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Abstract—The paper provides a method to de-
termine and compare the reconfigurability of lattice
systems. First it shows the difference that exists be-
tween the reconfigurability and self-reconfigurability
features of a lattice system. Then a method using
displacement groups is introduced to characterize
these features. Based on this method, these features
are then compared for some existing lattice systems.

I. Introduction

As stated [1] lattice systems are a class of modu-
lar self-reconfigurable robots having their “modules ar-
ranged nominally in a 2D or 3D grid structure. For
this category, there are discrete positions that a given
module can occupy”. Most lattice systems have contin-
uous actuation mechanism [2], [3], [4], [5], [6], others
use discrete [7] or passive [8] actuation. Some systems
[9], [10], [11] with continuous actuation may also use
both lattice and non-lattice configurations modes. In
the sequel we consider only the lattice utilization, and
therefore all these systems are considered as lattice ones.
Only lattice systems performed successfully autonomous
self-reconfiguration because the discrete configurations
helps to bring the connectors to matching positions, and
simplify the planning of the reconfiguration sequences.
Nevertheless, the kinematical conception of lattice robots
is difficult because modules with arbitrary discrete joint
configurations will not necessarily lead to lattice systems;
conversely, non-discrete joint configurations may lead
to lattice systems because of redundant mechanisms or
singular configurations. This issue was addressed in [12],
[13] by proposing a framework for the kinematical design
of lattice robots relying on discrete displacement groups
theory. The configuration of a module Mi is the n-
tuple Xi = (x1

i , . . . , x
n
i ) where x1

i , . . . , x
n
i ∈ R

6 denote
the n poses of its n connectors c1

i , . . . , c
n
i . For a lattice

system it is assumed that a module can have only a
finite number of relative poses of its connectors.Any
configuration of a system S of k modules is given by the
set X = {X1, . . . , Xk}. As stated in [12], [13], a system
is said lattice if, for any configuration X , the pose x

j
i

of a connector c
j
i belongs to a discrete set of poses O

j
i ,

called orbit, and that all the orbits O1...n
1...k are generated

by an unique discrete displacement group1 G. Thus, for
any poses x and y of a connector, x and y belongs to the
same orbit and there exists g ∈ G such that y = gx.
The present paper proposes an opposite approach by
using discrete displacement groups to characterize the
kinematical features of existing lattice robots. This allows
to show that our definition is consistent with the previous
one by characterizing successfully existing “lattice” sys-
tems. The first section introduces and compares the con-
cepts of reconfiguration group and manipulation group.
The second section proposes a method to establish the
reconfiguration and manipulation groups for any lattice
system. Based on this result, the third section describes
and compares the feature of several lattice system, before
concluding.

II. Reconfiguration vs Self-reconfiguration

In a “Self-reconfiguration” the lattice system changes
its topology by disconnecting, manipulating and recon-
necting its modules. In a “reconfiguration” an external
device manipulates the modules of the lattice system to
reconfigure it. The external device may be, for example, a
human operator, and is considered as a manipulator that
can reach arbitrary poses in an unlimited workspace. The
following example illustrates that some feasible reconfig-
urations may not be done by self-reconfigurations.
Consider the module depicted in Fig.1. It has a revolute
joint with two configurations and three hermaphrodite
connectors represented by the triangles.

Fig. 1. A module with two joint configurations

The figure 2 represents a set of modules assembled
together with a lattice represented by grey and white
chessboard cells. Obviously, in a reconfiguration it is
possible for an external device to exchange two modules
belonging to arbitrary cells (with same color or different

1Several works about modular robots used group theory for
various purposes as reconfiguration planning [14], [15] and non-
isomorph assembly enumeration[16].
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Fig. 2. Modules assembly

colors).
Nevertheless, in a self-reconfiguration, the system can
displace the modules only by rotation of 90◦ around the
revolute joints located at the centers of the cells. Such
displacements may only displace modules between cells
of same color. Therefore a self-reconfiguration cannot
exchange modules on cells with different colors. Another
example: the modules of Telecube[6] can have their orien-
tation reconfigured by hand, while a self-reconfiguration
cannot change their orientation. These examples illus-
trate the difference between reconfiguration and self-
reconfiguration capacity.

