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Abstract— The paper presents a multiple sound sources
mapping system from a robot embedded microphone array.
The robot localizes sound direction and recognizes what sound
it is while the robot is in motion. Then the system estimates
the positions of the sound sources using triangulation from a
short time period of directional localization results. Three key
components are denoted: 1) accurate directional localization
and separation of multiple sound sources using a microphone
array 2) separated sound recognition from a several tens of
milliseconds input signal 3) sound position estimation using
the RAndom SAmple Consensus (RANSAC) algorithm from
a tracked sound stream. By combining these techniques, the
proposed system provides surrounding sound information:
“Where does the sound come from?” and “What is the sound?”.
It works with short term signal input, and is helpful to initially
notice surrounding events.

I. INTRODUCTION

Sound source mapping is a vital function for a robot that

operates in a human environment, such as in the home, office

room or factory environment. In such situations, there are

many sounds/noises as well as the voices of people around a

robot. Focusing attention on understanding the surrounding

environment from robot sensors, bearing-only Simultaneous

Localization and Mapping (SLAM) techniques have been

actively investigated in the last several years, mainly applied

to optical sensors (ex. [1]). Just like visual information,

sound signals are useful to sense surroundings, especially

to initially notice an interesting event, for example, a human

calling or a slamming door.

However, audio signals are different from vision informa-

tion in two ways: 1) environmentally susceptible signals for

directional localization, 2) varied characteristics of the sound

sources. Difficulties for directional localization of sound

is caused by acoustic reverberation, diffraction, resonance,

interference, and so on. Difficulties caused by the charac-

teristics of the sound source are that the received signal is

dynamically changing in time or even sometimes missing.

Accurate directional localization for different pressure

sound sources and robust tracking of detected sound sources

are important for developing a sound-event mapping system.

While many studies have investigated artificial audition [2],

[3], challenging problems remain for covering a large area

in a varied real environment. For a mobile robot, observed

sound sources have varied position relationship such as

moving closer, crossing each other, and varied distance to

the sound.
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For a mobile robot, application focused on the initial

notice of a sound event, sound position estimation in a

short time period is an important ability, and such sound

position information in global coordinates is helpful for inte-

grating other sensors, enhancing sound-separation capability

for moving sound sources.

II. RELATED WORK

Generally, there are two types of sound source mapping.

One can obtain sound pressure distribution and the other

can detect sound position as a point source. Martinson et

al. [4] proposed an auditory evidence grid that considers

ambient noise sources in the static environment to filter poor

localization results and cover a larger area. This system

can generate a static sound distribution map by collecting

directional localization data at a variety of robot positions

over time. As the latter types of mapping, Nakadai et al.

present 2D sound position localization [5] using a particle

filter by integrating a room and a robot microphone array.

The room microphone array increases the resolution of the

localization procedure and its robustness against ambient

noise, and it can track two sound sources simultaneously.

The authors have worked on the latter types of mapping

[6], [7]. These show the sound mapping strategy in two ways:

triangulation based short time estimation, and particle filter

based long term estimation. Both systems estimate sound

positions using beamforming based sound directional local-

ization result, but have limitation on covered area, subject

sound (assuming continuous signal), and do not correspond

to crossing condition.

In this paper, we focused on sound position estimation

in a short time period from robot embedded sensor and

propose a multiple sound sources mapping system by using

a microphone array installed on a mobile robot. Based on

the problem in past work, the proposed system provides the

location of surrounding sound in varied condition and can

identify what sound it is by combining robust directional

localization and sound recognition from short time signal

input. The proposed system provides sound position informa-

tion with sound label around the robot in global coordinates,

and the information is continuously updated in response to

situation changes such as disappeared sounds. The result

show the possibility to add sound information on SLAM

framework by using robot embedded microphones.

III. SOUND IDENTIFICATION FROM A MOBILE ROBOT

This section provides an overview of the sound localiza-

tion, separation and recognition methods which are used in
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the multiple-sound-sources mapping system.

Fig. 1 shows the calculation flow of our robot audition

system. In the DSBF phase, scanning the focus obtains

the spatial spectrum which indicates the sound pressure

distribution around the robot. MLF-based sound localization

is calculated using the spatial spectrum. Then, the FBS phase

separates localized sound sources using the DSBF-enhanced

signals. Finally, separated sound sources are recognized

using PCMs sound identification, and the sound directions

with their sound labels (recognition result) are observed at

each time step. Each functions are explained below.

