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Abstract— In this paper we propose techniques for the
calibration of the iCub’s stereo head using vision and inertial
measurements. Given that wear and tear can change the
geometrical relationship between the different elements in the
kinematic chain, new calibrations must be performed period-
ically. We propose methods that allow automatic calibration
without the need for using external sensors or specially designed
calibration objects. The methods can be applied at any time
during the operation of the system, thus being an alternative
for systems whose calibrations are imprecise or that require
frequent recalibration. Results are shown both in simulations
and on the iCub’s stereo head.

I. INTRODUCTION

The calibration of the geometric relationships between
the actuation and sensing devices of a robotic system is
critical for operations which require precise measurements
and control. Classical calibration methods require precise
mechanical adjustments and parameter tuning that is typ-
ically done by experts. With the growing complexity of
robotic devices, this can be an arduous task. The development
of automated and self-calibration methods will significantly
impact on the usability and ease of maintenance of such
systems. More critical is the fact that classical calibration
methods often rely on sensors that are different from the
ones which will be used in the applications. For instance, the
3D reconstruction of world points by the means of a mobile
stereo head requires the precise knowledge of the cameras
positioning with respect to a certain world reference frame
but their calibration rely on limit switches or mechanical
hard stops. The relationship between these sensors (cameras,
inertial units) is mechanically adjusted once (at assembly
time). Besides being prone to errors, this initial calibration
unavoidably changes with time due to wear, vibrations and
other operating conditions.

The availability of multiple sensors in modern robots
opens opportunities for the development of sensor based
calibration methods. Such methods rely on prospective move-
ments executed by the robot to self-calibrate the relationships
between its sensors and actuators. As an outcome, the
estimation of the unknown parameters is often possible to
obtain.

These techniques have been applied to several types of
robots and applications such as: the calibration of the ex-
trinsic parameters of a camera system mounted on top of a
mobile robot [9] and the calibration of manipulator camera
systems [12], [11]. However, most of the previous work

on self-calibration still rely on prior knowledge about the
environment, e.g. the use of easily detectable objects (mark-
ers, lights, etc). Few works address the problem without
constraining somehow the scenario. These are found mostly
on the field of mobile robot kinematics calibration from
laser scans [14], [10], and vision-based alignment of stereo
heads [6], [7] and pan-tilt structures [16]. To the best of our
knowledge there are no methods using inertial measurements
for the calibration of a humanoid head.

In this paper we use an inertial sensor emulating the
vestibular sense and the cameras of the stereo setup to
calibrate and initialize the neck pan-tilt-swing angles of the
iCub’s head and the eyes pan-tilt angles (see Fig. II). Despite
only showing an application to a humanoid stereo head, the
methods can easily be adapted to serial rotation joints or-
thogonally arranged. To calibrate the neck joints, we propose
two different approaches: the first based on the Newton’s
Method for non-linear equations and the other based on the
Broyden’s method [2]. Their relative efficiency is discussed
and the one which presented the best experimental results
was implemented on the iCub’s head.

To calibrate the eyes pan-tilt degrees of freedom we use a
method inspired in [6]. By performing prospective motions
on an axis and using prior knowledge of the kinematic chain,
the observed image patterns only depend on the alignment
between axes. We have designed a robust version of such a
method in [17] and here present an extended experimental
analysis of results obtained on the iCub robotic platform.

The paper is organized as follows. Section II presents a
description of iCub’s head and eyes kinematics. Section III
discusses two different approaches for calibrating iCub’s
head. In section IV we present a methodology to calibrate
the eyes pan-tilt degrees of freedom. Results are presented
in section V and conclusions in section VI.

II. HEAD AND EYES KINEMATICS

The humanoid head system considered in this work has six
degrees of freedom: neck pitch (θt), neck roll (θs), neck yaw
(θp), eyes tilt (θv) and eyes pan (θh), as shown in Figure II.

