
Integrated View and Path Planning for an Autonomous six-DOF
Eye-in-hand Object Modeling System

Liila Torabi, Kamal Gupta

Abstract— We present an integrated and fully autonomous
eye-in-hand system for 3D object modeling. The system hard-
ware consists of a laser range sensor mounted on a six-DOF
manipulator arm and the task is to autonomously build 3D
model of an object in-situ, i.e., the object may not be moved
and must be scanned in its original location. Our system
assumes no knowledge of either the object or the rest of
the workspace of the robot. The overall planner integrates
a next best view (NBV) algorithm along with a sensor-based
roadmap planner. Our NBV algorithm while considering the
key constraints such as FOV, viewing angle, overlap and
occlusion, efficiently searches the five-dimensional view space
to determine the best modeling view configuration. The sensor-
based roadmap planner determines a collision-free path, to
move the manipulator so that the wrist mounted scanner is
at the view configuration. If the desired view configurations
are not collision free, or there is no free path to reach them,
the planner explores the workspace such that facilitates the
modeling. This is repeated until the entire object is scanned.
We have implemented the system and our results show that
system is able to autonomously build a 3D model of an object
in an unknown environment.

I. INTRODUCTION
Automated model acquisition of 3D objects is an important

capability in a variety of application domains, including
automatic inspection, manipulation, reverse engineering, and
service robotics. Such an automated system, comprises three
broad modules, as shown in Figure 1: i) 3D modeling, which
concerns itself with the scanning and merging the scans to
build the object model, and essentially deals with machine
vision/graphics aspects; ii) view planning, i.e., to determine
the sensor pose from where to scan the object, which has
both vision and robotics aspects, and (iii) moving the sensor
positioning mechanism (a robot or a turn table) to desired
scanning poses, which brings in the path planning aspect.

The 3D model building cycle, shown in the left block
in Figure 1, consists of three main phases: a) scan, b)
register, and c) integrate. A scan is taken from a camera
pose, acquired range images are registered using standard
techniques such as Iterative Closest Point (ICP) method [1],
[2]. Finally, registered images are combined into a single
object model, a process commonly known as integration.
The integration could be done as volume intersection[3], [4],
mesh integration[5], [6], [7] or at the point cloud level. The
cycle is iterated until a complete model is built or some
termination criteria are satisfied. An example of this would
be a person using a hand held scanner, such as Polhemus

Lila Torabi, and Kamal Gupta are with Robotic Algorithms & Motion
Planning (RAMP) Lab, School of Engineering Science, Simon Fraser Uni-
versity, Burnaby, BC V5A 1S6, Canada. Email: ltorabi@sfu.ca,
kamal@cs.sfu.ca

Scan

Integrate

Register

Plan the Next Best View(NBV)

Plan a Path for the Robotic 
Positioning system

Update the W-space & C-space

 3D modeling cycle

Get the view configuration via 
Inverse Kinematics

Move to the viewpoint

Fig. 1. Components of a fully autonomous 3D object acquisition system
(* represents path planning aspects)

FastSCAN [8], to take multiple scans and the 3D model
building cycle being carried out by the system. Note that
steps (ii) and (iii) are carried out by the user and is not
autonomous.

To automate this process, step (ii), i.e., view planning
(also called next best view or NBV) and step (iii), i.e., path
planning are added, as shown in the right blocks in Figure
1. The next best view (NBV) problem is to determine the
best scanner pose to scan the object from [9]. The primary
purpose of an NBV algorithm is to ensure that all scannable
surfaces of an object will be scanned. The preference is to
minimize the number of scans needed to build the model,
since scanning, processing a scan, and integrating it into one
object model is often quite time consuming. Most works in
computer vision plan the next best view normally based on
large and fixed set-ups that possess limited mobility, e.g., a
turn table 1. The viewpoint space is mostly limited to one or
two degrees of freedom (DOFs), and at best provides limited
coverage models for a restricted class of objects, also they all
assume that the desired viewpoint is reachable. In order to
acquire a complete model of an object, in general a six-DOF
viewpoint space is requiered, so that the object can be viewed
from an arbitrary viewpoint. The challenge, of course, is to
keep the NBV computationally feasible, since the space of
possible viewpoints increases tremendously. We show in this
work, that indeed such a goal is achievable with efficient
NBV algorithms coupled with the high computing power
of current standard PCs. The reachability of NBV, however,
obviously depends on the positioning mechanism on which

1While some works have considered a six-DOF positioning mechanism
[10], these do not search the viewpoint space globally, and furthermore do
not consider the path planning aspect at all.