MLF based 

mul�ple sound localiza�on

FBS based 

mul�ple sound separa�on

D
S

B
F

(S
ca

n
 t

h
e

 f
o

cu
s 

)Microphone array 

signal input

DSBF 

enhanced signal

Spa�al spectrum

sound direc�on

PCMs 

recogni�on
Separated 

sound sources

sound direc�on

sound label

Fig. 1. Calculation flow of the auditory system at a time slot

A. Multiple Sound Localization and Separation

Sound localization and separation is based on Delay and

Sum Beam Forming (DSBF) using a microphone array, to

achieve a directional localization of multiple sound sources

from a robot in motion,

Main-Lobe Fitting (MLF) [8] is used for multiple sound

source localization. The method detects point sound sources

using the main-lobe model of a microphone array. Selecting

reliable peaks by MLF rejects deformed peaks caused by

reflection or interference, or deformed peaks between two

close sound sources. The main-lobe model is obtained from

the microphone arrangement of the array, and MLF-based

sound localization is suitable for mobile robot whose acoustic

environment changes after the robot’s motion. In addition,

it can avoid erroneous localization when direction of two

sounds are close together.

Frequency Band Selection (FBS) [9] is used for local-

ized sound-source separation. The method assumes that the

frequency components of each existing sound source are

not overlapped, and separate the target sound sources by

selecting larger frequency components from DSBF enhanced

signals.

B. Pitch-Cluster-Maps Sound Identification

Pitch-Cluster-Maps (PCMs)-based sound identification

[10] is applied to separated sound-source recognition at each

time slot. It adopts the Vector Quantization (VQ) approach

for real time processing, and the method uses only instant

pitch data (not time sequence information). The PCMs sound

identification is applicable for several tens of milliseconds of

sound input, and is suitable for a mobile robot application

in which conditions are dynamically changing.

A binarized frequency spectra of a target sound source are

used to generate a PCMs model. These spectra are grouped

into K-clusters by the k-means method, and the centered

spectrum of the grouped data for each cluster is used as

the PCMs model. Sound identification phase is performed as

similarity-distance estimation which selects the model which

has the minimum distance of binarized frequency spectrum.

As a final decision, if the spectral distance is bigger than

threshold defined by pitch variance of the model, the input

signal is recognized as unknown signal.

IV. SOUND SOURCE MAPPING

This section provides an overview of the robot motion

function we used in experiments, and explains the proposed

sound sources mapping system from a robot in motion.

A. Particle-Filter-Based Robot Position Localization

Localization is the process of determining where a robot is

within a known map. The framework behind the localization

system developed in this work is that of particle filter

localization [11]. This widely used method for mobile robot

localization uses sampling of the robot’s position to ap-

proximate its location probability density function (PDF). A

motion model is used to predict a sample’s future position ac-

cording to control or odometry information, and the predicted

positions are evaluated according to how their expected

sensory view matches the current sensor view. Resampling

of the predicted positions based on this evaluation ensures

the sampled positions remain distributed about the correct

localization estimate. For 2D sensory data, the matching

process can be done efficiently enough to allow a sufficient

number of particles (or samples) to accurately approximate

the PDF and ensure continuous localization.

B. Path Planning and Path Following

Path planning of the mobile robot is achieved using the

method proposed in [12]. The method uses a 2D A* path

planner [13] to generate the optimally shortest path through

a 2D grid map to a goal location. A local subgoal is created

along the 2D path (at about 5 m) and is used as the target

for generating cubic and fourth-order curvature polynomials.

These local trajectories are continuous in curvature and allow

the robot to make smooth motions through the environment.

Continuous curvature trajectory planning in an environ-

ment containing obstacles can be formulated by augmenting

the robot’s posture with a cost term, reflecting the cost of

traveling along the current trajectory.

The path planning is mainly designed to generate efficient

motion in the known map and works independently of direc-

tional localization of sounds. For sound localization, smooth

motions help reducing erroneous directional localization and

robust tracking.

C. Triangulation based Sound Position Estimation

A robot equipped with a microphone array localizes sound

direction while moving and estimates sound positions by

triangulation. Fig. 2 shows an example of sound localization

with a moving microphone array. If the robot measures

direction data at two different positions, it can estimate the

sound position by calculating the point at the intersection of

two vectors. If multiple sounds exist, there will be undesired

cross points, like point P in Figure 2.
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The problem is eliminated by categorizing direction data

before triangulation. When the system calculates the sound

position using the direction data derived from the same

sound source, it can estimate the sound position without

mismatching points.
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Fig. 2. Position estimation by triangulation from robot in motion

1) Tracking sound data: From the sound directional lo-

calization and identification system described in Section II,

localized sound directions and their sound labels are obtained

from the highest power intensity to the lowest at each time

step. When the robot or the sound sources are assumed not

to jump to another position, the data can be categorized

using a continuously variable angle. The sound direction

data is categorized using the displacement of sound-source

directions and the recognition result, which is predictable

from the robot trajectory.