It is important to establish a reference coordinate frame,
which will be denoted by {0}. This reference coordinate
frame corresponds to the body coordinate frame and is
defined by the local vertical and by the rotation of the body
along this axis. Considering identical reference coordinate
frames for all joints in the canonical state, the rotation matrix

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5666



Fig. 1. Illustration of the iCub’s head degrees of freedom.

representing the head’s orientation with respect to the body
reference frame depends on the tilt, swing and pan angles,
respectively θt, θs and θp, and is given by [1]:

0R3 = 0R1 · 1R2 · 2R3 (1)
= ROTy(θt) · ROTx(θs) · ROTz(θp) (2)

=

 ct 0 st
0 1 0
−st 0 ct

 ·
1 0 0

0 cs −ss
0 ss cs

 ·
cp −sp 0
sp cp 0
0 0 1


(3)

with ct = cos(θt), st = sin(θt), cs = cos(θs), ss = sin(θs),
cp = cos(θp) and sp = sin(θp).

Similarly, the rotation matrix representing each of the
eyes’ orientation with respect to the head fixed reference
frame depends on the eye pan and tilt angles, respectively
θh and θv , and is given by:

3R5 = 3R4 · 4R5 (4)
= ROTy(θv) · ROTz(θh) (5)

=

 cv 0 sv
0 1 0
−sv 0 cv

 ·
ch −sh 0
sh ch 0
0 0 1

 (6)

with cv = cos(θv), sv = sin(θv), ch = cos(θh), and sh =
sin(θh).

III. HEAD CALIBRATION

A. Problem Formulation

The robot head has an inertial sensor at the end of the pan
joint. The inertial sensor unit is composed of accelerometers
and rate-gyros for the three axis and a magnetometer to
measure the azimuth with respect to a earth fixed co-
ordinate system. The inertial unit is thus able to calculate
the orientation between the sensor-fixed coordinate system,
denoted by {S}, and the earth fixed co-ordinate system,
denoted by {G}, which is defined as a right handed Cartesian
coordinate system with:
• X̂ positive when pointing to the local magnetic North.
• Ŷ according to the right handed coordinates (West).
• Ẑ positive when pointing up.

Note that this co-ordinate system may not correspond to the
body coordinate system (that only happens if the inertial
sensor is placed facing North). Moreover, the sensor fixed
co-ordinate system does not correspond to the head fixed
co-ordinate system (above denoted by {3}), because of
the way the sensor is installed in iCub’s head. This two
coordinate systems are related according to the following
rotation matrix:

3RS = ROTz(π) =

−1 0 0
0 −1 0
0 0 1


Therefore, one can say that the inertial sensor outputs the
following rotation matrix:

GRS = GR0 · 0R3 · 3RS (7)

As already mentioned, the angular displacements given by
the motor encoders are measured with respect to the position
in which the robot is turned on. Thus, using the information
provided by the motor differential encoders (the joint angle
displacements) and the information provided by the inertial
sensor(GRS), our goal is to align iCub’s head with its body.
That is, iCub’s head should be put in a position such that
3R0 = I3.

B. Proposed Methodology

Considering equation 7 and having performed the required
calculations, one can state that:(

GRS
)
31

= rGS31 = st · cp − ct · ss · sp (8)(
GRS

)
32

= rGS32 = −st · sp − ct · ss · cp (9)

The goal is to place the iCub’s head in a position such that
0R3 = I3. In such a position the following equalities must
be verified:

rGS31 = 0 (10)

rGS32 = 0 (11)

It is important to note that, since GRS is a rotation matrix, if
equations 10 and 11 are verified then the following equalities
must also hold:

rGS13 = 0 (12)

rGS23 = 0 (13)

rGS33 = 1 (14)

In order to put the iCub’s head in a position in which
equations 10 and 11 hold, we only need to change the tilt and
swing angular displacements. This problem is one of solving
a system of nonlinear equations (the number of equality
conditions is equal to the number of variables):

r(θt, θs) =
[
rGS31 (θt, θs)
rGS32 (θt, θs)

