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Abstract— This paper addresses sound source separation
and speech recognition for moving sound sources. Real-world
applications such as robots should cope with both moving and
stationary sound sources. However, most studies assume only
stationary sound sources. We introduce three key techniques to
cope with moving sources, that is, Adaptive Step-size control
(AS), Optima Controlled Recursive Average (OCRA), and Sepa-
ration Parameter Switching (SPS). We implemented a real-time
robot audition system with these techniques for our humanoid
robot with an 8ch microphone array by using HARK which
is our open-source software for robot audition. Preliminary
results show that the performance of recognition of moving
sound sources improved drastically, and also the performance
of the system is shown through two speech dialog scenarios
which requires sound source separation and automatic speech
recognition for moving sources.

I. INTRODUCTION

Robot audition is an active research area which realizes
natural human-robot interaction in a daily environment. The
main claim in robot audition is listening to several things
simultaneously using a robot’s own ears [1]. However,various
types of sound sources coexist with a target speech source.
Thus, one of the hottest research topics in robot audition is
sound source separation and speech enhancement.

Nakadai et al. reported an Active Direction-Pass Filter for
binaural processing [2]. It can separate three simultaneous
sound sources by using two microphones. However, the
separation performance is poor in the real world due to
reverberation and background noise. Valin et al. reported
Geometric Sound Source Separation, which is a hybrid
algorithm between beamforming and blind separation [3].
Their GSS implementation was extended to support online
processing, and Yamamoto et al. integrated their GSS with
ASR by using Missing Feature Theory (MFT) [4]. They
finally showed speech recognition of three simultaneous
speeches. Hara et al. reported an adaptive beamformer based
on sound source separation which was combined with ASR
[5]. They showed a voice based TV control task in an office
environment. Saruwatari et al. developed SIMO-ICA which
can separate a mixture of sound sources with a pair of
microphones [6]. They also developed special hardware to
realize small and real-time processing. This is used in a robot
called Kita-chan with a speech dialog system, which is used

K. Nakadai and G. Ince are with Honda Research Insititute Japan
Co., Ltd., 8-1 Honcho, Wako, Saitama 351-0114, JAPAN, and also with
Graduate School of Information Science and Engineering, Tokyo Institute of
Technology {nakadai,ince.gokhan}@jp.honda-ri.com

H. Nakajima, and Y. Hasegawa are with Honda Research Insiti-
tute Japan Co., Ltd., 8-1 Honcho, Wako, Saitama 351-0114, JAPAN
{nakajima,yuji.hasegawa}@jp.honda-ri.com

Sound 
Source
Localization

Sound 
Source
Tracking

Sound 
Source
Separation

Automatic 
Speech 
Recognition

Input
Signal

Recognition
Results

Fig. 1. A Basic Flow of Robot Audition Systems

in the Ikoma city center as a navigator. However, this system
considered only stationary cases where a robot and users are
fixed when they are speaking.

There are a lot of issues in robot audition systems to sup-
port moving sound source recognition. The basic processing
flow of a typical robot audition system is shown in Fig. 1.
There are mainly three processing blocks such as Sound
Source Localization (SSL), Sound Source Tracking (SST) and
Sound Source Separation (SSS) before an ASR block. These
preprocessing blocks should consider moving sound source
situations. For SSL and SST, some studies mentioned mobile
functions of robot audition, that is, low-level active audition
[2], [7], [8]. However, their mobile functions are still limited
to localization and tracking.

For SSS, Nakadai et al. reported the first result of separa-
tion and speech recognition for a dynamic environment [9].
They developed two techniques to improve SSS: Adaptive
Step-size control (AS) which controls step-size parameter
optimally [10], and Optima Controlled Recursive Average
(OCRA) which precisely estimates a separation matrix [9].
They introduced these techniques to Geometric Source Sepa-
ration (GSS) which is an SSS algorithm by integrating Blind
Source Separation (BSS) and beamforming reported in [3].
They showed that GSS improved around 5 dB in Signal-
to-Noise Ratio (SNR), and ASR performance improved 15
points in isolated word recognition of 200 words for moving
sources after performing GSS. However, this method indi-
rectly dealt with moving sound sources, because they focused
only on the convergence of the separation matrix. In addition,
they showed the effectiveness of their method only for short
utterances like isolated words.