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4516



the scanner is mounted. Hence at least six-DOF positioning
mechanism, e.g., a manipulator arm, is requiered. However,
using a six-DOF manipulator as a sensor positioning device
necessitates the use of path planning to move the robot while
avoiding collisions with obstacles, which are also sensed by
the scanner. While such coupling has been explored in site
modeling works [11], [12], the positioning mechanism has
been a mobile robot, and the NBV problem has a different
flavor in these works. Along another line, several works
have proposed and implemented sensor based path planners
for eye-in-hand systems in unknown environment [13], [14],
[15], but these works didn’t consider object modeling and
the associated constraints such as overlap.

In this paper, we present an integrated view planning and
motion planning for a six-DOF eye-in-hand object modeling
system. Two key contributions of our work are (i) an NBV
algorithm that efficiently searches the five dimensional (five
because of symmetry of sensor field of view), and (ii)
integrating the NBV with a sensor-based motion planner
(SBIC-PRM [14]). Note that the interaction between the
NBV module and the path planning module is non-trivial. For
instance, the desired view configuration from NBV module
may not be collision free, or it might be collision-free but
not reachable within the currently known workspace. In both
cases, the path planner needs to explore the workspace such
that the desired NBV could be reached (details in Section 4).
The resulting system is a fully autonomous system capable of
modeling in-situ objects without any human intervention. We
show that the system is able to autonomously scan an object
in environments while avoiding collisions with unknown
obstacles. To best of our knowledge this is the first work
which considers both view and path planning aspects for a
six-DOF fully autonomous 3D object modeling system.

II. THE NBV PROBLEM FOR OBJECT MODELING:
BACKGROUND AND RELATED WORK

The view planning problem has been well studied and this
section is a brief overview of the problem, summarized from
existing literature, e.g., [16]. The NBV problem involves
reasoning in three spaces, object surface S, viewpoint space
(the set of possible viewpoints) V , and workspace W , the
3D region in which the positioning device moves and the
camera takes scans.

The NBV is essentially composed of the following two
main sub-problems: determining the target areas that need
to be scanned and determining how to position the range
scanner to scan them [17]. For the first sub-problem, a
common approach is to use range discontinuities in the
current range image, to identify unseen portions of the object,
which indicate target surface areas, thus providing cues for
viewing direction. The target area is represented by either
a volumetric model (octree or voxel) [18], [19], [20], [21],
[22] or a surface [23], [24], [10], [25], [17], [26].

Once the target areas to be scanned have been determined,
the viewpoint space is searched to determine which target
areas are visible from each viewpoint in V , given the sensor
model (often called the sensor constraint). Additional set

of constraints such as overlap between successive views(for
registration), occlusion(visibility constraint) from other ob-
jects (or parts of the same object for non-convex surfaces)
also need to be taken into account. Ray tracing is a key
computation in determining the set of visible target areas
for each viewpoint. However, a naive brute force application
of ray tracing for all view points would be computationally
expensive. Hence a key challenge, particularly for high
dimensional viewpoint space, as in our case, is to keep the
computation fast and efficient to retain the on-line nature
of the system. Consequently, NBV algorithms can be clas-
sified based on degree of freedom of the viewpoint space
V , whether V is searched locally or globally, and by the
constraints they take into consideration.

In some of the earliest papers, Connolly [22] and Banta
[21] used Octree/voxels representation, and labeled the cells
as empty, occupied, or unseen. The viewpoint space V
was the surface of a sphere with view direction normal to
the sphere (2-DOF). The visible unseen volume for each
viewpoint was determined via ray tracing, and the viewpoint
which scans the largest unseen volume, was determined
through a global search. Massios [20] added the viewing
angle as a quality factor. Maver [26] introduced a target
driven method, where the view angles (his V was 1-D)
for target regions was determined, and the viewpoint (view
angle) with the maximum number of targets, selected as the
NBV. Pito [9], [17] chose rectangular patches attached to
occluding edges of the seen surface (mesh representation)
as a cuing mechanism for a global search of V . He used
an intermediate ’positional space’ (PS), to represent what
must be scanned (via the use of ‘observation rays ’ and what
can be scanned ( via use of ranging rays’) in a single data
structure. He used a turn table (1-DOF viewpoint space) as
a positioning system. Clearly direct extension his method
to a high-DOF viewpoint space would be computationally
expensive both in memory usage and processing time.

