
Contingency Planning over Probabilistic Hybrid Obstacle Predictions

for Autonomous Road Vehicles

Jason Hardy and Mark Campbell

Abstract— This paper presents a novel optimization based
path planner that can simultaneously plan multiple contingency
paths to account for the uncertain actions of dynamic obstacles.
This planner addresses the particular problem of collision
avoidance for autonomous road vehicles which are required
to safely interact with other vehicles with unknown intentions.
The presented path planner utilizes an efficient spline based
trajectory representation and fast but accurate collision prob-
ability approximations to enable the simultaneous optimization
of multiple contingency paths.

I. INTRODUCTION

The 2007 DARPA Urban Challenge (DUC) competition

demonstrated that current autonomous vehicles are adept

at identifying obstacles, planning routes, and interacting in

controlled environments with well defined rules [1]. It also

demonstrated that there remains a large gap in problem solv-

ing and decision making capabilities between autonomous

vehicles and human drivers. A major reason for this gap is

the inability of current perception and planning algorithms to

adequately identify and predict obstacle intent [2]. Inferring

obstacle intent enables an autonomous vehicle to model

the future motion of dynamic obstacles. These obstacle

predictions can then be used to improve the safety and

robustness of the robot’s trajectory planning.

Predicting future obstacle motion is a problem that has

been explored in a variety of fields and contexts. Kushleyev

and Likhachev [3] perform predictions of dynamic obstacles

using constant velocity and constant curvature dynamics

models. This approach is computationally efficient but ig-

nores structural information in the environment. Bennewitz

et al. [4] model human trajectories through an environment

using observed trajectories as training data. This approach

can produce detailed probabilistic trajectories but requires

retraining for each new environment and obstacle type. Miura

and Shirai [5] infer the potential paths an obstacle might

take using a tangent graph of the environment and a 1D

model of velocity variance along each potential path. Hwang

and Seah [6] present an algorithm for inferring the intent of

other airplanes based on likely flight plans, for probabilis-

tically modeling their future motion, and for utilizing this

information to detect potential future conflicts. During the

DUC, the Tartan Racing team showed that it is possible to

deduce a small set of short term goal hypotheses for dynamic

obstacles based on the surrounding road configuration [7].

The simulations presented in [7] and the success of Tartan

Racing’s BOSS robot in the DUC make a compelling case

Department of Mechanical and Aerospace Engineering, Cornell Univer-
sity, Ithaca, NY, USA jsh256@cornell.edu

for the inclusion of inferred obstacle intent in the planning

process.

The approach presented in this paper is to form goal

hypotheses for each dynamic obstacle as in [7] and predict

these obstacles’ state distributions forward in time using a

probabilistic motion model. Based on the work and lessons

learned from Team Cornell’s entry in the 2007 DUC [8]

[9], a new path optimization algorithm is proposed which

intelligently incorporates probabilistic obstacle predictions to

enable safe, efficient trajectory generation in dynamic envi-

ronments. The computational efficiency required for solving

this problem is achieved by 1) framing the planning problem

as a constrained numerical optimization problem, 2) solving

the planning problem over a limited planning horizon, 3)

adopting an efficient spline based trajectory representation,

and 4) using fast but accurate collision probability approxi-

mations. Spline based trajectory representations have been

used before, such as in [10]; here they are employed in

a unique way to enable multiple contingency trajectories

to be efficiently optimized in unison. Also, while limiting

the planning horizon prevents true global planning, it is an

effective navigation strategy when used in conjunction with

a higher level global route planner [8].

II. OBSTACLE PREDICTION

It is assumed in this paper that the problem of identifying

unique dynamic obstacles, tracking these obstacles between

sensor measurements, and estimating the state of these

obstacles has been resolved to a sufficient degree using an

external tracking algorithm, such that current Gaussian state

estimates ((µi,Σi) for the ith of no dynamic obstacles) are

known at the beginning of each planning cycle. Each of these

obstacle estimates is then used as an initial distribution for

the obstacle prediction algorithm. A set of {ng}
i goal states,

gi1:ng
, is inferred for each obstacle based on a known topo-

logical representation of the local road network. For example,

a dynamic obstacle approaching a four way intersection

might have g ∈ {stop, go straight, turn left, turn right}.