]
=
[
0
0

]
(15)

Note that these constraints only align the head Z axis with
gravity. The azimuth (pan angle) is still undetermined and
will be computed with additional constraints.
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A popular way to solve this kind of problems is to
use Newton’s method for nonlinear equations [2]. Newton’s
method defines a linear model Mk(∆θ) of r(θ+ ∆θ) in the
following way:

r(θ + ∆θ) = r(θ) + J(θ) ·∆θ (16)

where J(θ) denotes the jacobian of r evaluated in θ.
Newton’s method in its pure form chooses the step ∆θ to

be the vector for which Mk(∆θ) = 0, that is:

∆θ = −J(θ)−1 · r(θ) (17)

However, in this case, since r is not known, the information
required for computing the jacobian is not given. As such,
we propose two different strategies to compute the initial tilt
and swing angular displacements, respectively: θ0t and θ0s .

1) A Systematic Approach: One way of solving this
problem is to express rGS31 and rGS32 in the following way:

rGS31 (α, β) =sin(θ0t + α) cos(θ0p) (18)

− cos(θ0t + α) sin(θ0s + β) sin(θ0p)

rGS32 (α, β) =− sin(θ0t + α) sin(θ0p) (19)

− cos(θ0t + α) sin(θ0s + β) cos(θ0p)

where α and β are suitably chosen angle displacements of the
tilt and swing joints. The above equations can be rewritten
as expressed below:

rGS31 (α, β) =a1 sin(α) + a2 cos(α) + a3 sin(α) sin(β)
+a4 sin(α) cos(β) + a5 cos(α) sin(β) (20)
+a6 cos(α) cos(β)

rGS32 (α, β) =b1 sin(α) + b2 cos(α) + b3 sin(α) sin(β)
+b4 sin(α) cos(β) + b5 cos(α) sin(β) (21)
+b6 cos(α) cos(β)

Since the values of a1,...,a6 and b1,...,b6 depend on the values
of θ0t , θ0s and θ0p, they are unknowns. However, in order to
determine their values, one has simply to collect the values
of rGS31 and rGS32 in six different points (α1, β1),..., (α6, β6)
and then solve the linear system of equations obtained by
writing equations 20 and 21 for each one of these points.
In practice, since the information provided by the inertial
sensor is affected by noise, one should collect more than six
points and then use the Pseudo-Inverse matrix method.

After rewriting equation 15 in terms of α and β, one
obtains:

r(α, β) =
[
rGS31 (α, β)
rGS32 (α, β)

]
=
[
0
0

]
(22)

which is known (as explained: this amounts to solve a system
of linear equations). So Newton’s method for nonlinear
equations can now be applied to determine the angular
displacements α∗ and β∗ which solve equation 22. Clearly,
the initial tilt and swing angular displacements measured
with respect to the body reference frame are given by:

θ0t = −α∗ (23)

θ0s = −β∗ (24)

2) An Incremental Approach: Another way of address-
ing this problem consists in using Broyden’s method [2].
Broyden’s method is a secant method: it constructs its own
approximation of the Jacobian, updating it at each iteration
so that it mimics the behavior of the true Jacobian J over the
step just taken.

The requirement that the approximate Jacobian should
mimic the behavior of the true Jacobian can be specified
as follows. Let sk denote the step from θk to θk+1 and let
yk denote the corresponding change in r, that is:

sk = θk+1 − θk (25)

yk = r(θk+1)− r(θk) (26)

Broyden’s method requires that the updated Jacobian approx-
imation Bk+1 to satisfy the following equation, which is
known as the secant equation:

yk = Bk+1 · sk (27)

The secant equation ensures that Bk+1 and J(xk+1) have
similar behavior along direction sk. Broyden’s method cor-
responds to the following update:

Bk+1 = Bk +
(yk −Bk · sk) · sTk

sTk · sk
(28)

The Broyden update makes the smallest possible change
to the Jacobian (as measured by the Euclidean norm:
‖Bk −Bk+1‖ 2) that is consistent with the secant equation,
which can be formally stated as:

Bk+1 ∈ arg min
B : yk=B·sk

‖B −Bk‖ (29)

The specification of the algorithm is presented below.