Therefore, in this paper, we propose a new method to
improve SSS for moving sources more directly so that
longer utterances like sentences can be recognized with ASR.
There is room to improve ASR for moving sources in the
ASR block in Fig. 1. The most common technique is noise
adaptation of an acoustic model for ASR such as multi-
condition training. Thus, we also use a noise adaptation
technique with the proposed method.

The rest of this paper is organized as follows: Section II
describes issues in dealing with moving sources for robots.
Section III proposes our new methods to solve the issues.
Section IV shows our robot audition system introduced the
proposed method. Section V evaluates the system to show
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the effectiveness of our proposed method for moving sources.
The last section gives the conclusion.

II. ISSUES IN DEALING WITH MOVING SOURCES

In order to explain issues in dealing with moving sources,
online GSS [3] that we are using as a base algorithm
is formulated as a proxy for online SSS methods. It is
promising as one of the online adaptive SSS algorithms for
robot audition, because it requires a smaller calculation cost
than the other SSS algorithms.

A. Formulation of online GSS

Suppose that there are M sources and N ( ≥ M) mi-
crophones. A spectrum vector of M sources at frequency
ω, s(ω), is denoted as [s1(ω) s2(ω) · · · sM (ω)]T , and a
spectrum vector of signals captured by the N microphones at
frequency ω, x(ω), is denoted as [x1(ω) x2(ω) · · · xN (ω)]T

, where T represents a transpose operator. x(ω) is, then,
calculated as

x(ω) = D(ω)s(ω), (1)

where D(ω) is a transfer function (TF) matrix. Each com-
ponent Hnm of the TF matrix represents the TF from the
m-th source to the n-th microphone. The source separation
is then formulated as

y(ω) = W(ω)x(ω), (2)

where W(ω) is called a separation matrix. The separation
with the general SSS is defined as finding W(ω) which
satisfies the condition that output signal y(ω) is the same as
s(ω). In order to estimate W(ω), GSS introduces two cost
functions, that is, separation sharpness (JSS) and geometric
constraints (JGC) defined by

JSS(W) = ∥E[yyH − diag[yyH ]]∥2 (3)
JGC(W) = ∥diag[WD − I]∥2 (4)

where ∥ · ∥2 indicates the Frobenius norm, diag[·] is the
diagonal operator, E[·] represents the expectation operator
and H represents the conjugate transpose operator. The total
cost function J(W) is represented as

J(W) = αJSS(W) + JGC(W), (5)

where α means the weight parameter between the costs of
separation and geometric constraint, which is usually set to
∥xHx∥−2 according to [3].

When a long sequence of x can be used, we can directly
estimate the best W by minimizing J(W) in an offline
manner. However, a robot needs to work in real time, and
the best W is always changing in the real world. Thus, the
online GSS adaptively updates W by using

Wt+1 = Wt − µSSJ′
SS(Wt) + µGCJ′

GC(Wt).(6)

where Wt denotes W at the current time step t, J′
SS(W)

and J′
GC(W) are complex gradients [11] of JSS(W) and

JGC(W), which decide an update direction of W. µSS and
µGC are called step-size parameters.

B. Problems in online GSS

The online GSS has three issues in dealing with a
dynamically-changing environment like moving sources.
These issues are regarding estimation of separation matrix
W as follows:

1) fast adaptation of SSS parameters to dynamic changes
(the robustness of convergence of W),

2) precise estimation of SSS parameters (the accuracy of
converged W),

3) reset of SSS parameters according to dynamic changes
(discontinuity of W and D due to motion).