For multiple dynamic obstacles, Gj represents the jth set

of possible goal combinations for the no obstacles, Gj =
{g1(·), . . . , g

no

(·)}j , where {gi(·)}j is the inferred goal state

included in Gj for obstacle i. A total of ns =
∏no

i=1{ng}
i

goal sets are available.

The output of the obstacle prediction algorithm, oj , is

a sequence of predicted obstacle state distributions for no

dynamic obstacles over N timesteps for a given goal state

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2237

set, Gj :

oj = {p(Gj), (µ̂
1
j , Σ̂

1
j)k:k+N , . . . , (µ̂no

j , Σ̂no

j)k:k+N} (1)

where p(Gj) is the probability of Gj being correct.

The motion of each obstacle is predicted forward in

time using a probabilistic motion model. For linear motion

models, this prediction can be performed using the predic-

tion step of the standard Kalman filter. For more general

nonlinear, non-differentiable motion models, this prediction

can be performed using an algorithm such as the Unscented

Transform [11].

At the start of each new planning cycle updated state esti-

mates for each obstacle, {(µ1,Σ1)k+1, . . . , (µ
no ,Σno)k+1},

are obtained from the tracking algorithm. These new state

estimates are used to update the probability of each goal set,

p(Gj):

p(Gj)k+1 =
p(Gj)k

∏no

i=1 p((µ
i,Σi)k+1|(µ̂

i
j , Σ̂

i
j)k+1)

∑ns

l=1 p(Gl)k
∏no

i=1 p((µ
i,Σi)k+1|(µ̂i

l, Σ̂
i
l)k+1)

(2)

where p((µi,Σi)k+1|(µ̂
i
j , Σ̂

i
j)k+1) is the innovation likeli-

hood of the updated state estimate for obstacle i, (µi,Σi)k+1,

given the predicted state distribution from the previous

timestep, (µ̂i
j , Σ̂

i
j)k+1, using the goal specified in goal set

Gj .

III. PATH OPTIMIZATION

The path planning problem is formulated here as a general

optimization problem:

hopt = min
h

J(h) (3)

C(h) < 0

where h is a parameter vector that defines a trajectory or

set of contingency trajectories for the robot and J(h) is a

predefined cost function over which the path is optimized.

The constraint function, C(h), places hard constraints on the

range of possible values that h can take.

In order to accurately handle the hybrid nature of the

obstacle predictions, it is necessary to plan a separate con-

tingency path for each obstacle goal set, Gj . However, since

the robot cannot follow multiple contingency paths at the

same time, the initial segment of each contingency path is

constrained to be the same.

This is preferable to alternate approaches, such as planning

a single path that attempts to avoid all obstacle predic-

tions simultaneously, or taking a weighted combination of

independent contingency paths. Planning a single path is

overcautious and ignores the fact that the obstacle goal sets

are mutually exclusive, while taking a weighted combination

offers no guarantees on the safety of the combined path.

Sharing the initial segment of each contingency path gives

the robot a deterministic path to execute at the current

time step while maintaining the independence of future

contingencies.

A. Trajectory Representation

To make the optimization problem defined in Equation 3

efficient enough for realtime replanning, a path representa-

tion is used that is both expressive in its ability to cover the

search space and compact in its dimensionality. Cubic splines

are chosen for this purpose since two splines, y(t) and x(t),
define a continuous representation of the robot’s position,

(x, y), and its derivatives, (vx, vy, ax, ay), as a function of

time, t, using only a small set of control points, h, as

variables. The optimization vector, h, is a set of parameters

defining ns contingency trajectories with a shared initial

segment:

h = {hx
1 , h

1,x
2:n, ..., h

ns,x
2:n , h

y
1, h

1,y
2:n, ..., h

ns,y
2:n } (4)

where n is the number of cubic line segments in each

contingency path. The shared initial segment constraint is

enforced by defining the initial segment as an independent

cubic line segment. The initial conditions of the robot define

the boundary conditions for one side of this initial segment

and a zero-curvature end condition and the height of the first

control point, h
(·)
1 , define the remaining boundary conditions.