In the latter these features will be characterized re-
spectively by the reconfiguration group and the ma-

nipulation group of a system. These groups can be
determined by their generating sets. The next section
explains how to construct these generating sets for lattice
systems.

III. Generating sets of the reconfiguration

group and the manipulation group

As a preliminary the terminology and symmetry op-
erations concerning the connectors of lattice modules,
introduced in [12], [13], are reminded.

A. Connectors symmetries

Fig. 3. Rotation axes corresponding to the symmetry operations
of the connectors. (a) no symmetry. (b) transverse symmetry. (c)
normal symmetry. (d) transverse and normal symmetries.

1) A connector without symmetry has no symmetry
axis. It can be connected to a connector with op-
posite gender. Fig. 3(a) represents two compatible
connectors with genders + and −.

2) A connector may have a “transverse axis2” corre-
sponding to a 2-fold rotation axis as represented
Fig. 3(b). Such a connector is said “hermaphrodite”
and can be connected to another one identical to
itself (the two connectors in Fig. 3(b) are identical).

3) A connector may have a “normal symmetry” cor-
responding to a n-fold rotation axis as represented
Fig. 3(c). The order n of the rotation equals the
number of orientations the connector can be con-
nected to another one having an opposite gender.
In the example Fig. 3(c) the normal symmetry axis
of the connector (considered rectangular) is a 2-
fold rotation axis, therefore the connector + can
be connected with 2 different orientations to the
connector − (if the connector is considered square
the order of the rotation is 4 and it has 4 connecting
orientations).

4) A connector may have both types of symmetries
described previously: it has one normal symmetry
axis of order n, and n transverse symmetry axes of
order 2. For instance, Fig. 3(d) represents a con-
nector with one normal symmetry of order 2 and
two transverse axis with order 2. Such a connector
is hermaphrodite and can be connected to another
one identical to itself.

Terminologically, we call configuration of a connector the
set of points that it occupies in the space. Therefore
several poses can correspond to the same configuration
because of a normal symmetry axis of the connector.
Two compatible connectors with opposite genders +
and − are called “opposite connectors”. When two such
connectors are connected (or have configurations such
that they can be connected) we say that they have “op-
posite configurations”. Connectors which are compatible
(hermaphrodite or with opposite gender) or identical
(hermaphrodite or with same gender) are said of “same
type”.

B. Geometrical features

We can now describe the geometrical features of the
modules that will be used to construct the generating
sets of the reconfiguration group and the manipulation
group. There are three types of displacements that must
be taken in account:

1) The first type of displacement corresponds to the
symmetry operations of the connectors of a
module as recalled section III-A. For instance, the
Fig.4(a) represents a configuration of a module of
the system M-Tran[10] which has 6 connectors. The
symmetry operations of the connectors are the 90◦

rotation around their normal axes represented by
dotted lines.

2) The second type of displacement will be called
inter-connectors displacement. It can correspond
to:

2Called “tangential axis” in [12], [13]
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a) a displacement that brings a connector of a
module to the same configuration as another
identical connector of the module. For in-
stance, in Fig.4(b) the connector A and B
are identical and the 90◦ rotations around the
dotted line brings the connector A to the same
configuration as the connector B.

b) a displacement that brings a connector to
a configuration such that it could be con-
nected to an opposite connector of the mod-
ule (the connectors reach opposite configura-
tions). Such a displacement exists only for
non-hermaphrodite connectors. For example,
in Fig.4(c) the connectors B and C are oppo-
site and the 180◦ rotation around the dotted
line move the connector B at a configuration
opposite to the configuration of the connector
C.

