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Abstract— This paper presents an approach to the control
of humanoid robot motion, e.g., holding another robot or
tangled interactions involving multiple limbs, in a space defined
by ’topology coordinates’. The constraints of tangling can
be linearized at every frame of motion synthesis, and can
be used together with constraints such as defined by the
Zero Moment Point, Center of Mass, inverse kinematics and
angular momentum for computing the postures by a linear
programming procedure. We demonstrate the utility of this
approach using the simulator for the Nao humanoid robot.
We show that this approach enables us to synthesize complex
motion, such as tangling, very efficiently.

I. INTRODUCTION

One of the major drivers of research in the area of
humanoid robotics is the desire to achieve motions involving
close contact between robots and the environment or people,
such as while carrying an injured person, handling flexible
objects such as the straps of a knapsack or clothes. Currently,
these applications seem beyond the ability of existing motion
synthesis techniques due to the underlying computational
complexity in an open-ended environment.

Traditional methods for motion synthesis suffer from two
major bottlenecks. Firstly, a significant amount of computa-
tion is required for collision detection and obstacle avoid-
ance in the presence of numerous close contacts between
manipulator segments and objects. Secondly, any particular
computed solution can easily become invalid as the environ-
ment changes. For instance, if the robot were handling an
object such as a knapsack, even small deformations of this
flexible object and minor changes in object dimensions (e.g.,
between an empty bag and a stuffed bag) requires complete
re-planning in the current way of solving the problem.

The fundamental problem lies in the representation of
the state of the world and the robot. Typically, motion is
synthesized in a complete configuration or state space repre-
sented at the level of generalized coordinates enumerating all
joint angles and their 3D location/orientation with respect to
some world reference frame. This implies the need for large
amounts of collision checking calculations and randomized
exploration in a very large search space. Moreover, it is
very hard to encode higher level, semantic, specifications
at this level of description as the individual values of the
generalized coordinates do not tell us anything about this
aspect of the task unless further calculations are carried out to
ensure satisfaction of further constraints. This is particularly
inconvenient when searching for a motion in a large database

The authors are with the Institute of Perception, Action and Behaviour
in the School of Informatics, University of Edinburgh, 10 Crichton Street,
Edinburgh EH8 9AB, UK

such as might be obtained from human demonstration or
other related means.

The focus of this research is to alleviate these problems by
developing methods that exploit the underlying topological
structure in these problems, e.g., in the space of postures.
This allows us to define a new search space where the co-
ordinates are based on spatial relationships, such as between
link segments. We refer to this space in terms of ’topology
coordinates’ [7]. In this paper, we show how this notion
can be applied to the control of humanoid robots. Using
the Nao [5] humanoid robot, we show that motions such as
holding and carrying can easily be synthesized in real-time
without recourse to computationally expensive global search
methods.

Background

Motion synthesis and generalization to novel situations is
an actively researched topic in robotics, character animation
and graphics. Here, we review some state-of-the-art methods
and identify some of the key issues that form the focus of
our own work.

A standard and commonly used method for motion syn-
thesis involves a global path planning problem to com-
pute collision free paths between start and goal states in
a configuration space. Given that deterministic versions of
such problems suffer from severe computational complexity
restrictions, randomized approximations are preferred. Ran-
domized methods such as Rapidly-exploring Random Trees
(RRT)[10] have been developed to solve such problems.
Motions such as moving objects [20] and grabbing [1] have
been synthesized by such methods. However, although the
randomized algorithms are more efficient than the determin-
istic counterpart the fact remains that the computational cost
scales exponentially with the number of degrees of freedom
that define the problem. In problems involving close contact
between complex articulated mechanisms and objects, these
numbers can quickly grow.