The first control point, h
(·)
1 , represents the end of the initial

shared segment and a separate cubic spline is defined for each

contingency path starting from this point. Figure 1 depicts

Fig. 1. Left: depictions of the temporal x(t) and y(t) path representations.
Right: a visualization of the path representations in physical space.

a cubic spline representation for multiple contingency paths.

To reduce dimensionality, the control points on the spline are

constrained to lie on fixed time intervals, as indicated by the

dashed vertical lines. Using this cubic spline definition, the

robot’s position and its derivatives at a given time t depend

linearly on the control point heights h.

B. Collision Probability

The problem of calculating collision probabilities with

uncertain dynamic obstacles has been studied in a range of

fields including air traffic control [12] and satellite collision

avoidance [13]. For autonomous road vehicles, the collision

probability calculation is especially challenging because road

vehicles are expected to interact closely with dynamic obsta-

cles, such as driving in adjacent lanes. This limits the level

of over approximation that is acceptable.

1) Circular Approximation: The true instantaneous proba-

bility of collision between the robot and a predicted obstacle

is calculated by integrating the covariance of the obstacle

2238

position distribution, Pobst, over the combined body, CB,

of the obstacle and robot shapes. This CB is formed by

sweeping the shape of the obstacle around the perimeter of

the robot shape and recording the outline traced by its origin.

The collision probability calculation can be simplified by

approximating the shape of both the obstacle and the robot

as circles. The CB in this case is simply a circle with radius

rCB = rrobot+robst. The probability of the obstacle being in

a collision state with the robot is equivalent to the probability

of a point sample from the obstacle’s position distribution

lying within the CB centered at the robot’s relative location.

To quickly approximate the instantaneous collision proba-

bility between two circular bodies, a rotation transformation,

R, is applied that aligns the major and minor axes of the

obstacle position covariance ellipse with the coordinate axes

of the reference frame:

Pobst =

[

a b

b c

]

(5)

φ =
1

2
· tan

(

2b

c− a

)

R =

[

cos(−φ) sin(−φ)
− sin(−φ) cos(−φ)

]

where φ is the angle by which Pobst is rotated in the

current coordinate system. This alignment allows the 2D

Gaussian obstacle position distribution to be decoupled into

the product of uncorrelated 1D Gaussian distributions along

the coordinate axes:

PR
obst =

[

(σx
obst)

2 0
0 (σy

obst)
2

]

(6)

N (xR
obst, P

R
obst) = N (xR

obst, (σ
x
obst)

2)N (yRobst, (σ
y
obst)

2)

where PR
obst and x

R
obst are the obstacle covariance matrix and

position vector transformed by the R.

As proposed in [6], decoupling the obstacle position

distribution allows the probability of any rectangular re-

gion aligned with the transformed coordinate frame to be

integrated over using the 1D Gaussian cumulative density

function Ψ(z;µ, σ). Since the CB in this case is circular, its

shape is unaffected by the coordinate transformation R and

can be over approximated using a square bounding box. The

collision probability approximation is then computed as:

pcirccoll(xrobot,xobst, Pobst) =

∫

CB

N (∆x
R, PR

obst) (7)

pcirccoll = (Ψ(∆xR + rCB ; 0, σx)−Ψ(∆xR − rCB ; 0, σx)

·(Ψ(∆yR + rCB ; 0, σy)−Ψ(∆yR − rCB ; 0, σy)

where ∆x
R = x

R
obst − x

R
robot, ∆xR = xR

obst − xR
robot, and

∆yR = yRobst − yRrobot. The steps of the circular collision

probability approximation are depicted in Figure 2.