3) The third type of displacement will be called inter-

configurations displacement. Is is a displacement
of a connector of a module from one pose to a new
pose when another connector of the same module is
assumed immobile. Such displacements correspond
to the relative displacements of connectors of a
module due to its actuation mechanisms. If the
joints of the module are independent (this is mostly
the case), any motion produced by one joint cor-
responds to an inter-configuration displacements.
For instance, Fig.4(d) shows the 90◦ rotation axes
of displacements produced by the joints M1 and
M2. For redundant mechanism, parallel mecha-
nism, singular configurations, or coupled joints[17],
it is not possible to assimilate joints motions with
connectors displacements.

(a) Connectors symme-
tries

(b) Inter-connectors
displacement (identical
connector)

(c) Inter-connectors
displacement (opposite
connector)

(d) Inter-configurations
displacements

Fig. 4. Symmetry elements of the module M-Tran[10].

C. Reconfiguration group

Consider one module M having n connectors c1, . . . , cn

with a constant configuration X = (x1, . . . , xn). We
denote by Ω ⊂ SE(3) the set containing all the sym-
metry operations of the connectors of the module, by
∆ ⊂ SE(3) the set of inter-connectors displacement of
the module, and by Γ ⊂ SE(3) the set of the inter-
configurations displacements from the configuration X of
the module to any other configuration X ′ = (x′

1
, . . . , x′n)

such that at least one connector keeps the same pose:
for any X ′ there exists i such that x′i = xi. Moreover
it is assumed (1) that the module has finitely many
relative poses of its connectors, (2) that it has finitely
many connectors and (3) that the number of symmetry
operations for each connector is finite, so Γ, ∆ and Ω are
finite sets.

Definition 1 (Reconfiguration group): The reconfigu-

ration group of the (homogeneous) modular system
defined by the module M is the group generated by the
set S = Ω ∪∆ ∪ Γ with configuration X = (x1, . . . , xn).
Moreover, if the group generated by S is a discrete
displacement group, we say that the modular system is
lattice, otherwise it is not a lattice system.

Definition 2 (Group type): Two displacements groups
G ⊆ SE(3) and G′ ⊆ SE(3) are of same type if they
are conjugate by a displacement3: ∃h ∈ SE(3) such that
g ∈ G iff hgh−1 ∈ G′.

Theorem 1: The type of the reconfiguration group G

of the module M does not depends on the configuration
X = (x1, . . . , xn) of M .

Proof: X can be defined by the 2-tuple (x1, D)
where D ∈ SE(3)n−1 is a vector of displacements be-
tween x1 and each n− 1 other connectors (so ∆ ⊆ D).
First, changing the relative configuration of the con-
nectors of the module M by letting the connector
c1 unmoved, leads to configuration X ′ = (x1, D

′).
Let x′

2
, . . . , x′n denote the poses of c2, . . . , cn, and

G′, S′,Ω′,∆′,Γ′ denote the new G, S,Ω,∆,Γ. For any
x′i 6= xi, we have x′i = γxi where γ ∈ Γ, aka for any x′i,
x′i = γxi where γ ∈ Γ ∪ {1}. Therefore, the connectors
symmetries are conjugated by elements of Γ∪{1}: for any
ω′ ∈ Ω′, ω′ = γωγ−1 where ω ∈ Ω, thus the elements of
Ω′ are products of elements of Ω ∪ Γ and their inverses,
so Ω′ is included in the group generated by Ω∪ Γ. Since
G is generated by Ω ∪∆ ∪ Γ, we have Ω′ ⊂ G.
Similarly, any inter-configuration displacement γ1 with
respect to connector ci with pose x′i is that with respect
to ci with pose xi conjugated by γ ∈ Γ ∪ {1} such that
x′i = γxi: for any γ1 ∈ Γ′, γ1 = γγ0γ