A promising approach to overcoming this problem is to
define the task in terms of low-dimensional representations,
separating the complexity of enumerating the environment
from the essence of the task. Our interest is in low-
dimensional representations that describe the topology of the
task (abstracting away from many of the metric details).
Once an approximate valid path is found in this way,
optimization-based motion synthesis approaches may be used
to synthesize the detailed trajectory that gets executed on
the high-dimensional system. Spacetime optimization [19]
is one such approach that synthesize motion by minimizing
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a specific objective function while satisfying constraints. It
has been used to solve for positional constraints [4], generate
physically-based animation [12], [3], and stabilize the gait of
biped humanoid robots [13]. However, optimization-based
techniques also suffer from the same complexity limitations
when handling collisions or motion with many close con-
tacts. We argue that the situation is significantly improved by
optimizing the motion directly in topology space, enabling us
to efficiently produce motion sequences such as for holding,
carrying, tangling and grabbing.

Although prior work on topology-based motion synthesis
is limited, there have indeed been some interesting successes.
A recent example in the area of manipulation is that of
knotting [17], [16], where the object state is represented
in terms of projections to a 2-dim plane. While this is an
interesting direction, one needs a more general representation
to deal with extended objects such as cloth and also when
the task is defined in a cluttered environment. Topological
representations are also beginning to be used successfully in
the area of distributed robotics, e.g., to ensure coverage in
sensor networks [2]. Our pilot studies [6], [7] have realized
techniques for computing topological relationship of objects
directly from the 3-dim coordinates of the robot body by
using the mathematical notion of Gauss Linking Integrals
(GLI) [11] (Fig. Figure 1).

Fig. 1. The GLI outputs of two tangled strands

This has significant advantages over previous knot theory
based approaches [17], [16] which all require the projection
to a 2-dim plane. While this assumption is sufficient for
closed knots or links, in which the projection plane does
not affect invariants such as the minimum crossing numbers
(Figure 2, left), the projection plane does affect the number
of crossings in open curves or tangles (Figure 2, right).
Defining a projection plane is difficult in case of humanoid
robots as the bodies are always moving around and their
orientations are continually changing. On the other hand, the
Gauss Linking Integral can be directly computed from the
3-dim coordinates of the tangled links .

II. METHODOLOGY

We first briefly review the notion of topology coordinates
[7], which is the basic representation used for the control
of tangling motions. Next, we explain how the topology
coordinates can be exploited for the control of humanoid
robots.

A. Topology Coordinates
Topology coordinates enable characters to tangle their

bodies with other characters without recourse to expensive

Fig. 2. The projection plane does not affect the minimum crossing numbers
for links (left) but does for tangles (right)

Fig. 3. The three axes in ‘topology space’ : writhe, center and density.
The center, which specifies the central location of the twist relative to
each strand, is actually composed of two scalar parameters, although it
is represented by a single axis in this figure. The density tells which strand
is playing the major role to compose the twist.

global path planning. The topology coordinates are com-
posed of three attributes: writhe, center and density. The first
attribute writhe counts how much the two curves are twisting
around each other. Writhe can be calculated by using Gauss
Linking Integral (GLI) [15] by integrating along the two
curves γ1 and γ2 as:

GLI(γ1,γ2) =
1

4π

∫
γ1

∫
γ2

dγ1 ×dγ2 · (γ1 − γ2)

∥γ1 − γ2∥3 (1)

where × and · are cross product and dot product operators,
respectively. The GLI computes the average number of
crossings when viewing the tangle from all directions.

Curves can twist around each other in various ways.
In order to further specify the status of the two chains,
we introduce the other two attributes, center and density.
Examples of changing these attributes for a pair of strands
are shown in Figure 3. The center, which is composed of
two scalar parameters, explains the center location of the
twisted area, relative to each strand. The density, which is a
single scalar parameter, explains how much the twisted area
is concentrated at one location along the strands. When the
density is zero, the twist is spread out all over the two strands.
When the density value is either very large or very small,
we can say one strand is playing a major role to compose
the twist, as it is twisting around the other strand which is
kept relatively straight (Figure 3). When the density turns
from negative to positive, or vice versa, the strand playing
the major role switches.