2) Rectangular Approximation: The circular approxima-

tion provides a fast, orientation independent collision proba-

bility approximation, but additional accuracy is required for

enforcing safety constraints. A more accurate approximation

can be achieved by using rectangular robot and obstacle

−5 0 5
−4

−2

0

2

4

x (m)

y
 (

m
)

(a) Initial

−5 0 5
−6

−4

−2

0

2

x (m)

y
 (

m
)

(b) Combined Body

−8 −6 −4 −2 0 2 4

−4

−2

0

2

4

x (m)

y
 (

m
)

(c) Transformed

Fig. 2. Depiction of approximate collision calculation. a) depicts the initial
scene. b) depicts the combined body of the obstacle shape and the vehicle
shape. c) depicts the effects of the transformation R and the bounding box
approximation.

shapes. This complicates the probability calculation because

the obstacle’s orientation is included as an additional uncer-

tain variable. Assuming the obstacle’s orientation is an inde-

pendent 1D Gaussian distribution, γ ∼ N (µγ , σ
2
γ), which is

equivalent to ignoring the correlation between the orientation

and position elements of the obstacle’s state error covariance,

an upper bound on the total collision probability can be found

by taking a sum over discrete obstacle orientation ranges:

prectcoll (xrobot,xobst, Pobst, µγ , σγ) ≤ (8)

(1−

nγ
∑

l=1

p(γl:l+1
obst))p

circ
coll(xrobot,xobst, Pobst)

+

nγ
∑

l=1

p(γl:l+1
obst)p

rect
coll (xrobot,xobst, Pobst, γ

l:l+1
obst)

where nγ is the number of discrete angle ranges used to

approximate the obstacle orientation distribution, p(γl:l+1
obst)

is the probability of the obstacle orientation lying between

γl and γl+1, and pcirccoll(xrobot,xobst, Pobst) uses the furthest

point from the center of the back axle as the radius for both

the robot and obstacle vehicles.

Solving the right hand side of Equation 8 requires the

computation of prectcoll (xrobot,xobst, Pobst, γ
l:l+1
obst), which is

the probability of collision between the robot and the obstacle

with a fixed orientation range. For the simpler problem

of an obstacle rectangle with a single fixed orientation, a

CB is formed by sweeping the oriented obstacle rectangle

around the perimeter of the robot rectangle as shown in

Figure 3. This CB can then be over approximated using a

bounding box. A similar procedure can be applied for an

Fig. 3. Formation of a combined body for collision probability between a
rectangular robot and a rectangular obstacle.

2239

obstacle rectangle with a fixed orientation range by rotating

the obstacle through its range of possible orientations and

applying a bounding box to the entire rotation. This bounded

obstacle shape can then be swept around the perimeter of the

robot rectangle to create a CB.

As in the circular approximation, the obstacle position

covariance ellipse must be aligned with the coordinate axes in

order to decouple the distribution. However, the CB rectangle

must also be aligned with the coordinate axes in order to

define a tight rectangular integration region. Paielli et al. [12]

provides a method for normalizing the error covariance using

a linear coordinate transformation:

W = (
√

Pobst)
−1 (9)

WPobstW
T =

[

1 0
0 1

]

This transformation allows the obstacle position distribution

to be decoupled in any direction, allowing the coordinate

frame to be aligned with the transformed CB, defined as

CBW . Applying this coordinate transformation results in a

normalized obstacle covariance matrix and a skewed rectan-

gular CB as shown in Figure 4. This skewed rectangle CB

Fig. 4. Coordinate transformation for combined rectangular body.

can be over approximated with another bounding box and an

upper bound on the collision probability for the given γl:l+1
obst

range can be computed using:

prectcoll ≤ (Ψ(∆xW + LW
1 ; 0, 1)−Ψ(∆xW − LW

2 ; 0, 1) (10)

(Ψ(∆yW + LW
3 ; 0, 1)−Ψ(∆yW − LW

4 ; 0, 1)

where L(·) and LW
(·) are as shown in Figure 4.

This rectangular approximation provides a tighter bound

than the circular collision approximation but has a higher

computational cost. Figure 5 shows a hypothetical rela-

tive trajectory (in a robot centric coordinate frame) for

an interaction between the robot vehicle and an obsta-

cle vehicle and provides a comparison for each point on

the trajectory between the circular approximation, and two

rectangular approximations (nγ = 1, nγ = 5). For this

comparison, Equation 8 is simplified for speed by setting

pcirccoll(xrobot,xobst, Pobst) = 1 and
∑nγ

l=1 p(γ
l:l+1
obst) = 0.99.