Algorithm 1 Broyden’s Method
Choose θ0 and a nonsingular initial

Jacobian approximation B0;
for k = 0, 1, 2, · · · do

Calculate a solution ∆θk to the linear equations:
Bk ·∆θk = −r(θk)

θk+1 ⇐ θk + ∆θk
sk ⇐ θk+1 − θk
yk ⇐ r(θk+1)− r(θk)
Obtain Bk+1 from formula 28

end for

After applying Broyden’s algorithm it is reasonable to
expect that the tilt and swing displacements are almost zero.
So:

θ0t = −
n∑
k=1

∆θkt (30)

θ0s = −
n∑
k=1

∆θks (31)
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C. Computing the Initial Pan

Having applied one of these two approaches to compute θ0t
and θ0s , one can easily compute the initial pan displacement
θ0p by means of equations 8 and 9:

s0p =
b · r031 − a · r032

a2 + b2
(32)

c0p =
r031 − b · s0p

a
(33)

with a = st and b = −ct · ss. Therefore:

θ0p = atan2(s0p, c
0
p) (34)

Here, only the information corresponding to the initial po-
sition is being used in order to compute θ0p. However, both
the approaches presented in this work collect information
corresponding to several positions while computing θ0t and
θ0s . These data could be used to determine θ0p more precisely,
using, for instance, a Weighted Least Squares estimator [8].
Observe that positions closer to the zero present a greater
signal-to-noise ratio and, thus, should be assigned smaller
weights.

IV. EYE CALIBRATION

From the eye-head kinematics analysis, fixed points in the
head fixed reference frame, at coordinates (X,Y, Z) can be
expressed in the camera frame by:Xc

Yc
Zc

 = 3R5 ·

XY
Z

 =

 cvchX + shY + svchZ
−cvshX + chY − svshZ

−svX + cvZ


The perspective projection of such points in the image have
the following normalized coordinates:

x(θv, θh) =
Yc
Xc

= −cvshX+chY−svshZ
cvchX+shY+svchZ

(35)

y(θv, θh) =
Zc
Xc

= −svX+cvZ
cvchX+shY+svchZ

(36)

Let us consider that, at start-up, the system has initial
angles θ0v and θ0h. These angles are unknown when the system
is turned on. Then, a prospective motion of the eye tilt unit is
performed: the eye tilt angle is changed by θv . This process
is illustrated in Fig. 2. For the sake of simplicity, and without
loss of generality, we can consider a null initial eye tilt angle,
θ0v = 0. This corresponds to set the inertial reference frame
aligned with the initial robot’s eye tilt frame.

In the above conditions, points observed by the camera at
system start-up are at coordinates:

x0 =
−sh0X + ch0Y

ch0X + sh0Y
(37)

y0 =
Z

ch0X + sh0Y
(38)

where sh0 = sin(θh0) and ch0 = cos(θh0).

Fig. 2. The geometry of the system before (a) and after (b) the prospective
motion.

After the eye tilt’s prospective motion, these points move
the the new coordinates:

x1 =
−cvsh0X + ch0Y − svsh0Z
cvch0X + sh0Y + svch0Z

(39)

y1 =
−svX + cvZ

cvch0X + sh0Y + svch0Z
(40)

Let us recall that we are willing to estimate θh0, the
unknown eye pan angle at start-up. θv is a known, actuated
angle. The image coordinates x0, y0, x1 and y1 can be
measured from the images by suitable image feature detec-
tors and trackers. Additional, it is important to emphasize
that X , Y and Z are unknown with respect to to the head
fixed reference frame. Thus, the goal is to eliminate these
coordinates from the previous equations.