In our NBV algorithm we take advantage of the conical
sensor FOV, and directly project the observation rays to
the V . This direct projection allows us to determine the
set of viewpoints (which can potentially see a target point)
without ray tracing for every viewpoint, leading to significant
computational efficiency, as shown by our implementation.
Like [17], we consider viewing angle, overlap, and sensor
FOV constraints. We also exploit the structure of V, which is
R3×SO(3) in our case. As a result, if a position is occluded,
entire orientation sub-space can be eliminated without any
occlusion checks (or ray tracing). Furthermore, note that in
all works mentioned above no path planning is involved.

Several other works search the viewpoint space locally
[24], [25], as a result the number of required scans and
the time taken could be quite large. Chen [10] predicts the
curvature of the unknown area of the object, to drive the
viewing direction. Although he uses a six-DOF viewpoint
space, since it’s a local algorithm, there is no search involved.
Orfanos presented a NBV for a very short range scanner
mounted on the robotic arm [19], but his algorithm was
mostly concentrated on collision avoidance with the object.

4517



III. OUR NBV ALGORITHM

A. Representation of spaces W and S

We represent W as an Octree, primarily because it facili-
tates occlusion checks in NBV, and collision checks in path
planning. In the Octree model used in this work, each cell
is categorized as free, obstacle or unknown [27].

The seen part of the object’s surface, S is represented
with a point cloud, which facilitates registration and also
subsequent mesh generation to display the constructed object
model. It also aids in determining surface normals, needed
for determining viewing directions for target areas. Please
note that since the object (whose model is to be constructed)
is also part of the workspace, it is also represented in the
workspace octree. This second representation is used for self-
occlusion checks and to verify if a target point has been
scanned before.

B. Laser Scanner Model, Viewpoint space, and Target points

The range image obtained in each scan consists of set of
ranging rays within the field of view (FOV) of the scanner.
We approximate the sensor field of view as a cone (with
apex angle θFOV ), hence the rotation around cone axis does
not change the view, and viewpoint space V is therefore five
dimensional.
V is discretized as follows: Concentric spherical surfaces

(we use four) are used to represent the viewpoint position
vp = (rp, θp, φp), with each spherical surface (or, viewing
sphere) discretized to 32 × 32 patches. At each viewpoint
position, the set of viewpoint orientations is represented by
a 2-tuple vo = (θo, φo), discretized to a 32× 32 resolution.
As a result V has 32 × 32 × 32 × 32 × 4 = 4.19 × 106

distinct viewpoints 2. Thus every viewpoint is represented as
a five tuple vi = (rp, θp, φp, θo, φo)Ṫhis representation for
V allows us to map the observation rays to V , simply by
defining a projection function. Potentially, other tessellation
methods could be used for viewing sphere [28].

Each target point represents a small surface patch in
the unknown region. The surface patch is scannable from
directions that form an angle of the breakdown angle (θb)
or less with the normal vector of that surface patch 3. Each
of these directions, or observation rays represent a potential
ranging ray4. The set of all observation rays for each point
is its observation cone.

C. What to scan

In a range image, the set of range discontinuities are key
events, because the surface defined by these discontinuous
ranges, known as occlusion surfaces, are the border between
seen and unseen areas. These could be caused by either (i)
non-convex areas, or (ii) a surface edge in a non-smooth
object, or (iii) a ranging ray tangential to the object surface.

2We chose this resolution somewhat empirically. There ia trade off; higher
resolution results in more viewpoints, but increases the algorithm run-time.

3The breakdown angle depends on the surface properties and the laser
scanner. For details for laser sensor (Hokuyo URG-04LX) refer to [29].

4A ranging ray emanates from the sensor, and an observation ray emanates
from the surface.

Viewpoint
Occlusion Line

  
  

Target points with 
thier corresponding Normal vector

1aP

1bP 2bP

iR

1+iR

2tP
1tP

Fig. 2. The geometry of target points and viewing direction. See text for
explanation.