The first one is related to the fact that the step-size pa-
rameters µSS and µGC are fixed values decided heuristically
or empirically, although they should be frequency-dependent
and time-variant values according to environmental changes.
When these values are too large, perturbation around the
optimal W occurs, or W is sometimes diverged. When these
are too small, W behaves like a matrix with fixed values,
and thus, it is difficult to adapt to dynamical changes of the
optimal W. Therefore, the optimal design of these step-size
parameters is the key to realize faster adaptation of W to
the optimal W.

The second is caused by the calculation error of J′
SS(W)

in Eq. (6). In implementation, online GSS used an instanta-
neous product of y for incremental processing by omitting
the expectation operation in Eq. (3). This produces an error in
estimation of the optimal W, and perturbation of W occurs
because W tries to converge to the erroneous optimal W.

In the last issue, two parameters for GSS were involved,
i.e., a transfer function D and a separation matrix W. When
a sound source and a microphone array are stationary, D
is fixed and Eq. (4) is easy to be calculated. However, for
a moving sound source, D continuously changes according
to the motions. Thus, D in Eq. (4) should be changed
adaptively. There are two ways to obtain D adaptively. One
is to calculate D from the geometric relationship between
the sound source and the microphone array. The other is to
discretely change D by selecting the most appropriate one
from the TF database. The former is an intuitive method
because it provides continuous D according to the motion
of the sound source. The calculation is easy in free acoustic
space, but for a robot-embedded microphone array, the effect
of a robot’s head and body has to be considered. Indeed,
a finite element method and a boundary element method
can give accurate TFs by taking such effect into account,
but their real-time calculation is difficult. The latter requires
a lot of impulse response measurements to construct the
TF database. Since it is based on measurement, the SSS
performance is better than the former one. In this method,
the timing for the change of D is a crucial issue, because
such a change makes discontinuity of D. Thus it might affect
SSS performance badly if the changed timing is wrong.
W is updated by using Eq. (6). When a sound source is
stationary, the change of the optimal W is small. However,
when a sound source direction is changed, D which is used
to calculate J′

GC(W) in Eq. (6) is changed as mentioned
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above. Thus, the optimal W varies according to the change
of D. In other words, the optimal W is almost fixed for
a specific sound source direction. Just after a sound source
direction moves from θ1 to θ2, W is converged to the optimal
W for θ1. Thus the SSS performance deteriorates. However,
when the system initializes W to be the optimal W for θ2,
the SSS performance is maintained. In this case, initialization
timing of W is the key.

C. Approaches to solve the problems in online GSS

For the first issue, our reported Adaptive Step-size (AS)
method [10] is effective because it controls both µSS and
µGC optimally. AS is well-studied in the field of echo
cancellation [12]. We extended AS to support multi-channel
input and complex number signals by using the multi-
dimensional version of Newton’s method and linear approx-
imation formula for a complex gradient matrix[10]. With
this method, these step-size parameters become large values
when a separation error is high, for example, due to source
position changes. These will have small values when the
error is small due to the convergence of the separation matrix.
Thus, step-size parameters are automatically controlled to be
optimal values.

For the second issue, we propose to use Optima Controlled
Recursive Average (OCRA) [9] which makes the convergence
of the separation matrix smoother, and improves the sepa-
ration performance of stationary states. OCRA estimates a
precise correlation matrix by using an adaptively controlled
window. In online systems, correlation matrix Rxx at time
frame t is estimated as R̂xx(t) from a partial signal of x(t)
by using a time window w(·).