179



B. Controlling the Humanoid Robots in Topology Coordi-
nates

We first represent the skeletal structure of a humanoid
robot by a set of line segments. Therefore, we first define
the topology coordinates of serial chains. Let us assume we
have two chains S1 and S2, each composed of n1 and n2 line
segments, connected by revolute, universal or gimbal joints
(Figure 4). In this case, we can compute the total writhe by
summing the writhes by each pair of segments:

w = GLI(S1,S2) =
n1

∑
i=1

n2

∑
j=1

Ti, j (2)

where w represents the writhe, Ti, j is the writhe between
segment i on S1 and j on S2. Let us define a n1 ×n2 matrix
T whose (i, j)-th element is Ti, j, and call this the writhe
matrix. The writhe matrix explains how much each pair of
segments from S1 and S2 contributes to the total writhe value.
Various twists of two serial chains and the corresponding
writhe matrices are shown in Figure 5.

The topology coordinates can be updated by changing the
distribution of the elements in the writhe matrix using basic
operations such as rotation, translation and scaling. Rotating
the elements results in changing the density. Translating the
elements results in changing the center. Scaling the whole
matrix results in changing the writhe. Let us define these
operations by R(M,d), Tr(M,c) and S(M,w), respectively,
where M is the input matrix and (d,c,w) are topology
coordinates, each of which representing the density, center
and writhe, respectively.

Rather than directly manipulating the writhe matrix of the
characters, we first compute an ideal, desired writhe matrix
and try to minimize the difference of the character’s writhe
matrix and the desired writhe matrix. The desired writhe
matrix Td that corresponds to topology coordinates (d,c,w)
is computed by sequentially applying R(), Tr() and S() to a
matrix I, which is a n1 × n2 matrix who has values evenly
distributed at the (n2 + 1)/2-th column if n2 is odd, or at
both the n2/2 and n2/2+1-th column if it is even:

T = S(Tr(R(I,d − π
4
),c),w). (3)

Fig. 4. Twisting a chain of line segments around each other

Fig. 5. (upper) Tangles with different density and center, and (lower)
the distribution of elements with large absolute values in the corresponding
writhe matrices. The level of brightness represents the amplitude of the
absolute value.

where

I =




0 · · · , 1

n1
, · · · ,0

...
0 · · · , 1

n1
, · · · ,0

 (n2 is odd)


0 · · · , 1

2n1
, 1

2n1
, · · · ,0

...
0 · · · , 1

2n1
, 1

2n1
, · · · ,0

 (n2 is even)

(4)

and pi
4 is an offset to adjust the density d due to its definition

[7].
Once the desired writhe matrix Td is computed, the

character is guided to the desired posture by updating the
generalized coordinates so that the writhe matrix of the
character T becomes similar to the desired writhe matrix
Td . This problem is solved by quadratic programming:

min
∆q1,∆q2,δ

∥∆q1∥2 +∥∆q2∥2 +∥δ∥2 s.t. (5)

∆T =
∂T
∂q1

∆q1 +
∂T
∂q2

∆q2 (6)

|Ti, j +∆Ti, j| ≤ σ(1 ≤ i ≤ n1,1 ≤ j ≤ n2) (7)

T+∆T−Td +δ = 0 (8)
r = J1∆q1 +J2∆q2 (9)

where (q1,q2) are the generalized coordinates of the two
chains, (∆q1,∆q2) are their updates to be made at this
iteration, ∆Td is the update of the writhe matrix, σ is a
threshold, that is set to 0.2 in our experiments to avoid the
segments to approach too close to each other, δ is a matrix of
slack parameters introduced to minimize the difference of the
desired writhe matrix and that of the controlled characters,
Equation (9) represents the other kinematical constraints
which can be linearized with respect to (∆q1,∆q2) when
the movement is small, such as the positional constraints,
center of mass constraints, angular momentum constraints
and ZMP constraints [9], [8]. J1,J2 are the Jacobians of this
constraint, and r is the linearized output of this constraint.
The updated generalized coordinates (q1 + ∆q1,q2 + ∆q2)
correspond to the target topology coordinate at the next time
step, (w+∆w,d +∆d,c+∆c). By solving Equation (5) at
every time step, we simulate the interactions of two virtual
wrestlers.
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Fig. 7. The snapshots of the holding motion from the upright postures (top), and the movements to switch to the posture of holding the neck (neck).
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Fig. 6. The tree structure of the graph that is used to represent the body
structure. There are 10 paths that connect the end effectors.