From equations (37) and (38) we can obtain the following
constraints:

Y

X
=
x0ch0 + sh0
ch0 − sh0x0

(41)

Z

X
=

y0
ch0 − sh0x0

(42)

Now, dividing both the numerator and denominator of Eqs.
(39) and (40) by X , and introducing the constraints in Eqs.
(41) and (42), we obtain:

x1 = −cvsh0ch0+cvs
2
h0x0+c

2
h0x0+ch0sh0−svsh0y0

cvc2h0−cvch0sh0x0+sh0ch0x0+s2h0+svch0y0
(43)

y1 = −svch0+svsh0x0+cvy0
cvc2h0−cvch0sh0x0+sh0ch0x0+s2h0+svch0y0

(44)

These equations can be rewritten in the homography form:x1

y1
λ1

 = H ·

x0

y0
1

 (45)

H =

 cvs
2
h0 + c2h0 −svsh0 ch0sh0(1− cv)
svsh0 cv −svch0

ch0sh0(1− cv) svch0 cvc
2
h0 + s2h0

 (46)

A close inspection to the homography matrix shows that
it has some repeated entries and only 6 of them are different.
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It has the form:

H =

h1 −h2 h3

h2 h4 −h5

h3 h5 h6

 (47)

For the estimation of the homography we need to extract
a set of points visible on the first image (before the prospec-
tive motion) and track their location during the prospective
motion:

{(xi0, yi0) 7→ (xi1, y
i
1), i = 1 · · ·N} (48)

In the above equation, the lower index represents the image
(0 for the image before and 1 for the image after the rotation),
and the upper index represents the index of the point in
the set, from 1 to N. We use the corner detector [15] and
the sparse iterative version of Lucas-Kanade optical flow
method, both implemented in the OpenCV library 1.

For estimating the homography we use a linear method
minimizing the algebraic error. We exploit the particular
form of homography arising in our problem to estimate its
parameters. For each point match obtained in the tracking
procedure, we know from Eqs. (46) and (47) that:

xi1 = h1x
i
0−h2y

i
0+h3

h3xi0+h5yi0+h6
(49)

yi1 = h2x
i
0−h4y

i
0−h5

h3xi0+h5yi0+h6
(50)

Rearranging the previous equations we get the system:{
−xi0h1 + yi0h2 + xi0x

i
1h3 − h3 + yi0x

i
1h5 + xi1h6 = 0

−xi0h2 + xi0y
i
1h3 + yi0h4 + yi0y

i
1h5 + h5 + yi1h6 = 0

(51)
This can be put in vector form:{

aix · h = 0
aiy · h = 0

(52)

with

h =
[
h1 h2 h3 h4 h5 h6

]T
aix =

[
−xi0 yi0 xi0x

i
1 − 1 0 yi0x

i
1 xi1

]
aiy =

[
0 −xi0 xi0y

i
1 yi0 yi0y

i
1 + 1 yi1

]
Given a set of N corresponding points, we can form the
following linear system of equations:

Ah = 0 (53)

where:
A =

[
a1
x a1

y · · · aNx aNy
]T

Since the homography has 6 different entries we need at
least 3 points to estimate it (each point contributes with
two equations). We compute h through the Singular Value
Decomposition (SVD) of A. From the SVD we take the
right singular vector which corresponds to the smallest
singular value. Finally we reshape the entries of h into the
homography matrix H .

1Intel Research. Open Computer Vision Library.
http://www.intel.com/research/mrl/research/opencv/

The above homography estimation method works well
when there are no erroneous correspondences between the
points in both images. Unfortunately, the tracking method
sometimes provides false point matches that will degrade
the results of the homography estimation. In order to address
this problem, we use a well known robust estimation method
that is able to eliminate the false matches (outliers) from
the estimation process: the RANdom SAmple Consensus
(RANSAC) [4]. The application of this method in homogra-
phy estimation problems is presented in [5].