In Figure2, we illustrate a discontinuity as the ray Ri hits
the object at Pb1 , and a neighboring ray Ri+1 hits the object
at Pb2 . The line connecting Pb1 and Pb2 is an occlusion line.
Any point on the occlusion line could be considered as a
target point, but we only use points close to the scanned
surface, Pt1 , and Pt2 , as shown in Figure 2. Key reasons for
this choice are (i) since the object’s surface must continue
into the unseen volume (from the boundary of the seen
surface), this is a good place to look for more of object’s
surface, (ii) choosing target points close to seen surface
facilitates estimation of surface normals, needed for choosing
viewing directions (explained later), and (iii) it automatically
satisfies overlap constraint, essential for registration.

After the list of target points are extracted, we need to
estimate their corresponding surface normal to determine
their valid viewing directions.

The points from the object point cloud which are in
neighborhood radius of Pt2 form a local estimate for its
surface patch. To do this efficiently, we use a Kdtree for
the point cloud data and search it, to identify neighboring
points for Pt2 [30]. The normal vector of the surface patch
is calculated using these neighbor points based on a principal
component analysis (PCA) method [31], [32].

Fig. 3. The geometry of viewpoints that can see a surface patch si. See
text for explanation.

4518



The known surface near Pt1 is the occluding surface,
hence it is either tangent to the surface patch in that area, or
there is a sharp edge; either way the seen points in the point
cloud are not a good estimate for viewing direction. Thus,
as is shown in Figure 2, the viewing direction for Pt1 will
be calculated in a similar technique as Pt2 , but the kdtree is
built from union of the neighboring target points (unknown)
and the (seen) points in the point cloud model.

At the end of this step we will have a list of target points,
si and their corresponding normal direction ni.

D. How to Scan

The geometry of viewpoints that can see a surface patch
si is shown in Figure 3. We define a base planar surface
patch at the origin of the viewpoint space as: {z = 0,−ε <
x < ε,−ε < y < ε} and its corresponding observation cone
(apex angle of θb) with apex located at origin and oriented
along z-axis. The intersection of this cone with each of the
spheres in the viewpoint position space, defines a spherical
cap. Every point on this cap is a possible viewpoint position
for base surface patch. The silhouette of this spherical cap
is a circle, and is stored as a list of points, Vbsil

.
A similar cone with apex angle of FOV (apex at origin)

is defined as the gaze cone, and the points on the silhouette
of the corresponding spherical cap are stored as Vgsil

.
For a surface patch centered at si with normal ni, the

set of possible viewpoint positions is calculated by applying
a transformation matrix (corresponding to the rotation and
translation that transforms the unit z vector at origin to
unit vector at si) to Vbsil

. Figure 3 illustrates the viewing
cone for si, and the silhouette of intersection of this cone
with the viewpoint position sphere, Visil

. The Visil
forms

a circle, with every point on the associated spherical cap
inside this circle, is a desired viewpoint position for sur-
face patch si. To calculate the points inside this circle, all
vpi = (rp, θpi , φpi) ∈ Visil

are first sorted according to their
φ angle. For every φpi , the corresponding θp interval is
discretized, thus creating a list of viewpoint positions vpi

to scan surface si.
Before calculating the valid orientations for the set of

potential viewpoint positions, these viewpoint positions are
checked for occlusion, and only the non-occluded ones
are kept. Note that this leads to significant computational
efficiency, since if an occluded view position is discarded,
all associated view directions are also discarded without
doing any occlusion check for them. For each non-occluded
candidate viewpoint position, vpi

, associated with the surface
patch si, the ranging ray rvi is the line connecting si and
vpi . All viewpoints positioned at vpi , for which rvi lies inside
the sensor FOV cone, are a viewpoint candidate for scanning
si. As is shown in Figure 3 the set of valid orientations for
each viewpoint position vpi

, is a cone with the apex located
at vpi , axis along rvi and apex angle of θFOV . This cone,
called orientation cone is calculated by first translating the
gaze cone by vpi

and then by rotating it (corresponding to
the rotation that transforms the unit z vector at origin to rvi

).

Once the set of viewpoints that can scan si is determined,
their number of visible targets is incremented by one. After
the set of candidate viewpoints for every target point is
identified, the viewpoints are sorted based on the number
of visible target points and stored in a list, Lvp. The
overall scheme for the NBV algorithm at each iteration is
summarized in Algorithm 1.