C. Tangles of tree structures

As we need to handle human characters, we have to
compute the tangles made between tree structures. Trees
are composed of edges and nodes. Therefore, tangles made
between them will be more complex than those between parts
of strings. The tangles between trees can be examined by
checking all the tangles made between the paths connecting
the end effectors of the trees. The graph structure that is
used to represent the human body in this research is shown
in Figure 6. There are ten paths connecting the end effectors
of this graph.

III. EXPERIMENTAL RESULTS

Our experiments involve the Nao V3 model [5] in the
Webots simulator [18], to synthesize tangling motions of
two robots holding each other - starting from postures of one
robot standing in front of another. We have also synthesized
motions to switch from this posture to another posture
of holding the neck by linearly interpolating the topology
coordinates. Note that if these motion sequences were to be
computed directly in joint space, one would need to solve
a global planning problem in a space with multiple local
minima, etc.

Key snapshots of the movement are shown in Figure 7. The
computation of the motion can be accomplished in 31ms per
frame, on a computer with Intel Core2 Duo Mobile Processor

Fig. 8. The motion to interpolate two keyframes along the manifold of
motion space (top) and in the joint angle space (bottom).

P7450 (2.13 GHz) and with 4GB RAM. All the calculation
was done on a single core. The system is implemented on
Windows by Visual C++, UMFPACK is used for the linear
solver.

IV. DISCUSSIONS AND CONCLUSION

The problem with planning motion at the level of joint
angles is that the topological structure of the state space is
different from the more intuitive variables that we might
otherwise invoke. Continuous motions in the joint angle
space can be discontinuous in the humanoid motion space,
due to limitations of collision and penetration of the body
parts.

For example, let us think of interpolating two keyframe
postures shown in Figure 8. These two postures are not very
far away from each other in the joint angle space. However, if
they are linearly interpolated by joint angles, the arms of the
humanoids will penetrate through each other, which means
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that the motion goes out from the feasible portions of the
humanoid motion space. Our ‘topology coordinates’ define
a subspace which has the same topological structure (in the
sense of homotopy equivalence) as that of the motion space.
A continuous motion in the topology coordinates results in
a continuous motion by the humanoid robot and vice versa.
As a result, complex motions of tangling movements can
be easily synthesized by interpolating postures by topology
coordinates.

Abstraction of movements is important for humanoid
control due to the high number of degrees of freedom and
the associated exponential computational cost for motion
planning. Topology-based abstraction provides an intuitive
solution for tasks such as those involving tangled postures.
For tangled postures, people are not really interested in
the individual joint angles or joint positions but the way
the limbs and body parts are tangled with each other. By
using the topology coordinates as constraints, the humanoid
can easily adjust their postures in real-time to maintain
the tangled state even when the other humanoid is moving
around in an arbitrary way. The topology coordinates can
be consistent under various conditions, such as when the
humanoid robots are replaced with those of totally different
morphology. Such a feature can greatly help to recycle
motions.

As topology coordinates represent spatial relationships,
they can also help to plan/evaluate in larger scale scenes. The
parameters of the topology coordinates have semantic mean-
ings which are easy to qualitatively interpret and explain the
scene [14]. This can greatly help to synthesize movements
from scripts or conversations, which is a key long term goal
for intelligent robotics.

Combining our method with stochastic approaches that
takes into account the effect of noise is another interesting
direction for further research. We are also currently working
on representations based on the relationship of surfaces,
which can consider the volume and area of the humanoid
robots at the stage of motion planning.
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