R̂xx(t) = w(t) ∗ [x(t)xH(t)]

=
∞∑

τ=0

w(τ)[x(t − τ)xH(t − τ)]. (7)

For better estimations, the window length must be long,
however, it makes the adaptation speed slow. Therefore, it
is necessary to set the optimal length for required precision.
Because the required precision is proportional to the sepa-
ration sharpness, we propose an optimal control method for
window length defined by

N(t) =
(
β · min[E[yyH − diag[yyH ]]]

)−2
, (8)

where N(t) is the window length when w(t) is a rectan-
gular window, β is an allowable error parameter which is
empirically set to 0.99, and min[A] represents the minimum
element’s value in matrix A. To avoid an extraordinary
long window, we introduced the maximum value of N(t),
Nmax(= 1, 000) in Fig. 2. The decay parameter α for the
exponential window which is equivalent to the rectangular
length N(t) is defined as

α(t) = (N(t) − 1)/(N(t) + 1). (9)

Finally, the correlation matrix is recursively estimated by
using OCRA with the exponential window defined by

R̂xx(t) = αR̂xx(t − 1) + (1 − α)xxH . (10)

For the last issue, we newly propose Separation Parameter
Switching (SPS). SPS for transfer functions assumes the
second way to use the TF database for D, because the use
of measured TF provides better performance than that of
the calculated TF. As mentioned above, in this case, the
switching timing of D is crucial. SPS is also applied to
control the initialization timing of W. We, thus, propose
two and three modes for switching D and W, respectively.
They are described in the next section.

III. SEPARATION PARAMETER SWITCHING

We newly propose to control switching and initialization
timings of D and W based on an utterance ID and sound
source direction.

A. Switching Timing Control of a Transfer Function

For SPS for the transfer function D, we propose the
following two modes:

POS: Switching timing is controlled by sound source
direction. When the direction of a sound source changes
more than θth compared to the direction estimated at the
previous time frame, the transfer function is replaced
with the one which is the closest to the current sound
source direction. Since our TF database was made for
every 5 degrees, θth was set to be 5 degrees.

ID: Switching timing is controlled by utterance ID. In this
case, the same D is used for an utterance even when
the sound source direction changes drastically. At the
beginning of the utterance, that is, when a new utterance
ID is assigned, D corresponding to the closest to the
current direction is used.

B. Initialization Timing Control of a Separation Matrix

For SPS for the separation matrix W, we propose the
following three modes:

POS: Initialization timing is controlled by sound source
direction. When the direction interval between two con-
secutive frames is over θth, W is initialized. Likewise
SPS for D, θth was 5 degrees. When the system does
not have converged W for the current sound source
direction θ, the initialization defined in [3] is used as
follows:

W(θ) = [diag[DHD]]−1DH . (11)

When the system already has converged W for θ
(Wopt(θ)), the current W is replaced with Wopt(θ).

ID: The initialization timing is controlled by utterance
ID. W is continuously updated without any initialization
while the utterance ID is the same. Only when the
utterance ID changes, the initialization occurs. The
initialization is the same as the POS case, that is, the
use of Eq. 11 or the selection of Wopt(θ).

ID POS: Switching timing is controlled both by sound
source direction and by utterance ID. First, the utterance
ID is checked. When it is changed, the sound source
direction is checked. W is updated in the same way as
the above two cases when the direction changes more
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Fig. 2. Diagram of GSS with the proposed methods for moving sources

than 5 degrees. Otherwise, W is continuously updated
without any initialization.

IV. IMPLEMENTATION

A. GSS for moving sound sources

Fig. 2 shows a diagram of GSS introducing AS, OCRA
and SPS. The step-size and weight parameters are adap-
tively controlled as µSS and µGC with AS. Our GSS uses
correlation matrices Rxx and Ryy estimated by OCRA
instead of using the corresponding instantaneous products.
The appropriate D is selected based on the changes of sound
source direction and utterance ID according to the specified
mode, POS or ID. W is initialized to Winit according to the
mode specified in SPS for W such as POS, ID or ID POS.