Algorithm 1: NBV planner
Input: last scanned range image
Output: the sorted list of the viewpoints for next scan
Extract the range discontinues in the scanned image;
Determine the target points for each discontinuity;
for every target point Pti in the list do

Estimate the surface patch si, and normal ni from its
closest neighbors on kdtree;
for each viewpoint position sphere do

Compute the Visil of the viewing cone for si;
Extract the set of candidate viewpoint positions;
for every candidate viewpoint position, vpi do

Determine the ranging ray sivpi ;
if sivpi is occlusion free then

Compute the orientation cone;
Extract set of valid orientations for vpi ;
for every valid orientation, voi do

Increment the number visible target
points for vi = (vpi , voi);

end
end

end
end

end
Sort viewpoints by the number of visible target points

IV. PATH PLANNING: MOVING THE SENSOR TO THE
DESIRED VIEW CONFIGURATION

The output of the NBV algorithm is a sorted list of
view poses. We use SBIC-PRM (Sensor Based Incremental
Construction of Probabilistic Roadmap) planner to determine
a collision-free path for the manipulator as follows.

The best viewpoint pose (top of the sorted list) called
vg is mapped to a finite set of manipulator configurations,
Qg = {qgi , i = 1, . . .m} (m=8 in our case) via closed form
inverse kinematics5. Each qgi

is checked for collision with
the workspace Octree (unknown and obstacle areas), and the
first one found collision-free is deemed the goal configuration
qg , and passed to SBIC-PRM6. The roadmap is searched for
a path to this configuration, and if a collision-free path is
found, it is executed,. If none of the qgi

’s are collision-free,
or there is no collision-free path to the collision-free ones, the
next view pose in the sorted list is selected, and the process
repeats.

5If this were a redundant manipulator, one could directly plan a path for
the desired pose without explicit inverse kinematics [33].

6We give a brief description of SBIC-PRM here, for details, please see
[14]. The planner places a set of random samples in the configuration space
(C-space) of the manipulator, and determines their collision status within
the workspace Octree as one of free/in-collision/unknown. The free ones
are added as a node to the roadmap, the status unknown ones are added to
a list L, and the in-collision ones are discarded.

4519



Algorithm 2: Overall Planner for automated 3D object
modeling with a 6-DOF eye-in-hand system.
Initialize Roadmap;
qc = initial robot configuration;
while Object model is not complete do

Scan;
Update workspace Octree;
Update Roadmap;
if iteration >1 then

Update target points;
Apply registration;
Update the object 3D point cloud model;

end
Call the NBV planner (for modeling);
repeat

Get viewpoint vg from the top of the sorted list;
Qg = {qgi , i = 1, . . . m} = InvKin(vg);

until qgi is collision-free;
qg = qgi ;
if qg is a valid solution then

Add qg to the Roadmap;
else

qg=Plan a view for exploration;
end
plan a path for (qc, qg) through SBIC-PRM;
Move manipulator to qg;
qc = qg;

end

If all view pose configurations have been exhausted,
because none of them are reachable, the planner switches
from modeling phase to exploring phase, i.e., the next view(s)
is planned to explore free-space so that the manipulator can
indeed manoeuver to get to the desired view pose. We have
incorporated a slightly modified version of C-space entropy
criterion based view planner [14], [34] in our overall planner.
It tries to gain information about the view configurations that
are unknown. Details are omitted here for lack of space

Whenever a new scan is taken, whether for modeling
phase or for exploring phase, the workspace octree model
is updated [27]. The C-space roadmap is also updated by
checking collision status of all the samples in list L, the
obstacle ones are removed from the list, and the free ones
are made nodes in the roadmap and checked for connectivity
with their neighboring nodes, and in this way, the roadmap is

(a) First scan (b) Third scan

Fig. 4. Six-DOF Eye-in-hand system. Two snap shots show the viewpoints
from which scans were taken. The corresponding integrated mesh models of
the chair are shown in Figure 5. Note that with our system the scanner is able
to scan from under the chair, which requires full 6-DOF manoeuvrability.

(a) Chair Point
cloud model
after first scan

(b) Chair
Point cloud
model after
third scan

(c) Mesh
model created
after first scan

(d) Mesh
model created
after third scan

Fig. 5. Chair point cloud model and mesh triangulation.

incrementally expanded. The new range image is registered
using ICP [1], [2] before updating the point cloud model.
The list of target points is also updated by deleting the ones
that have been visited.