Figure 5 shows that the rectangular approximation produces

a much tighter upper bound than the circular approximation

in cases such as point four, where the obstacle vehicle

is driving parallel to the robot in an adjacent lane. This

is important because it allows for a maximum collision

probability threshold that prevents unsafe situations, while

still allowing for normal driving behavior. The results also

Fig. 5. Comparison of different collision probability approximations.

show that using nγ = 1 provides nearly as good of a bound

as using nγ = 5, but with a computational cost nearly

equivalent to that of the circular approximation.

C. Cost Function Definition

The cost function for the path optimization problem is:

J(h) = Jshared(h, o1:ns
) +

ns
∑

j=1

p(Gj)Jconting(h, oj) (11)

where Jshared(h, o1:ns
) is the cost for the shared path

segment and Jconting(h, oj) are the costs for each contin-

gency path. These costs are defined as a sum over discrete

evaluation points; for this paper, ∆teval is set equal to the

obstacle prediction time step for convenience. This discrete

formulation approximates a continuous integral over the path

segments, but allows for simpler pointwise calculations. The

cost for the shared segment, Jshared(h, o1:ns
), is:

Jshared (h, o1:ns
) = (12)

αa

n1
∑

k=1

((axk)
2 + (ayk)

2)+αc

n1
∑

k=1

(vxka
y
k − v

y
ka

x
k)

2+

αd

n1
∑

k=1

fprx(xk, yk)+αp

ns
∑

j=1

p(Gj)

n1
∑

k=1

f circ
coll (xk, yk, oj)

where n1 is the number of discrete timesteps evaluated

over the initial path segment, fprx is a function penalizing

proximity to static obstacles and distance from goal, and f circ
coll

is the circular collision probability. Here f circ
coll is an under

approximation using the width of the robot and obstacle

as their radii. This allows for close driving behavior but is

insufficient on its own for guaranteeing safety. The cost for

each contingency path, Jconting(h, oj) is:

Jconting (h, oj) = (13)

αa

nN
∑

k=1

((axk)
2 + (ayk)

2)+αc

nN
∑

k=1

(vxka
y
k − v

y
ka

x
k)

2+

αd

nN
∑

k=1

fprx(xk, yk)+αp

nN
∑

k=1

f circ
coll (xk, yk, oj)

where nN represents the number of discrete timesteps eval-

uated along each contingency path.

2240

The α(·) parameters in this equation are weights that

govern the relative importance of each term: αa penalizes

high acceleration, αc penalizes unnormalized path curvature,

αd penalizes proximity to static obstacles and distance from

goal, and αp penalizes high collision probabilities with

dynamic obstacles.

The acceleration and curvature terms are formulated to

be convex with respect to position, (x, y), and its deriva-

tives, (vx, vy, ax, ay). Unnormalized path curvature, (vxka
y
k−

v
y
ka

x
k)

2, is used to maintain convexity and is equivalent to

weighting the path curvature by the robot’s velocity. The

collision probability term f circ
coll represents a cost hill and

behaves as a convex function away from its cost peak.

The proximity term, fprx(xk, yk), is the sum of a convex

distance to goal function, such as the square of the Euclidean

distance to goal, and a static obstacle function that is convex

with respect to the robot’s lateral offset from the center

of its obstacle free driving corridor. Typically, this corridor

center is simply the center of the road lane. For more general

definitions, this corridor center might be based on a Voronoi

decomposition or cell decomposition of the robot’s static

environment.

In order to ensure the optimized path obeys the physical

constraints of the robot and stays below a required probabil-

ity of collision with dynamic obstacles, a set of constraint

functions, C(h), are evaluated at each timestep k along the

shared initial segment and along each contingency path:

−(vxk−1v
x
k − v

y
k−1v

y
k)− βmax||vk−1|| · ||vk|| < 0 (14)

(vxk)
2 + (vyk)

2 − v2max < 0 (15)

fstatic(xk, yk, θrobot,k) < 0 (16)

p(Gj)f
rect
coll (xk, yk, θrobot,k, oj)− pmax < 0 (17)

Equation 14 constrains changes in angle between succes-

sive timesteps, where βmax controls the maximum allowed

change in angle (βmax = 0 equates to ∆θmax = 90◦).