Once the homography is estimated, we can compute the
unknown angle θh0 by, e.g.:

θh0 = atan2(h2, h5) (54)

V. EXPERIMENTAL RESULTS

A. Head calibration

Both Newton’s Method and Broyden’s Method (as de-
scribed in algorithm 1) were implemented in Matlab in
order to assess the way each one converges when applied
to the problem of aligning the iCub’s head with its body. We
assume that, initially, each joint angle (tilt, swing and pan)
is reasonably close to 0 with respect to the body reference
frame (every joint angle is assumed to be lower than 30◦).

1) Inertial Sensor Noise Characterization: As was stated
in section II, the inertial sensor outputs a rotation matrix,
GRS , which describes the orientation of the sensor fixed co-
ordinate system, {S}, with respect to the earth fixed co-
ordinate system, {G}. Naturally, the information provided
by this sensor includes noise. Therefore, in order to simulate
it properly one needs to characterize the noise variance.

We have evaluated the sample variance of the rotation
matrix provided by the inertial sensor in a wide range of
positions. In each position we recorded 100 samples and
then computed the sample variance. The maximum variance
registered was 0.00334233. Hence, in each of the simulations
presented in this section we shall assume a zero-mean
gaussian white noise with variance 0.0034.

2) Matlab Simulations: For both methods we performed
several simulations with different initial conditions and mea-
sured the error between the ground truth position (zero
angles) and the output of the algorithms. For each initial
condition, ten experiments were performed. In each exper-
iment, only ten iterations of the algorithms are executed,
since we experimentally verified that when the algorithms
converge, they typically converge quickly. Nevertheless, in
some experiments the algorithms did not converge; therefore,
only the successful trials are considered when computing
the average error between the ground truth position and the
output of the algorithm (we consider a trial to be successful
if the error corresponding to each one of the joint angles is
less than 0.5rad). Tables I and II show the average errors
(absolute average errors) expressed in radians as well as the
number of non-convergent trials out of ten.

3) Implementation on iCub: Broyden’s algorithm was
successfully implemented on the iCub. Considering the na-
ture of the problem at hand, it is quite difficult to evaluate its
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TABLE I
APPLICATION OF NEWTON’S METHOD TO FOUR DISTINCT INITIAL

CONFIGURATIONS

Initial Configuration θtilt θswing θpan #Failures
π
6 ,

π
6 0.0509 0.0629 0.1067 1

π
6 ,

π
12 0.0493 0.0431 0.0706 0

π
6 ,

π
12 0.0436 0.0902 0.1460 1

π
12 ,

π
12 0.0593 0.0298 0.1233 1

TABLE II
APPLICATION OF NEWTON’S METHOD TO FOUR DISTINCT INITIAL

CONFIGURATIONS

Initial Configuration θtilt θswing θpan #Failures
π
6 ,

π
6 0.0812 0.0309 0.1334 1

π
6 ,

π
12 0.0778 0.0709 0.1404 1

π
6 ,

π
12 0.0177 0.0228 0.0807 0

π
12 ,

π
12 0.0222 0.0179 0.0692 2

results in practice, since the real zero is not known. Never-
theless, we can illustrate the application of the algorithm by
showing how the entries of the rotation matrix provided by
inertial sensor change during the corresponding application.
When the head of the robot is aligned with its body, the
orientation matrix provided by the inertial sensor must be a
rotation about the Z axis. So, the entries r31, r32, r13 and
r23 must be zero and entry r33 must be 1. Table III presents
the evolution of these entries when Broyden’s algorithm is
applied to the real robot. Naturally, it is only possible to
estimate the initial joint angles after applying the algorithm
and assuming that the head is then aligned with the body.

B. Eye Calibration

To illustrate the visual based calibration method for the eye
joints, we have performed several experiments with the iCub
platform. The standard calibration procedure was executed
as follows: joints were moved to the hardware limits and
then were displaced by a predetermined amount in order to
(coarsely) point to the frontal direction. This is considered
the “zero” angle of the system. Let us denote this reference
as the canonical eye pan.