−1 where γ0 ∈ Γ.
Therefore the elements of Γ′ are products of elements of
Γ and their inverses, thus Γ′ ⊂ G.
For any displacement between connectors with poses x′i
and x′j we have dx′

i
x′

j
= dxjx′

j
dxixj

dx′

i
xi
so for any δij ∈

∆, δ′ij ∈ ∆
′, δ′ij = γ1δijγ

−1

2
where γ1, γ2 ∈ Γ ∪ {1}, thus

3In crystallography a similar definition[18] considers an isometry
instead of a displacement.
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the elements of ∆′ are products of elements of ∆∪Γ∪{1}
and their inverses, so ∆′ ⊂ G.
Thereby Ω′ ∪ ∆′ ∪ Γ′ ⊂ G aka S′ ⊂ G, hence G′ ⊆ G.
Since X = (x1, D) and X ′ = (x1, D

′) are arbitrary,
considering X = (x1, D

′) and X ′ = (x1, D) leads to
G′ ⊇ G, therefore G′ = G.
Second, consider the new configuration Y = (y1, . . . , yn)
such that all the connectors of the module M has been
moved by d ∈ SE(3), leaving the relative configuration
of the connectors unchanged. Let denote G′ and S′ the
new G and S.
Any element b (resp. b′) of G (resp. G′) is a product of
elements a1, a2, . . . an (resp. a′

1
, a′

2
, . . . a′n) of S (resp.

S′) and their inverses: b = a1a2 . . . an, b′ = a′
1
a′
2
. . . a′n.

Because of the displacement d of the module M any
element a′ of S′ is an element a of S conjugated by d:
a′ = dad−1. Therefore b′ ∈ G′ ⇔ b′ = a′

1
a′
2
. . . a′n ⇔ b′ =

da1d
−1da2d

−1 . . . dand−1 ⇔ b′ = da1a2 . . . and−1 ⇔ b′ =
dbd−1, where b ∈ G. Thus G and G′ are identical up to
a conjugacy by a displacement.

For instance, for the module M-Tran[10] Fig.4, S

contains 4 symmetries for each 6 connectors, plus 5
inter-connectors displacement for each 6 connectors, plus
8 inter-configurations for when the connectors + are
assumed immobile and 8 other inter-configurations when
the connectors − are assumed immobile, providing 24 +
30 + 16 = 70 generators.

1) Simplification: By definition S is a generating set
of the reconfiguration group, but any subset of S which
generates the same group as S may be used instead of S.
Considering a module M with a constant configuration
X, a reduced generating set, denoted S̄ can consist of:

1) for each type of connector, the symmetry opera-
tions of only one connector (chosen arbitrarily) of
this type;

2) for each type of connector, the inter-connectors
displacements from only one connector (chosen
arbitrarily) to the others of same type;

3) the inter-configurations displacements from the
configuration X to the others, when only one con-
nector, chosen arbitrarily, is assumed immobile.

Proof: Let denote S̄ = Ω̄ ∪ ∆̄ ∪ Γ̄ the reduced sets,
and 〈S̄〉, 〈Ω̄〉, 〈∆̄〉, 〈Γ̄〉 the generated groups.
For any type of connector, ∆̄ contains the displacement
δki from one (chosen) connector k of this type to any
other connector i of the same type. For any displacement
between two connectors i, j of same type δij = δkjδik,
δkjδ

−1

ik ∈ ∆̄ so the elements of ∆ are product of elements
of ∆̄ and their inverses, thus:

∆ ⊂ 〈∆̄〉 (1)

For any connector symmetry ω ∈ Ω, ω = δω′δ−1 where
ω′ ∈ Ω̄ and δ′ ∈ ∆, thus Ω ⊂ 〈∆〉 ∪ 〈Ω̄〉. Moreover (1)⇒
〈∆〉 ⊆ 〈∆̄〉, so:

Ω ⊂ 〈∆̄〉 ∪ 〈Ω̄〉 (2)

Let denote dxiyi
∈ Γ the displacement of

the connector ci between two configurations
X = (x1, . . . , xk, . . . , xl, . . . , xi, . . . , xn) and
Y = (y1, . . . , xk, . . . , yl, . . . , yi, . . . , yn) (ck is
immobile) and dxizi