Equation 15 enforces a maximum velocity constraint. Equa-

tion 16 constrains the robot’s configuration space to prevent

collisions with static obstacle regions. Equation 17 constrains

the maximum pointwise collision probability for dynamic

obstacles using the rectangular collision probability bound

presented in Section III-B.2.

Both the fstatic and f rect
coll constraint functions include

orientation information, θrobot,k = tan−1(
v
y

k

vx
k

), making them

non-convex. Both of these constraints are required to ensure

the safety of the final set of contingency paths. These

terms could be replaced with circular over approximations;

however, this would prevent normal driving behavior such as

passing in adjacent road lanes. The approach proposed in this

paper is to include these non-convex constraint terms with the

assumption that they won’t have a significant impact on the

optimization algorithm’s convergence. A similar numerical

optimization based planner used in Cornell’s DUC robot

included several non-convex constraint terms and was able

to perform without any significant convergence problems in

the DUC [8].

IV. SIMULATED SCENARIO

A simple scenario was simulated to evaluate the perfor-

mance of the proposed path optimization algorithm. This

scenario consists of a robot traveling down a two lane road,

which encounters another vehicle traveling in the opposite

direction; the other vehicle either turns in front of the robot

or continues in its current lane. Each obstacle goal, (Turn, Go

Straight), is initialized with equal likelihood in the prediction

algorithm. A static version of the path optimization algorithm

presented in Section III (without the f circ
coll and f rect

coll terms) is

used as a probabilistic motion model in the obstacle predic-

tion algorithm. As a baseline comparison, three algorithms

were run: 1) the contingency approach proposed in this paper,

2) a single path variation where one contingency path is used

that avoids all obstacle predictions, and 3) a static variation

that uses a stationary obstacle prediction motion model. All

other optimization parameters were identical.

Fig. 6. Closed loop simulations with the obstacle continuing straight.

Fig. 7. Closed loop simulations with the obstacle turning.

Figures 6-7 show the simulated obstacle interactions for

each of the planning algorithms; Figure 6 shows the case

when the other vehicle continues straight and Figure 7

shows the case when the other vehicle turns. The planned

motion of the robot (in green) and the predicted motion

2241

Fig. 8. Velocity profiles of the robot for the closed loop simulations.

of the obstacle (in red) are depicted by colored rectangles

at half second intervals. The intensity of the plotted robot

and obstacle rectangles correspond to the probability of that

obstacle goal or contingency plan. For the trivial case when

the obstacle vehicle continues straight, all three algorithms

perform reasonably well. As seen in Figure 8, the output of

the single path algorithm is a braking action initially because

the obstacle vehicle is assumed to be able to both turn and

go straight at the same time. The static algorithm accelerates

the fastest, while the contingency approach balances speed

and safety.

For the case where the obstacle vehicle turns, the single

path algorithm again commands a braking action before it

actually knows which goal the obstacle vehicle will follow.

The static algorithm fails to realize the robot is turning until

it is too late and collides with the obstacle at t = 3s. The

contingency algorithm accelerates at a moderate rate until

the other vehicle’s intentions are well known, as defined by

p(Gj), then slows down to avoid a collision.

This simulation assumes that the obstacle motion model

is accurate and the potential obstacle goals are known. To

investigate the case when this is not true, a second simulation

was run where the obstacle vehicle follows an unknown third

goal and stops to wait for the robot. Results for the proposed

contingency algorithm are shown in Figure 9. In this case,

the obstacle prediction algorithm converges to the closest

hypothesis, that the obstacle is turning, and the robot stops

to avoid colliding with its false prediction of the obstacle’s

motion. This simulation highlights the need for acceptable

obstacle prediction models for all possible obstacle goals.

Fig. 9. Closed loop simulation with the obstacle vehicle stopping to wait
for the robot.

The average optimization time for the proposed algorithm

during these simulations was approximately 2 seconds in

Matlab. Implementing this algorithm using a C++ based

nonlinear optimization library is expected to improve the

algorithm’s runtime to at or near realtime performance (5−
10Hz) for a moderate number of contingency plans.