In a first experience we have set the canonical eye pan
to the values −20, −15, −10, −5, 0, 5, 10, 15 and 20
degrees, and measured the true eye pan angle using the
proposed method. The prospective eye tilt movements had
amplitudes ±20, ±10, ±5 and ±2 degrees. The results of
this experiment are shown in Fig. 3. The first observation to
make is that the canonical and the measured angles are offset
by about five degrees. This is not surprising given that the
canonical calibration was done once at assembly time and
since then no adjustments were made. Another observation
to make is that the relationship is approximately linear with
the range of prospective motions employed. Furthermore,
we noticed that for eye tilt prospective motions smaller
than one degree, the variance of the measurements increase
significantly and such values should be avoided.

To better evaluate the behavior of the method in the
vicinity of the true zero, a finer discretization of the canonical
angles was tested: 2, 3, 4, 5, 6, 7 and 8 degrees. A single

TABLE III
EVOLUTION OF THE INERTIAL SENSOR ORIENTATION MATRIX ALONG

THE ITERATIONS OF THE METHOD. INITIAL CONFIGURATION:
θ0tilt = 0.7561rad θ0swing = 0.3047rad θ0pan = 0.5927rad

Iterations r31 r32 r13 r23 r33

0 0.448124 -0.565588 -0.365259 -0.622327 0.692311
1 0.404702 0.03108 0.220109 -0.34103 0.91392
2 0.030612 0.262968 0.250975 0.084264 0.964319
3 -0.138035 0.059402 -0.008302 0.150045 0.988644
4 -0.064814 -0.097917 -0.116638 0.013573 0.993082
5 0.054952 -0.052626 -0.019847 -0.073453 0.997101
6 0.042871 0.023935 0.041518 -0.02621 0.998794
7 0.003065 0.041944 0.038273 0.017432 0.999115
8 -0.029368 -0.002641 -0.016464 0.024462 0.999565
9 0.003777 -0.005103 -0.002637 -0.005775 0.99998

Fig. 3. Relationship between the canonical and measured eye pan values,
for different eye tilt motion amplitudes.

amplitude was used in the eye tilt prospective motion: 20
degrees. The results are shown in Fig. 4. Again, an almost
linear characteristic and the 5 degree bias are noticeable.

A third experiment was performed to evaluate the preci-
sion of the measurements close to the true zero. The canon-
ical angle was set to 5 degrees and twelve measurements
were taken in different image conditions. Again a eye tilt
amplitude of 20 degrees was used. Computing the variance
of the data set we obtained a value of about 0.6 degrees.
Thus, the precision of the proposed method is below one
degree in the vicinity of the true zero.
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Fig. 4. Relationship between the canonical and measured eye pan values
in the vicinity of the real zero.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a method to automatically
calibrate the neck and the eye joints of a humanoid robot to
its default configuration, using, respectively, measurements
from the inertial sensor placed in the top of the head and the
motion observed by the cameras. The method is suitable to be
used in systems lacking absolute sensing in their actuators’
joints, systems with low accuracy calibration or systems
requiring frequent recalibration.

Two alternative methods for head calibration were pre-
sented: (i) a batch method requiring the acquisition of inertial
measurements on several different head configurations before
computing the solution; and (ii) an incremental method
computing the solution while performing the prospective
movements. Results show that both methods provide good
results in most cases. However, in some circumstances,
mainly when the head configuration is taken to the limits of
the workspace, the methods may not converge to the solution.
Whereas these situations can be diagnosed online using the
incremental method, the batch method is not able to deal
with these cases.

The Broyden’s method, due to its ability to diagnose online
algorithm non-convergence and to intrinsically avoid the joint
limits is the method of our choice. In terms of speed, we have
empirically shown that it converges to values close to zero in
less than ten iterations. Errors measured in the real robot and
in simulation trials with realistic noise conditions are very
low and confirm the practical utility of the proposed method.