Obs(t) for a sound-source observation at time t is defined

by equation (1)

Obs(t) = {s1(t), s2(t), · · · , sM (t)}

sm(t) = [θm, lm]T (0 ≤ m ≤ M)
(1)

where M is the number of localized sound sources at time

t, and s denotes a sound observation vector including the

localized direction θ and recognized sound label l.
From observed sound sources Obs(t), each sm(t) is con-

nected to existing stream p or set as a new stream. For a

connection judgement, the distance value Jn is defined by

equation (2) and the stream number p for observation sm(t)
is determined by equation (3).

Jn = |θm(t) − θ̂n(t − ∆t)|/∆t + ǫ × L(lm, l̂n) (2)

p = argmin
n

(Jn) (3)

where ǫ is a weighting value of the recognition result and

L(a, b) is a model matching variable. L = 1 when the sound

label of a and b is the same, otherwise L = 0. l̂n is the

sound label of stream n, which is obtained by the highest

number of label including the stream.

When θm(t) satisfies Jp < Dthld, θm(t) is connected to

θ̂p(t − ∆t), otherwise, θm(t) is set as a new stream. The

given parameter Dthld is the threshold of connection value.

It is heuristically decided based on calcuration cycle, robot

speed and sound localization accuracy.

For audio signals in a real environment, sound sources

may appear or disappear at any moment. To correspond to

that situation, we set a time limit on a tracked stream so that

if the source Obs has not been observed for a certain amount

of time, we consider that the sound no longer exists.

2) Motion Triangulation using RANSAC: From the ob-

served sound directions on each tracked stream, the sound

position is calculated using triangulation.

When observed direction has not changed enough, such

as the robot does not move during the time that sound is

generated or the robot’s traveling direction is similar to the

sound direction, the system cannot estimate the distance from

the sound source by triangulation. On the other hand, the

auditory information is helpful for a robot when directional

localization and separation is achieved. For such situations,

average direction in global coordinates and the voting result

of sound labels from the tracked stream is used as detected

sound information.

For triangulation, the past N direction data are used,

so the number of data pairs used to measure cross points

reaches NC2 = N(N − 1)/2. Since the localization process

sometimes fail to find the sound sources or some pairs of

vectors have no cross points, the number of maximum cross

points is less than NC2. From these cross points, the system

estimates the sound source positions using the RANdom

SAmple Consensus (RANSAC) [14].

The process is described as follows. First, i random cross

points are selected and the root-mean-square error of i points

is calculated. Next, the i points having the lowest mean

squared error is searched to increase i to the maximum

number of cross points. The estimation of the sound sources

position is then achieved from the average of the i obtained

data points.

This algorithm assumes that most cross points are dis-

tributed near the true position. Furthermore, in order to

eliminate gross error, the algorithm eliminates cross points

if the pair of vectors are nearly parallel or if the interval of

the data pair is too close.

A summary of the sound position mapping method is

presented in Table I. The method can be used for online

data processing. The mapping system runs at every time

step using detected sound streams from the last time limitted

direction data. For each stream, if observed direction in

global coordinates has not changed enough, it does not

calcurate cross points and outputs average sound direction

and label. Otherwise, it calculates cross points of direc-

tional localization vector and estimates sound position using

RANSAC. For both case, the sound label is decided as the

voting result in each stream.

V. SSYTEM

A. Mobile Robot : Penguin II

Fig. 3 shows the mobile robot equipped with a SICK laser

sensor and a 32 channel microphone array. There are two

drive wheels attached in front of the body, and two passive

caster wheels attached in the rear of the body. The computer

has a 2GHz PentiumM CPU and 1GB of main memory. The

wheel odometry and laser sensor data are used for robot

position estimation.

Robot pose estimation is calculated on a client computer

outside of the robot. It receives wheel odometry and laser

data, and estimate the robot pose (x, y, φ)R in a known
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TABLE I

SOUND POSITION MAPPING ALGORITHM

Process to estimate the sound sources position

1. Add observed sound direction data to the tracked stream
for s = 0 to detected number of sound stream do

if directions in global coordinates are nearly parallel
2. Calculate average sound direction in global coordinates
3. Estimate the recognized sound label as a maximum voting label

else

4. Calculate the cross points by triangulation
(Using past local data, the number of points is up to NC2)

5. Pick up i random points
and calculate the root-mean-square error for each point

6. Search i, which has the least mean square error
7. Estimate the sound position as average of the i points in step 6.

endif

endfor

map. The client computer used for the experiment has 3GHz

Pentium4 CPU and 1GB main memory. The calculation cycle

of pose estimation is about 6 Hz for a 190×115 px size map

(Fig. 5 in the next section).