V. CONCLUSIONS

An obstacle prediction and path optimization algorithm is

proposed in this paper in order to provide a framework for the

inclusion of obstacle goal inference in the motion planning

process. The proposed path planning algorithm is able to

intelligently compensate for probabilistic dynamic obstacles

when provided with accurate obstacle predictions. However,

the proposed obstacle prediction algorithm is limited in its

ability to identify a complete set of obstacle goal hypotheses.

Future research goals include extensive testing in Cornell’s

DUC simulation environment and additional research into

identifying efficient obstacle motion models and determining

a more complete set of obstacle goal predictions.

VI. ACKNOWLEDGMENTS

This research is partially supported by ARO Grant

#W911NF-09-1-0466, with Dr. Randy Zachery as Program

Manager and by the Department of Defense through the

NDSEG fellowship program.

REFERENCES

[1] M. Buehler, K. Iagnemma, and S. Singh, The Darpa Urban Challenge:

Autonomous Vehicles in City Traffic. Springer Verlag, 2010.
[2] L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How,

J. Leonard, I. Miller, M. Campbell, D. Huttenlocher, et al., “The MIT-
Cornell collision and why it happened,” Journal of Field Robotics,
vol. 25, no. 10, pp. 775–807, 2008.

[3] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient
planning in dynamic environments,” in Proceedings of the 2009 IEEE

international conference on Robotics and Automation. IEEE Press,
2009, pp. 4303–4309.

[4] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning mo-
tion patterns of people for compliant robot motion,” The International

Journal of Robotics Research, vol. 24, no. 1, p. 31, 2005.
[5] J. Miura and Y. Shirai, “Probabilistic uncertainty modeling of obstacle

motion for robot motion planning,” Journal of Robotics and Mecha-

tronics, vol. 14, no. 4, pp. 349–356, 2002.
[6] I. Hwang and C. Seah, “Intent-Based Probabilistic Conflict Detection

for the Next Generation Air Transportation System,” Proceedings of

the IEEE, vol. 96, no. 12, pp. 2040–2059, 2008.
[7] D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, pre-

diction, and avoidance of dynamic obstacles in urban environments,”
in Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2008.

[8] I. Miller, M. Campbell, D. Huttenlocher, F.-R. Kline, A. Nathan, J. C.
Sergei Lupashin, B. Schimpf, P. Moran, N. Zych, E. Garcia, M. Kur-
dziel, and H. Fujishima, “Team cornell’s skynet: Robust perception
and planning in an urban environment,” Journal of Field Robotics,
vol. 25, no. 8, pp. 493–527, 2008.

[9] J. Hardy, M. Campbell, I. Miller, and B. Schimpf, “Sensitivity
analysis of an optimization-based trajectory planner for autonomous
vehicles in urban environments,” E. M. Carapezza, Ed., vol.
7112, no. 1. SPIE, 2008, p. 711211. [Online]. Available:
http://link.aip.org/link/?PSI/7112/711211/1

[10] L. Cremean, T. Foote, J. Gillula, G. Hines, D. Kogan, K. Kriechbaum,
J. Lamb, J. Leibs, L. Lindzey, C. Rasmussen, A. Stewart, J. Burdick,
and R. Murray, “Alice: An information-rich autonomous vehicle for
high-speed desert navigation,” Journal of Field Robotics, vol. 23, no. 9,
pp. 777–810, 2006.

[11] S. Julier and J. Uhlmann, “A new extension of the Kalman filter to
nonlinear systems,” in Int. Symp. Aerospace/Defense Sensing, Simul.

and Controls, vol. 3. Citeseer, 1997, p. 26.
[12] R. Paielli, H. Erzberger, and A. R. Center, “Conflict probability esti-

mation for free flight,” Journal of Guidance, Control, and Dynamics,
vol. 20, no. 3, pp. 588–596, 1997.

[13] S. Alfano, “Addressing Nonlinear Relative Motion For Spacecraft
Collision Probability,” AIAA Paper, no. 2006-6760, p. 15, 2006.

2242