B. Real-time robot audition system

We implemented GSS depicted in Fig. 2 as a new module
of HARK (Honda Research Institute Japan Audition for
Robots with Kyoto University) which is our open source
software for robot audition1[13]. HARK consists of a com-
plete set of modules for robot audition as component blocks
on FlowDesigner[14]2, which works on Linux in real time.
Many multi-channel sound cards are supported to build a
real-time robot audition system easily. For preprocessing,
sound source localization, tracking and separation are avail-
able. These preprocessing modules are able to be integrated
with automatic speech recognition (ASR) based on Missing
Feature Theory (MFT). For MFT, modules such as acoustic
feature extraction for ASR, automatic missing feature mask
generation, and ASR interface are prepared. Missing-feature-
theory based ASR (MFT-ASR) is provided as a patch for

1“HARK” has a meaning of “listen” in old English. Available at
http://winnie.kuis.kyoto-u.ac.jp/HARK/.

2http://flowdesigner.sourceforge.net/

Julius/Julian[15] which are Japanese open source speech
recognition systems. Only MFT-ASR is implemented as a
non-FlowDesigner module in HARK, but it connects with
FlowDesigner by using modules from the ASR interface.
Users are able to flexibly build robot audition systems by
using the GUI interface. Fig. 3 shows our robot audition
system using a newly-developed module for GSS with AS,
OCRA and SPS.

The robot audition system was constructed for the Honda
humanoid robot shown in Fig. 4. An 8 ch microphone array
was embedded in the head. For each microphone, a newly-
developed microphone module based on a MEMS micro-
phone shown in Fig. 5 was used.

V. EVALUATION

We evaluated our robot audition system with the proposed
methods through ASR as follows:

Ex.1 performance of ASR for short utterances (words),
Ex.2 performance of ASR for long utterances (sentences),
Ex.3 two speech dialog scenarios

In every experiment, an acoustic model for ASR was
trained with the Japanese Newspaper Article Sentences
(JNAS) corpus consisting of over 60 hours of speech data.
Since noise adaptation techniques are effective, we used
multi-condition training, that is, both speech data separated
by using GSS and clean speech data for training data.

In Ex.1, isolated word recognition for a stationary speech
source, a moving speech source and a mixture of stationary
and moving speech sources was performed. The stationary
speaker stands at 60◦ left of the robot in a 4.0 m × 7.0 m
room with 0.3–0.4 s of RT20. The moving speaker moved
around the robot from 0◦ to -90◦. We asked two persons
to utter 236 isolated words included in the robot’s word
database, that is, real speech data. We checked the effect
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Fig. 3. HARK-based real-time robot audition system using the proposed GSS module
(shown as “ExecuteGSS ASOCRA” in the center)

Fig. 4. An 8 ch microphone array embedded in robot’s
head. The microphones are circularly mounted on the head.

Fig. 5. A MEMS microphone module with an AAA
battery. The center part of the module is microphone unit
(Knowles SPM0406HE3H).

of AS and OCRA. SPS modes were fixed to be POS and ID
for D and W, respectively.

In Ex.2, Word Accuracy (WA) for sentence speeches is
measured. WA is defined by

WA =
N − S − D − I

N
(12)

where N is the number of words, I the number of insertion
errors, D the number of deletion errors, S the number of
substitution errors. We asked ten persons to utter 50 sen-
tences selected from the ASJ phonetically-balanced Japanese
sentence corpus. In this case, each person first stood in front
of the robot, and then were asked the following two patterns:
1) to utter these sentences without motion, and 2) to walk
around the robot within ±20◦ while they were speaking. In
both cases, the robot was turned on, i.e., it generated ego-
noise mainly from the back of the robot. Every combination
for SPS was evaluated by using online GSS with AS and
OCRA. For comparison, we also checked the case when
calculation based TFs was used, which is mentioned as the
first way to estimate D adaptively in Sec. II-B.

In Ex.3, we prepared two speech dialog scenarios. One is
the case where a user greeted a robot while he was moving.
The other is the case where a user asked a question while
a robot’s head is in rotation. In both cases, for the robot, a
users’ speech was regarded as moving sources.