∈ Γ the displacement
of ci between the configurations X and Z =
(z1, . . . , zk, . . . , xl, . . . , zi, . . . , zn) (here cl is immobile).
We have dxizi

= dyizi
dxiyi

. Moreover, we assume that
Y and Z correspond to the same relative configuration
of the connectors, therefore dyizi

= dylxl
, thus

dxizi
= dylxl

dxiyi
. We assume also that Γ̄ contains the

inter-configurations displacements with the connector ck

having a constant configuration xk, therefore dxiyi
∈ Γ̄

and d−1

ylxl
∈ Γ̄, so dxizi

equals a product of elements
of Γ̄ and their inverses, thus dxizi

∈ 〈Γ̄〉. Since the
relative configuration defined by Y and Z is arbitrary,
any other inter-configurations displacement of Γ with
cl immobile can be expressed as a product of elements
of Γ̄ and their inverses. Moreover cl is arbitrary, so any
inter-configurations displacement with any immobile
connector is a product of elements of Γ̄ and their
inverses, thus:

Γ ⊂ 〈Γ̄〉 (3)

(1), (2), (3)⇒ Ω∪∆∪Γ ⊂ 〈Ω̄〉∪〈∆̄〉∪〈Γ̄〉 ⇒ S ⊂ 〈S̄〉 ⇒
〈S〉 ⊆ 〈S̄〉. Moreover S ⊃ S̄ ⇒ 〈S〉 ⊇ 〈S̄〉 so 〈S〉 = 〈S̄〉
aka G = 〈S̄〉
For the module M-Tran[10] Fig.4, S̄ contains the 4
symmetries of 1 connector (there is one type of connec-
tor), 5 inter-connectors displacements from one connec-
tor (chosen arbitrarily) to the others, 8 inter-connectors
displacements from one configuration to the others when
a connector is immobile, providing 4 + 5 + 8 = 17
generators.

2) Further simplifications: If the joints of a module are
not coupled (which is the case for most lattice system,
an exception is [17]) a further simplification is to put
in Γ̄ the sets of inter-configurations displacements pro-
duced by each joint separately, because the other inter-
configurations displacements will result as combinations
of the previous ones. For the module M-Tran this leads
to consider only 3 displacements for one joint and 3 for
the other.
We have see that S is redundant because the smaller

set S̄ generates the same group. Nevertheless, in most
cases, the generating set S̄ his itself redundant because
its displacements occur along common symmetry axes.
Therefore it may be advantageous to represent the gen-
erating set S̄ geometrically by using symmetry axes. In
the following example we will see that the generating
set S̄ of M-Tran Fig.4 can be represented by four 4-fold
rotation axes and one translation.

3) Example: The kinematics of the system M-Tran[10]
is represented on the Fig.5. It has two revolute joints axes
M1 and M2, and 6 connectors: three connectors C1, C2
and C3 with gender + and three opposite connectors C4,
C5 and C6 with gender −.
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Fig. 5. The kinematics of a module M-Tran.

(a) Connectors symmetries

(b) Inter-connectors
displacements

(c) Inter-configurations displace-
ments

(d) Resulting symmetry axes

Fig. 6. Symmetry axes of the module M-Tran[10].

The displacements of S̄ (see section III-C.1) are rep-
resented geometrically by symmetry axes:

1) Fig. 6(a) shows a 4-fold rotation axis corresponding
to the symmetry operations of one connector.

2) Fig. 6(b) shows the symmetry axes corresponding
to the inter-connectors displacements. The rota-
tions around the 4-fold axis Z1 provides the dis-
placements to bring the connector C2 to the same
configurations as the identical connectors C1 and
C3. Moreover, the translation along the axis T and
the rotations along the 4-fold axis Z2 allows to
bring the connector C2 on the opposite connectors
C4, C5 and C6.

3) Fig. 6(c) shows the 4-fold rotation axes correspond-
ing to the displacements generated by the joints M1
and M2.

The resulting set of axes is recapitulated Fig. 6(d).