B. The Robot Embedded Microphone Array

The proposed sound localization, separation and recogni-

tion is tested using a 32 channel microphone array attached

on the mobile robot. The mobile robot embedded microphone

array and its microphone arrangement are shown in Fig.

3. Through beam forming simulation, we decided the mi-

crophone arrangement to minimize side-lobes [15]. At each

frequency from 700 to 3000 Hz, the focus direction gain

compared to the highest side-lobe has 16 dB in average.
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Fig. 3. 32 channel microphone array attached on a mobile robot: pen2r

The microphone array has 32 omni-directional electlet

condenser microphones and can sample 32 data channels

simultaneously. Sampling frequency is 16 kHz and resolution

is 16 bit. For calculation in experiment section, data length

is set to 1024 points and shift length is 512 points. Each 64

msec of sampled data is recognized every 32 msec.

VI. EXPERIMENT ON THE MOBILE ROBOT

A. Experimental condition

Fig. 4 shows a room used in this work. The room size is

10 × 18 m, and it has a reverberation time (RT20) of 150

msec and background noise level of 35 dBA. 11 loudspeakers

shown in Fig. 4 are used for sound sources.
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Fig. 4. The room and layout of speakers
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Fig. 5. Grid map used for robot position estimation

Fig. 5 shows the room map with the x-y coordinates used

for robot pose estimation. The map is generated from laser

scan data with wheel odometory by using ICP based scan

matching [16]. The map is comprised of binary data (white

and black), and 1 px indicates 0.1 m square area. The map

size is 190×115 px.

For experiments in this section, the robot is controlled by

the path planning result explained in Section IV. Goals of

the path are manually selected. The average velocity is 0.4

m/s (1.1 m/s maximum) and maximum angular velocity is

1.3 rad/s.

For tracking and estimating sound positions, the time limit

is set based on the assumption of sound-source movement or

to detect sounds going quiet, while a large samount of data

provides high accuracy. In this paper, sound observations in

the last 2 sec are used for mapping.

For PCMs recognition, the number of models is 16,

including classical music, female/male voice, daily sounds

and chirping sounds of living creatures. And cluster number

K = 15 for each model.

B. Triangulation

Classical music from speaker11 (the speaker numbers are

described in Fig. 4) is used as the sound source to evaluate

position mapping for one sound source.

Fig. 6 shows the time progress of sound position estima-

tion. The red circles with the green line indicate robot path,

the magenta square is the speaker position and the blue points

are estimated sound positions when the robot is at the red

circles. Robot position interval of sound localization data

pairs used in triangulation is 330 mm on average. When the

robot is crossing in front of the sound (in (a) – (c)), the

distance error is less than 400 mm. On the other hand, when

sound direction is similar to the robot’s traveling direction

(in (d), (e)), the distance error becomes large.
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Fig. 6. Sound position estimation for 1 sound source

Fig. 7 shows the tracked sound direction data while

the robot is in motion. The direction is in robot-centric

coordinates, with 0 deg for the frontal direction and 90 deg

for the left side.
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Fig. 7. Tracked sound direction in robot coordinates

Fig. 8 shows estimated sound position error in relation to

the angle difference between the robot’s traveling direction

and the sound direction. The robot’s path during the exper-

iment is shown in Fig. 8 (a), and the estimated position

error in relation to the angle difference is shown in (b).

The performance depends on the distance from the sound

sources and the robot position interval for triangulation, but

in this condition, the errors are less than 400 mm for an

angle difference of 60 to 120 deg (±30 deg from viewed

edge-on).

