform is used as
the environment mounted global camera to track and control
two differential-drive robots of Eyebot type shown in Fig.
4(c).

(b) digital camera.

(a) FPGA platform with Cyclone II FPGA.
(c) Eyebot with
bull eye label.

Fig. 4. Devices for SBALA implementation.

For FPGA implementation of the proposed SBALA
algorithm, we have utilized our previous designs for machine
vision. The first design is the color discrimination function
[16,17]. Instead of using computationally demanding pattern
recognition algorithms, the FPGA detects the dual color of
bull eye labels on the top of Eyebots. The outer green ring of
the bull eye is used for interference reduction, and the inner
blue area is the interested label. The FPGA tracks Eyebots
(labels) which start off from a docking area on the bottom of
the monitor screen via specified threshold of blue pixel
numbers. The second design is the relative distance
estimation algorithm based on Perspective Projection Image
Ratio (PPIR) [18]. Instead of performing relative distance
measurement using the sensors installed on robots, we use a
monocular global camera to estimate the relative distance
between perspective labels’ images on the robots. Further, it
provides the ratio between the real distance and the diameter
of labels (circles), i.e. distance in ratio equal real distance
over circle diameter. Once the color discrimination and PPIR

3696

relative distance estimation functions have been implemented
on the FPGA platform, the coordinates of the leader robot,
follower robot, and pursued point can be determined.

One of the SBALA applications is the multi-robot
formation control. Figure 5 depicts the test scenario requiring
the robot located at bottom of the figure (point B) to pursue
and align with the virtual leader robot on the top of the figure
(point A). Firstly, we deliberately define the central point of a
leader’s label at L(x0,y0) = L(40,40) as the global coordinates
in PPIR distance ratio. This value is decided by the ratio of
the maximum view range of the camera over the blue circular
label diameter. The instant trajectory tangent (slope) m is
measured by movement of 1/10 label length. Once the
pursuance has started, the Eyebots move forward shortly then
stop, and the slopes of trajectories on 2D plane are
accordingly recorded by FPGA.

Fig. 5. Test scenario for the SBALA algorithm

 In the next step, the follower robot starts to pursue the

expected point with a constant speed and driving distance
(curve length) in every remote instruction received, the
FPGA continuously sends driving angles in radians to Eyebot
for turning. The pursued point A(x1,y1) can be derived by
FPGA as:

 
 01

011
'

xx

yy

m
m







 , (1)

where its coordinates are obtained from

     22
01

2
01 Rnyyxx  , (2)

as

 
,

'1
0201 Xx

m

n
xx R 




,

'

1
1

0201 Yy

m

n
yy R 










 (3)

in which the sign of X and Y are respectively decided by the
location to leader and slope m, nR is the PPIR distance ratio.

The location of follower robot B(x2, y2) is decided by the
PPIR relative ratio to the global point L. Coordinates C(x3,y3)
in Fig. 5 are derived from slopes m and m’ as:

.

'

3113

1212
3

mxmxyy
mm

mxxmyy
x





 (4)

Similar to equation (3), Point D(x4,y4) is determined
according to the SLABA algorithm from coordinates C(x3,y3)
minus 3/4 AC . Moreover, the follower trajectory slope and

line BD can be simplified by a look-up table tan in FPGA
for angles from 0 to 90 degrees. Due to the control delay, if
the flollower trajectory tangent is matched with the BD slope,
point G is reached, then it will start the segment of straight
driving (S). As soon as the follower reaches the circle around
point D at distance of about 1/4AC, point E is determined by
ED =1/4AC. The center, point F(x6,y6), can be derived via
coordinates of A, D, and E and slopes m2 and m’ as:

 
 

 
 65

56

45

45
2 yy

xx

xx

yy
m








 , (5)

as

.
'1

'''

,

2

52511
6

625256

mm

ymmxmxmy
y

ymymxx







 (6)

The robot is then driving along the second arc (R) with radius
AF = EF. However, in the real applications, the length AC
might be fixed, so the radii of the second arc can be also
simplified by a look-up table which is corresponding with the
look-up table of BD slope. The real driving SBALA strategy
is implemented on the FPGA platform with the following
pseudo codes:

If |slope(B) - slope(BD)| > tolerance then arc_1

else
reach point G and load straight line drive ”S”

If |length(BD) – length(AC)| <= tolerance
reach point E and load arc_2

If arc_2

If AB = shortest distance then stop or reload arc_1

All the other functions including image processing, relative
distance estimation, target tracking, remote control, and VGA
interface for external image buffer are implemented on a
FPGA chip using pure hardware circuit designs. The total
FPGA resource usage is 41% of 68,416 LEs. The parallel
processing structure guarantees the PPIR and points of
SBALA both to be performed in 70 clocks synchronizing
with every two pixels at the final image line “1023” (39MHz).