4) Recognizing the generated reconfiguration group:
The chiral space groups4 are all the discrete displacement
groups containing translations. Therefore a modular sys-
tem is lattice and has a translational periodicity in the
space if and only if its reconfiguration group is a chiral
space group. To find the corresponding space group, one
must find the minimum group generated by S̄ in the
tables [18], [19] or find the minimum group whose sym-
metry axes represented in [18], [20] match the geometrical
representation of S̄ (as in Fig. 6(d)). If S̄ does not
generate a chiral space group, the system is not lattice
or has no periodicity in three directions (for example,
we consider the Caisson Fig. 35 in [17] as a lattice
system with a periodicity in only one direction so its
reconfiguration group is not a chiral space group). For the

Fig. 7. The module M-Tran and a representation of the 4-fold
rotation axes of its corresponding reconfiguration group.

system M-Tran, G is the face centered space group F432.
The Fig.7 represents the 4-fold rotation axes (Wyckoff
position e, see [18]) of the space group F432 and a module
of the system M-Tran. The white spheres represent the
position equivalent by translation. The 4-fold rotation
axes of F432 coincide with the 4-fold symmetry axes of
the connectors and with the 4-fold rotation axes of the
revolute joints in any possible lattice configuration of
the module. All the “equivalent” poses of a connector
can be obtained by applying all the displacements of
the group to one pose of this connector. On the figure,
all the equivalent poses of the connectors + and − are
represented respectively by the black and white squares
(poses corresponding to the same connector configuration
are indistinguishable because of its normal symmetry). In
any lattice configuration of the system, the connectors of

4The chiral space groups (also called Sohncke groups) where
introduced to describe the (chiral) crystals symmetry because they
contains three independent translations allowing translational peri-
odicity in the space. There exists 65 types of such groups described
in [18] and listed in [12]. In two dimensions the discrete groups
having two independent translations are called the plane groups.
The 17 types of plane groups are described in [18]. Exhaustive data
about the 230 space groups and their hierarchy can be found on line
in [19], [20].
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the modules will coincide with the equivalent poses of
these connectors.

D. Manipulation group

The manipulation group is the minimum group con-
taining the displacements that the actuation mechanisms
of the modules may produce in any configuration of the
modules. Let D be the set (assumed finite) of displace-
ments that a mechanism of a module M can produce
when a connector c of M has a constant pose. Moving
c (and consequently M) by a displacement d ∈ SE(3)
brings c to a new constant pose. The new set of displace-
ment produced by the mechanism is the previous one
conjugated by d:

D′ = dDd−1

The set D corresponds to the inter-configurations dis-
placements Γ̄ of the module, and the displacement d may
be any element of the reconfiguration group R generated
by S̄ = Ω̄ ∪ ∆̄ ∪ Γ̄.
Hence, the manipulation group M is the smallest

group containing the inter-configurations displacements
of the module conjugated by the elements of its recon-
figuration group:

M = 〈gdg−1|g ∈ R, d ∈ Γ̄〉

Or, more in detail:

M = 〈gdg−1|g ∈ 〈Ω̄ ∪ ∆̄ ∪ Γ̄〉, d ∈ Γ̄〉

For any element m in M, m =
gd1g

−1gd2g
−1 . . . gdng−1 = gd1d2dng−1 = gdg−1

where d is an element of the group 〈Γ̄〉 generated by Γ̄.
Therefore,M is the normalizer of 〈Γ̄〉 in R:

M = 〈gdg−1|g ∈ R, d ∈ 〈Γ̄〉〉 = NormR〈Γ̄〉

E. Heterogeneous system

In the presented method, the modular systems had
only one type of module. To generalize to heterogeneous
systems with n types of modules one must consider
n modules connected together, this assembly forms a
“meta-module”. The generating sets are determined on
the meta-module in the same manner as for one mod-
ule of an homogeneous system, however the connectors
linking adjacent modules of the meta-module must be
considered as any other connector.