V. EXPERIMENTAL RESULT

A. Experimental setup

The system hardware consists of a time-of-flight Hokuyo
URG-04LX line-scan range sensor mounted on the last joint
of a 6-DOF manipulator configured with powercube modules
[35], and is shown in Figure 4. The maximum scanning range
is about 3 meters. The sensor is mounted so that the last joint
of the robot moves in a direction perpendicular to the scan
line. This allows us to obtain a 256 × 256 range image by
moving the last joint and hence treat our scanner as a full
area scan range image sensor with a conical FOV of about
π/4 view angle and 3 meter range. We have considered a
cube of side 256 cm as the imaging work space and its Octree
model is constructed from scanned images as in [27] with
minimum resolution of 1cm.

B. Acquired Models

We impose no constrains on the size and the shape of the
object to be modeled and also assume that the workspace
is unknown. We have chosen a chair as the object to show
how the manipulator (six-dof manoeuvrability) as it avoids
the obstacles in the environment, takes a scan under the chair.
Figure 4 shows our system is able to scan legs, go in between
them and take a scan from underneath the chair. while other
limited DOF systems in literature cant do this. Figure 5
shows the evolving point cloud model of the chair, as more
and more scans are taken. Note that since the environment
is unknown, the manipulator can’t manoeuver aggressively
around the object for taking scans, and must first scan to

4520



TABLE I
RUN TIMES FOR AUTONOMOUS 3D OBJECT MODELING

Average Processing Time (seconds)

Modeling cycle Scanning 25
Registration/Integration 115

View planning NBV Algorithm 6
Update targets 3

Path planning
Update Octree model 129

Update Roadmap 109
Path searching 2

Complete iteration 455

explore the unknown workspace (explore phase) so that it
can then scan the object (modeling phase). In the modeling
phase, because of overlap constraint for registration, each
scan should cover a portion of the already seen area of the
object. Thus, the 3D model is constructed gradually.

Our overall planner was implemented on a Pentium 4 with
3 GHz clock and the run-times for various sub-planners are
shown in Table.I NBV (modeling phase) planner takes only
2% of the total time in each iteration. This time is based on
the average number of 150 target points.

Note that the efficiency of the other modules, could be
improved e.g., using more efficient techniques for collision
checking will reduce the processing time for the roadmap
update.

VI. CONCLUSION AND FUTURE WORKS

We have implemented a fully autonomous 3D object mod-
eling system with a six-dof eye-in-hand system. The system
is able to build a complete 3D model of an unknown object
in-situ while avoiding collisions in an unknown workspace. A
key part of the overall planner is an view planning algorithm
that efficiently searches a five-dimensional viewpoint space
(4 × 106 viewpoints) to determine the best view pose for
the scanner. This allows the system to construct an accurate
model with a small number of scans. The view planner is
integrated with a sensor-based roadmap planner (SBIC-PRM)
to find a collision-free path to move the manipulator (hence
the scanner) to the desired view pose. Initial experiments
with the system show that the system is able to autonomously
scan an object in environments while avoiding collisions with
obstacles, while each iteration, including all motion planning
techniques and workspace updates, takes about 7-8 minutes.

REFERENCES

[1] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Trans PAMI, vol. 14, pp. 239–256, 1992.

[2] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” Third International Conference on 3-D Digital Imaging and
Modeling, pp. 145–152, 2001.

[3] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in SIGGRAPH-96,, pp. 303–312, 1996.

[4] C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and
R. Scopigno, “The marching intersections algorithm for merging range
images,” The Visual Computer, vol. 20, no. 2, pp. 149–164, 2004.

[5] G. Turk and M. Levoy, “Zippered polygon meshes from range images,”
in SIGGRAPH : Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pp. 311–318, 1994.

[6] A. Hilton and et al., “Reliable surface reconstruction from multiple
range images,” Computer Vision, pp. 117–126, 1996.

[7] H. Zhou, Y. H. Liu, and L. Z. Li, “Incremental mesh-based integration
of registered range images: Robust to registration error and scanning
noise,” in ACCV06, pp. 958–968, 2006.

[8] “http://polhemus.com/.”

[9] R. A. Pito, Automated surface acquisition using range cameras. PhD
thesis, University of Pennsylvania, 1997.

[10] S. Y. Chen and Y. F. Li, “Vision sensor planning for 3-d model
acquisition,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 35, no. 5, pp. 894–904, 2005.

[11] V. Sequeira, J. Goncalves, and M. I. Ribeiro, “Active view selection
for efficient 3d scene reconstruction,” ICPR’96, vol. 1, 1996.