3697

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The real-time driving images from the digital camera are
shown on a computer monitor through the VGA interface of
the FPGA platform. Figure 6(a) shows the initial deployment
of SBALA. A rectangle mark on the floor with 24 x 48 cm2 is
used to present the coordinates. The central point of leader is
initially located on the left-up side at 42 cm point. Every
section of AC is 12 cm. In Figs. 6(b) and (c), the leader and
follower robot move forward for one blue label length (6cm)
firstly, then the follower starts the first arc turning in Figs. (d)
and (e) with fixed radius 12 cm. Through the Figs. (f) to (h),
the follower performs the straight and second arc driving
without interruption then reach destination on the right-up
corner.

The resolution of the look-up table for BD slope and the
second turning is chosen as 5 degrees. The remote medium of
Eyebots is infrared with 0.3 to 0.5 seconds reaction delay.
The driving speed of Eyebot is set at 10 cm per second, and
the PPIR distance estimation error is less 5%. With a detected
movement of 1/10 label, the deviation between robot’s
orientation and slope is about 5 degrees. The error becomes
critical when the separating distance is increased. Thus by
setting the trajectory to D with error ± 5 degrees, the
maximum deviation at destination are about 10 degrees and
1/4 label shift if the robot begins the first turning at six labels
away from point C.

Notably, since the proposed SBALA algorithm is
developed based on Dubins’ turning rules with “L”, “S”, and
“R” maneuvers, in order to suit the requirements of FPGA
implementation, the start and terminal points of the tangent
between arcs are determined by using simply basic arithmetic
operations. Another interesting feature is that SBALA
compromises the absolutely shortest tracking path of the
second arc in calculating with slopes. Also, it makes the final
turning less abrupt. Such design has the advantage for easing
off the error from sliding motion during the final turning
process. In our experiments, the SBALA operations can cope
with large incident angles. The unstable driving swing is
mitigated since the second arc is aimed to align with the path
to keep steering small when the robot is fluctuating a little bit
from the path. Contrarily, the swing conditions in control
techniques may require a small incident angle to avoid drastic
error correction from over steering control.

Finally, the requirements of real-time and low power
consumption on embedded systems are also considered in the
proposed SBALA algorithm. Although both issues have been
overcome via hardware circuit designs, unfortunately, the
floating point operations with trigonometric functions
consume too many logic gates, so it is infeasible to implement
the whole system directly in hardware circuitry with a
programmable embedded system [19]. Here, the SBALA is
designed suitably to interpret robots’ trajectory tangent in 2D
slope with the purpose to demonstrate the possibility of
realizing the steering control via basic binary operations. For
example, by incorporating the PPIR algorithm [18], a smaller

space unit can be represented in ratios with respect to the
label diameter. With a reasonable error, it accepts numbers
which are simply re-scaled by multiplying for 100, and the
square rooting problem can be also easily approximated by
using the following algorithm [20]:

   abaayx ,5.0125.0max22  , (7)

where a = max (|x| , |y|), and b = min (|x| , |y|), with values 0.5
and 0.125 being expressed by right shift operations for 1 and
3 bits.

(a) Initial deployment (b) Leader move forward.

(c) Follower move forward. (d) Running on first arc.

(e) Keeping first arc. (f) Running on straight.

(g) Running on second arc. (h) Reaching destination.

Fig. 6. Point pursuing for row formation with two Eyebots.

3698

V. CONCLUSION

We have presented an effective algorithm for robot
steering with its implementation on a programmable chip. By
improving Dubins’ turning maneuvers, we have solved the
steering problem for robotic path tracking with minimum
design effort. This innovative feature can contribute to the
required real-time implementation with low power
computation in embedded systems. According to the
experimental results, the proposed slope-based arc-line-arc
algorithm demonstrates its comparable abilities in stable
steering and path tracking. By breaking away from the
concept of trigonometric modeling, the algorithm can model
the steering maneuvers by trajectory tangents in 2D.
Consequently, the operations of floating point become an
option in such algorithm. These advantages make the
proposed SBALA algorithm feasible and efficient for
implementation on embedded systems, particularly for the
application of the FPGA technology in ubiquitous robotics.

REFERENCES

[1] T. Bräunl. Embedded Robotics. Springer, Australia, 2006,
pp. 97-121.

[2] B. Li and C. Zhang,” Adaptive fuzzy control for mobile
robot obstacle avoidance based on virtual line path
tracking,” Proc. IEEE Intl. Conf. Robotics and
Biomimetics, Kunming, China, 2006, pp.1454-1458.