IV. Comparison of Lattice Systems

The previous principles where used to compare the
reconfiguration group and manipulation group of sev-
eral existing lattice systems. The results are represented
in Table I. For each system the table give the types
of the reconfiguration group and manipulation group
in Hermann-Mauguin notation. For these systems, the
groups are 2 or 3 dimensional chiral space groups, de-
scribed in [18]. The groups in lowercase (p1 or p4) are
two dimensional space groups, while those in uppercase

(like P432) are three dimensional space groups. The
manipulation groups are necessarily subgroups of the
reconfiguration groups, but may be equals (“The same”
is displayed in the last column). If the manipulation
group is not the same, it may nevertheless have the
same type. This occurs for the system Micro-unit: in the
corresponding row the scale difference is displayed. If the
manipulation and reconfiguration groups have different
types, then the reconfiguration group is a maximum
subgroup of the manipulation group (the contrary does
not occur for the existing lattice systems). For the system
Stochatic[8] there is no manipulation group, because the
system uses only external devices to be reconfigured.
The symmetries of the connector are also displayed.

To note the symmetry of a connector (see [12], [13])
we use two digits: the first digit gives the order of
the normal symmetry, while the second gives the or-
der of the transverse symmetry (which is 1 or 2). For
non hermaphrodite connectors, the transverse symmetry
order equals 1, and it is possible to distinguish their
gender by replacing the digit 1 by + or −. To locate
the symmetry axes of the connectors in relation with the
reconfiguration group (not the manipulation group) the
table gives the Wyckoff positions (see [18], [12], [13] of
these axes. Likewise, the table locates the joints axes in
relation with the reconfiguration group by giving their
corresponding Wyckoff positions. For the heterogeneous
system I-Cube, the Wyckoff positions of the axes are
given separately for each modules, while for the system
Molecule V2 both module are described in the same row
(only the gender of the connectors changes).
When the reconfiguration and manipulation groups are

different this means that some identical connectors of
modules cannot have their configurations exchanged by
self-reconfiguration (while this is possible by reconfigura-
tion). For example, the system Atron[9] has its modules
equipped with two pair of connectors + and connectors
−, but it cannot exchange the configurations of two
identical connectors of a module by self-reconfiguration.
Another example is the system Fracta[3], for which it
is not possible to exchange the configurations of two
adjacent modules by self-reconfiguration.

V. Concluding Remarks

The introduced method allowed to characterize suc-
cessfully the existing lattice systems by discrete displace-
ment groups. This prove that our definition of lattice sys-
tems is consistent with the former one, and consequently
that the conception approach introduced in [12], [13] is
appropriate for the design of lattice systems.
Moreover, this characterization helps to estimate the
kinematical features of the lattice systems by giving the
sets of possible displacement occurring on the module
during reconfigurations or self-reconfigurations. For ex-
ample if the manipulation group is the identity, the
system cannot self-reconfigure. If the manipulation group
is two dimensional, while the reconfiguration group has
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TABLE I

Comparison of the kinematical features of some lattice systems.

three dimensions, the system can only move its modules
along a plane. These results can be used as a complement
for the conception of lattice systems because it allows to
discriminate between candidate solutions.
Furthermore, our method can be used to analyse the
effect of some modifications of lattice systems. For exam-
ple, if we put hermaphrodite connectors for the modules
of M-Tran[10] we will find that the new system has
the same reconfiguration and self-reconfiguration groups
than the previous one. If we alternate passive and active
modules for the system Fracta[3] we will find that the
new system keeps the same self-reconfiguration group.
The Table I shows that nearly all 3D systems correspond
to groups of type P432 and F432 which have respectively
a cubic and cubic face centered lattice. These groups
are on the top of the chiral space groups hierarchy. The
reason to this is that only these groups have orthogo-
nal 4-fold rotation axes, and most lattice systems have
orthogonal 90◦ rotations in the generating sets of their
manipulation or reconfiguration groups. Nevertheless, it
is surprising that no lattice system corresponds to the
group of type I432 with a cubic centered lattice.
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