The method implemented for eye calibration is based on
the computation of the homography induced by the rotation
of a single axis. A set of points is tracked in the images
before and after the prospective motions. A robust procedure
allows the estimation of the homographies from the tracked
points, even in the presence of tracker failures (outliers).
By relating the homography entries with the unknown initial
angles, it was possible to estimate them reliably solely using
the visual measurements. Furthermore, it was possible to
discover that the default calibration of the iCub right eye,
in our setup, is offset by about 5 degrees.

In future work, we aim at performing a more extensive

analysis of the convergence basin of both the algorithms
presented for the head calibration. Additionally, for the eye
calibration, we want to develop a methodology for assessing
the reliability of the measurements as a function of the
amplitude of the prospective motions and the quality of the
tracked visual features. Such techniques would allow reject-
ing unreliable measurements and thus providing a completely
unsupervised self-calibration process.

VII. ACKNOWLEDGMENTS

This work was partially supported by the Portuguese Gov-
ernment - Fundação para a Ciência e Tecnologia (ISR/IST
plurianual funding) through the PIDDAC Program funds,
through project BIO-LOOK, PTDC/EEA-ACR/71032/2006
and through EU project RoboSoM, FP7-ICT-248366.

REFERENCES

[1] R. Beira, M. Lopes, M. Praça, J. Santos-Victor, A. Bernardino,
G. Metta, F. Becchi, and R. Saltarn. Design of the robot-cub
(icub) head. Proc. IEEE International Conference on Robotics and
Automation, ICRA 2006, May 2006.

[2] G. Broyden. A class of methods for solving non-linear simultaneous
equations. Mathematics of Computation, 19:577–593, October 1965.

[3] J. Craig. Introduction to Robotics: Mechanics and Control. Addison-
Wesley, first edition edition, 1955.

[4] M. A. Fischler and R. C. Bolles. andom sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Comm. of the ACM, 24:381–395, 1981.

[5] R. Hartley and A Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[6] E. Hayman, J. Knight, and D. Murray. Self-alignment of an active
head from observation of rotation matrices. Proc. of the International
Conference on Pattern Recognition, ICPR 2000, September 2000.

[7] J. Knight and I. Reid. Automated alignment of robotic pan-tilt
camera units using vision. International Journal of Computer Vision,
68(3):219–237, 2006.

[8] L. Ljung. System Identification - Theory for the User. Prentice Hall,
second edition edition, 1999.

[9] A. Martinelli, D. Scaramuzza, and R. Siegwart. Automatic self-
calibration of a vision system during robot motion. Proc. IEEE
International Conference on Robotics and Automation, ICRA 2006,
May 2006.

[10] A. Martinelli, N. Tomatis, and R. Siegwart. Simultaneous localization
and odometry self calibration. Autonomous Robots, 22:75–85, 2007.

[11] R. Martinez-Cantin, M. Lopes, and L. Montesano. Body schema ac-
quisition through active learning. Proc. IEEE International Conference
on Robotics and Automation, ICRA 2010, May 2010.

[12] Y. Meng and H. Zhuang. Self-calibration of camera-equipped robot
manipulators. The International Journal of Robotics Research,
20(11):909–921, November 2001.

[13] J. Nocedal and S. Wright. Numerical Optimization. Springer, second
edition edition, 1999.

[14] N. Roy and S. Thrun. Online self-calibration for mobile robots. Proc.
IEEE International Conference on Robotics and Automation, ICRA
1999, May 1999.

[15] J. Shi and C. Tomasi. Good features to track. Proc. of the IEEE IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 1994,
1994.

[16] D. Song, N. Qin, and K. Goldberg. A minimum variance calibration
algorithm for pan-tilt robotic cameras in natural environments. Proc.
of the IEEE International Conference on Robotics and Automation,
ICRA 2006, May 2006.

[17] B. Tworek, A. Bernardino, and J. Santos-Victor. Visual self-calibration
of pan-tilt kinematic structures. Proc. of the 8th Conference on
Autonomous Robot Systems and Competitions, ROBOTICA 2008, April
2008.

5672