[3] R.N. Jazar, Vehicle Dynamics: Theory and Application.
Springer, USA, 2008, pp. 98–145.

[4] R. Marion, S. Scalzi, G. Orlando, and M. Netto, “A
Nested PID Steering Control for Lane Keeping in Vision
Based Autonomous Vehicles,” Proc. American Control
Conf., Missouri, USA, 2009, PP. 2885-2890.

[5] Y. Hayakawa, R. White, T. Kimura, and G. Naitou,”
Driver Oriented Path Following in ITS,” Proc. IEEE Intl.
Conf. Advanced Intelligent Mechatronics, Illinois, USA,
2003, vol. 1, pp.558-563.

[6] S. Bhattacharya, R. Murrieta-Cid, and S. Hutchinson,
“Optimal paths for landmark-based navigation by
differential-drive vehicles with field-of-view
constraints,” IEEE Trans. on Robotics, Vol. 23, pp.
47–59, 2007.

[7] F. Lamiraux and J.-P. Laumond, “Smooth Motion
Planning for Car-Like Vehicles,” IEEE Trans. on
Robotics, vol. 17, pp. 498-502, 2001.

[8] S.-B. Wu, H-Y. Chen, and M-Q. Zheng, ”Study on
Stability for Steering Closed-Loop System of
Remote-Operated Tracked Vehicle,” Proc. IEEE Intl.
Conf. on Machine Learning and Cybernetics, Montreal,
Canada, vol.6, 2009, pp.3145-3149.

[9] Q.P. Ha and G. Dissanayake, "Robust Formation of
Multiple Robots using Reactive Variable Structure
Systems," Int. Trans. Systems Science and Applications,
Vol. 1, No. 2, pp. 183-192, 2006.

[10] J. Morales, J-L. Mart í nez, A. Mart í nez, and A.
Mandow,” Pure-Pursuit Reactive Path Tracking for
Nonholonomic Mobile,” EURASIP Journal on Advances
in Signal Processing, Article ID 935237, 10 pages, vol.
2009.

[11] Y. Suzuki, S. Kagami, and J. J. Kuffner, ”Path Planning
with Steering Sets for Car-Like Robots and Finding an
Effective Set,” Proc. IEEE Intl. Conf. on Robotic and
Biomimetics, Kunming, China, 2006, pp.1221-1226.

[12] L.E. Dubins, “On curves of minimal length with a
constraint on average curvature and with prescribed
initial and terminal positions and tangents,” American
Journal of Mathematics, Vol. 79, pp. 497-516, 1957.

[13] A. Balluchi, A. Bicchi, A. Balestrino, and G.
Casalino, ”Path Tracking Control for Dubin’s Cars,”
Proc. IEEE Intl. Conf. on Robotic and Automation,
Minnesota, USA, 1996, Vol. 4, pp. 3123-3128.

[14] Ying-Hao Yu, S. Kodagoda, and Q. P. Ha, “FPGA-Based
Ubiquitous Computing Intelligence for Robotic
Formation Control,” Proc. Int. Symp. Automation and
Robotics in Construction, Bratislava, Slovakia, 25-27
June 2010.

[15] J.A. Reeds and L.A. Shepp, “Optimal paths for car that
go both forwards and backwards,” Pacific Journal of
Mathematics, Vol. 145, pp. 367-393, 1990.

[16] Ying-Hao Yu, N.M. Kwok, and Q.P. Ha, “FPGA-based
Real-time Color Discrimination Design for Ubiquitous
Robots” Proc. Australasian Conference on Robotics and
Automation, Sydney, Australia, 2009.

[17] Ying-Hao Yu, N. M. Kwok, and Q. P. Ha, “Chip-based
Design for Real-time Moving Object Detection using
Digital Camera Module,” Proc. of the 2nd International
Congress on Image and Signal Processing (CISP'09),
Tianjin, China, 17-19 October 2009, Vol. 4, pp.
1993-1997.

[18] Ying-Hao Yu, Chau Vo-Ky, S. Kodagoda, and Q.P. Ha,
“FPGA-Based Relative Distance Estimation for Indoor
Robot Control Using Monocular Digital Camera”,
Journal of Advanced Computational Intelligence &
Intelligent Informatics, Vol. 14, No. 6, 2010.

[19] J. Detrey and F. Dinechin, ”Floating-Point
Trigonometric Functions for FPGAs,” Proc. IEEE Intl.
Conf. on Field Programmable Logic and Application,
Amsterdam, The Netherlands, 2007, pp. 29-34.

[20] P. P. Chu. RTL Hardware Design Using VHDL. John
Wiley & Sons, Canada, 2006, pp. 460-468.

3699