[12] P. S. Blaer and P. K. Allen, “Data acquisition and view planning for
3-d modeling tasks,” in Proc. of IROS, pp. 417–422, 2007.

[13] P. Renton, M. Greenspan, H. A. ElMaraghy, and H. Zghal, “Plan-
n-scan: A robotic system for collision-free autonomous exploration
and workspace mapping,” Journal of Intelligent and Robotic Systems,
vol. 24, no. 3, pp. 207–234, 1999.

[14] Y. Yu and K. Gupta, “C-space entropy: A measure for view planning
and exploration for general robot-sensor systems in unknown environ-
ments,” International Journal of Robotics Research, pp. 1197–1223,
2004.

[15] E. Kruse, R. Gutsche, and F. Wahl, “Efficient, iterative, sensor based
3-d map building using rating functions in configuration space,” in
Proc. of ICRA, pp. 1067–1072, 1996.

[16] W. R. Scott, G. Roth, and J.-F. Rivest, “View planning for automated
three-dimensional object reconstruction and inspection,” ACM Com-
put.Surv., vol. 35, no. 1, pp. 64–96, 2003.

[17] R. Pito, “A solution to the next best view problem for automated
surface acquisition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21, pp. 1016–1030, 1999.

[18] M. K. Reed, P. K. Allen, and I. Stamos, “Automated model acquisition
from range images with view planning,” in In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 72–77, 1997.

[19] D. Papadopoulos-Orfanos and F. Schmitt, “Automatic 3-d digitization
using a laser rangefinder with a small field of view,” in Proceedings
of the International Conference on Recent Advances in 3-D Digital
Imaging and Modeling, IEEE Computer Society, 1997.

[20] N. A. Massios and R. B. Fisher, “A best next view selection algorithm
incorporating a quality criterion,” in Proc. British Machine Vision
Conference BMVC98, Southampton, pp. 780–789, 1998.

[21] J. E. Banta and et al., “A next-best-view system for autonomous 3-
d object reconstruction,” IEEE Transactions on Systems, Man and
Cybernetics, Part A., vol. 30, no. 5, pp. 589–598, 2000.

[22] C. Connolly, “The determination of next best views,” in Proc. of ICRA,
vol. 2, pp. 432–435, 1985.

[23] S. Chen, Y. Li, J. Zhang, and W. Wang, Active Sensor Planning for
Multiview Vision Tasks. Springer, 2008.

[24] B. W. He and Y. F. Li, “A next-best-view method with self-termination
in active modeling of 3d objects,” in Proc. of IROS, pp. 5345–5350,
2006.

[25] P. Whaite and F. P. Ferrie, “Autonomous exploration: Driven by
uncertainty,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 3,
pp. 193–205, 1997.

[26] J. Maver and R. Bajcsy, “Occlusions as a guide for planning the
next view,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, pp. 417–433, May 1993.

[27] Y. Yu and K. Gupta, “An efficient online algorithm for direct octree
construction from range images,” in Proc. of ICRA, vol. 4, pp. 3079–
3084, 1998.

[28] K. Morooka and et al., “Computations on a spherical view space for
efficient planning of viewpoints in 3-d object modeling,” International
Conference on 3D Digital Imaging and Modeling, pp. 138–147, 1999.

[29] Y. Okubo, C. Ye, and J. Borenstein, “Characterization of the hokuyo
urg-04lx laser rangefinder for mobile robot obstacle negotiation,”
Unmanned Systems Technology XI, vol. 7332, 2009.

[30] A. Atramentov and S. M. LaValle, “Efficient nearest neighbor search-
ing for motion planning,” in Proc. of ICRA, vol. 1, pp. 632–637, 2002.

[31] H. Hoppe and et al., “Surface reconstruction from unorganized points,”
Computer Graphics, vol. 26, no. 2, pp. 71–78, 1992.

[32] T. K. Dey and et al., “Normal estimation for point clouds: a compari-
son study for a voronoi based method,” in Eurographics/IEEE VGTC
Symposium Proceedings on Point-Based Graphics, pp. 39–46, 2005.

[33] J. J. Craig, Introduction to Robotics: Mechanics and Control. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[34] L. Torabi, M. Kazemi, and K. Gupta, “Configuration space based
efficient view planning and exploration with occupancy grids,” in Proc.
of IROS, pp. 2827–2832, 2007.

[35] “http://www.schunk-modular-robotics.com/.”

4521