A. Results

Tab. I shows the speech recognition results in Ex.1. For
both stationary and moving single speech sources, the three
methods have the same performance in speech recognition.
This shows that even online GSS has the capability to
deal with a moving source in less noisy cases, because
W converged fast enough. However, in noisy cases where
simultaneous speeches occur, online GSS is of less use.
GSS with AS and GSS with AS and OCRA, thus, have
better performance. Recognition of the separated speech for

the stationary source also improved. We guess that this is
caused by the leakage from the moving source, that is, a
dynamically-changing noise. GSS with AS and GSS with
AS and OCRA were able to deal with such a noise, while
online GSS was not. We also found a further improvement
in source separation by OCRA although the effect of OCRA
was relatively small in Ex.1.

Tab. II shows the speech recognition results in Ex.2.
First, sound source separation based on the TF database is
obviously better than the calculation based one. For SPS,
switching of D does not affect ASR performance. This is
because the motion of each speaker was small, and such a
small change was dealt with by AS and OCRA. However, the
initialization of W slightly affected ASR performance. ID
is better than others. This means that W should be contin-
uously updated without initialization in the same utterance,
but when the utterance changes W should be initialized. This
experiment suggests that the switching of D might be more
effective when the motion of the speaker is more active, and
the initialization of W should be done only when a new
utterance was observed.

Figs. 6 and 7 show the snapshots of the scenarios. In Fig. 6,
the robot correctly recognized the moving speech source, and
greeted the user. Fig. 7, the robot also recognized a user’s
question while its head was in rotation, and answered the
question properly.

VI. CONCLUSION

We proposed three techniques, Adaptive Step-size control
(AS), Optima Controlled Recursive Average (OCRA) and
Separation Parameter Switching (SPS) to deal with moving
sources, and investigated the effectiveness of these tech-
niques. We showed that each method affects the performance
of automatic speech recognition. In particular, AS was the
most effective for dealing with moving sound sources. The
effect of OCRA was small, but it still improved performance.
For SPS, we evaluated all combinations of SPS modes,
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a) A user says a greeting to a robot. b) His greeting was made while in motion.

Hello, how are you?

c) The robot correctly responded.

I’m fine, thank you.

Fig. 6. Speech recognition of a moving speaker

a) A female starts asking a question

    while a robot is in motion.

b) Her question is regarded as 

     a moving speech source.

c) The robot correctly answered

    the question.

Where is my

room key?
It’s on the table.

Fig. 7. Speech recognition while a robot is in motion. The left bottom rectangle shows sound streams detected in the system. The vertical and horizontal
axes show azimuth and time, respectively. Her speech was shown as a red curve, that is, a moving source, while other stationary streams were lines.

TABLE I
Ex.1: WORD CORRECT RATE OF ISOLATED WORD RECOGNITION (%)

online GSS w/ AS w/ AS&OCRA
single stationary 95.8 95.8 95.8

moving 90.7 90.5 90.5
double stationary 58.3 72.3 73.1
(simultaneous) moving 60.2 72.9 74.4

TABLE II
Ex.2: WORD ACCURACY OF SENTENCE RECOGNITION (%)

D W stationary moving
ID ID 90.8 67.9
ID POS 94.1 66.7
ID ID POS 93.9 66.0
POS ID 90.8 67.8
POS POS 94.2 66.8
POS ID POS 93.9 63.2
CALC ID 58.2 59.1

and we obtained a suggestion that the switching of transfer
functions is more effective when a user moves actively, and
a separation matrix should be initialized only when a new
utterance is observed. In addition, we developed a real-
time robot audition system with the proposed techniques,
and showed the effectiveness through two speech dialog
scenarios. Our future work includes more detailed evaluation
to obtain more concrete results in various dynamically-
changing environments such as sentences, crossing speakers
and situations with moving robots.
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