C. Tracking

To evaluate tracking two sound sources, we used two loud-

speakers playing male and female speech in the following

two conditions:

exp4: female at (-5.0, 0.0) m and male at (-5, -1.5) m

exp5: female at (-3.0, 0.0) m and male at (-1.5, -3.5) m

-4

-2

 0

 2

-6 -4 -2  0

y
 [

m
]

x [m]

exp1
exp2
exp3

speaker

 100

 200

 300

 400

 500

 600

 700

 800

 40  50  60  70  80  90  100  110  120  130  140

p
o

si
ti

o
n

 e
st

im
a

ti
o

n
 e

rr
o

r 
[m

m
]

direction di!erence [deg]

exp1
exp2
exp3

a) robot path b) distance error

Fig. 8. Estimated position error related to robot traveling direction

The robot path and tracking results are shown in Fig. 9

and Fig. 10. In exp5, the two sound sources are crossing

together at around 5 sec, but the tracking result (Fig. 10 (b))

shows both sound sources are tracked correctly.
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Fig. 9. Two sound sources tracking result : exp4
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Fig. 10. Two sound sources tracking result : exp5

D. Mapping

We tested sound source mapping for multiple sound

sources in a large area using 11 loudspeakers playing a

variety of sounds. The signal to noise ratio was 15 dBA

from background noise level. The speaker arrangement and

each sound source are shown in Fig. 11. All sound sources

are included in PCMs codebook. From the original sound

sources, half were used for PCMs codebook generation, and

the remaining half were used as test sound sources.

Fig. 12 shows the time progress of the sound position

estimation with recognized sound labels. In Fig. 12, vectors

from the robot position shows detected sound direction when

the robot fails to measure the position of a sound source

because the localized angle did not change much while

continuing to localize the direction. In Fig. 12 (a), the

position of the nearby two sound sources was determined and
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Fig. 11. Layout of the loudspeakers and sound source

the five other sound sources were detected with localization

angles and recognized sound labels. In Fig. 12 (b), speaker6

(BirdsongB) and speaker7 (Boiling water) were detected with

their position even when the sound direction from speaker

5 and 6 were crossing each other. And speaker 5 (Duck

calling) behind the BirdsongB was correctly recognized with

its direction. This result shows that observed sound tracking

using sound recognition works correctly. In Fig. 12 (c), two

sound sources were detected with 2D position and three other

sound sources were recognized with their directions. The

buzz of a cicada was detected at 5 m distant from the robot.

TABLE II

MAPPING RESULT: DISTANCE ERROR AND RECOGNITION PERFORMANCE

distance recognition performance %
speaker error mm correct wrong unknown

1 235 83.0 0.9 16.1
2 285 76.5 0.0 23.5
3 348 74.6 11.9 13.6
4 326 84.8 0.0 15.2
5 465 79.5 0.0 20.5
6 245 68.4 15.8 15.8
7 241 59.5 23.8 16.7
8 221 73.3 0.0 26.7
9 161 66.7 0.0 33.3
10 274 31.7 45.0 23.3
11 302 80.0 0.0 20.0

average 282 70.7 8.8 20.4

The performance on each sound source is shown in Table

II. The first column is the speaker number shown in Fig.

4. Fig. 13 summarizes the total estimated sound positions

during the experiment (340 sec movement in total). The

distance error of the estimated sound position was 282 mm

on average, and 70.7 % had the correct sound label. For

speaker7 (Boiling water), 23 % of the detected sources were

recognized as ”pour and stir water”, and speaker10 (Running

water) was mistaken for ”pour and stir water” and ”Boiling

water”.
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Fig. 13. All result of sound source mapping for 11 sound sources

VII. CONCLUSIONS AND FUTURE WORKS

The paper proposes multiple-sound-source mapping from

a robot in motion. The proposed sound source mapping

system is achieved by the following key components: 1)

accurate directional localization and separation of multiple

sound sources from a robot in motion 2) recognition of

the separated sound sources from short term input 3) sound

position estimation from the observed sound direction and

the recognized sound label 4) robot position localization from

a known map.

The sound directional localization using DSBF and MLF

provides accurate directional localization for multiple differ-

ent pressure sound sources on the 32 channel microphone

array attached to a mobile robot. It works in sound crossing

condition and covers larger area by avoiding erroneous

localization of reflection or deformed peak when two sources

are close together. PCMs-based sound identification works

well for recognizing separated sound sources, and the sound

label (recognition result) is useful for tracking.

The mapping result for 11 sound sources shows that the

proposed system can calculate the 2D positions of multiple

sound sources accurately, and recognize each sound source

in a short period of time. The result show the possibility
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and limitation of surrounding sound event mapping by com-

bining sound localization, separation, recognition and robot

position localization from robot embedded sensors. Robust

sound localization for a distant source or close two sounds

are important to detect varied surrounding sound in global

coordinates.

In this paper, the system measured the sound positions

using triangulation and RANSAC estimation, and does not

calculate the distance from the sound when the localized

directions are nearly parallel. Reliability prediction for dis-

tance estimation, which depends on robot motion and sound

position, is needed. Then selecting an interesting event and

changing the robot’s motion to investigate it are the next

challenge to apply this auditory function.
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