
Learning a Probabilistic Self-awareness Model for Robotic Systems

Raphael Golombek, Sebastian Wrede, Marc Hanheide, and Martin Heckmann

Abstract— In order to address the problem of failure detec-
tion in the robotics domain, we present in this contribution a so-
called self-awareness model, based on the system’s internal data
exchange and the inherent dynamics of inter-component com-
munication. The model is strongly data driven and provides an
anomaly detector for robotics systems both applicable in-situ at
runtime as well as a-posteriori in post-mortem analysis. Current
architectures or methods for failure detection in autonomous
robots are either implementations of watch dog concepts or are
based on excessive amounts of domain-specific error detection
code. The approach presented in this contribution provides an
avenue for the detection of more subtle anomalies originating
from external sources such as the environment itself or system
failures such as resource starvation. Additionally, developers
are alleviated from explicitly modeling and foreseeing every ex-
ceptional situation, instead training the presented probabilistic
model with the known normal modes within the specification
of the robot system. As we developed and evaluated the self-
awareness model on a mobile robot platform featuring an event-
driven software architecture, the presented method can easily
be applied in other current robotics software architectures.

I. INTRODUCTION

Nowadays, autonomous robots are capable of performing
an increasing variety of socially relevant tasks in merely
unconstrained scenarios and in close interaction with hu-
mans [10], [19], [8]. This trend gets exemplified in the
advancement of collaborative robot challenges such as the
RoboCup@Home [15] initiative for service robots. Conse-
quently, the inherent complexity of the tackled problems and
the level of autonomy as well as the extended functional-
ity of the underlying hardware and software architectures
increases the overall complexity of robotic systems dramati-
cally. Ultimately, robotic software developers are overburden
by conceiving all possible interactions between the features
within a robot system, in particular if it is deployed in
a dynamic environment. Hence, it is often impossible to
guarantee that robots operate in any circumstance within its
specifications. However, as this is a critical precondition for
robotic systems in close human-robot interaction, it remains
an important challenge for robotic research to guarantee safe
robot behavior at any time of operation.

Along these lines, a novel method for fault diagnosis in
robotic systems is presented. It is based on a probabilistic
model learned in a supervised fashion, providing an avenue
to increase the safety and robustness of robot operation. The

R. Golombek and S. Wrede are with the Research Institute for Cognition
and Robotics, Bielefeld University, P.O. Box 100131, Bielefeld, Germany
[rgolombe,swrede]@cor-lab.uni-bielefeld.de

M. Hanheide is with the School of Computer Science, University of
Birmingham, UK m.hanheide@cs.bham.ac.uk

Martin Heckmann is with the Honda Research Institute Europe, Offen-
bach, Germany Martin.Heckmann@Honda-RI.de

presented approach alleviates developers from the need to
explicitly specify every exceptional or normal situation at
design time of a to-be-controlled system, as usually done in
model-based fault diagnosis [12].

Our approach is conceptually embedded in the framework
of Autonomic Computing [14] (AC) that we want to employ
for autonomous robots. AC describes the vision of software
architectures embedding the necessary computational intel-
ligence for anomaly detection and acting upon anomalies in
the infrastructure itself. Here, the idea is to mimic the human
nervous system thereby equipping the robot with abilities
to self-heal, self-optimize, self-protect and self-configure.
An essential precondition to realize these capabilities is
the ability of the system to be aware of its own systemic
condition i.e., the system has to be self-aware, which can also
be viewed as kind of internal alarm mechanism as described
by Sloman in the CoggAff architectural schema [20]. Hence,
the self-awareness model provides the basis for closed-loop
control schemes acting on autonomic (robotic) elements [14],
which provide interfaces that allow the modification of sys-
tem parameters at runtime to ultimately achieve the desired
self-* attributes in autonomous robots.

Our contribution is organized as follows: Section II re-
views related work on models and algorithms suitable for
fault diagnosis. Section III describes the so-called self-
awareness model, monitoring the system’s internal data ex-
change and the inherent dynamics of inter-component com-
munication. Section IV explains the integration of this model
on our mobile robot BIRON [10]. This example illustrates the
use of the model in a mobile robotic systems and outlines the
required architectural support for its application. We argue
that recent event-based and message-passing architectures
as commonly found in many robotic systems [19], [8] are
particularly well-suited to directly employ our approach.
Following up, Section V describes experiments we conducted
on BIRON while the robot performs tasks defined in the
RoboCup@Home competition, see Figure 1, and discusses
the performance of the self-awareness model. The evaluation
is carried out based on several situations with decreasing
discriminatory power outside of the robots functional speci-
fication. Finally, Section VI summarizes our contribution and
provides an outlook on further challenges.

II. FAULT DIAGNOSIS AND ANOMALY
DETECTION FOR ROBOTIC SYSTEMS

Current solutions to cope with errors arising in the context
of robotic systems are mainly based on intensive specifica-
tion [1], testing and exhaustive coding of recovery routines
for known failures. However, this is a suboptimal solution

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2745

for at least two reasons. First, to cover as many failures
as possible requires expert knowledge concerning all of
the individual system components as well as their interplay
and non-functional characteristics. This is hard or even
impossible if software re-use is envisioned. Secondly, it is not
possible to foresee every exceptional situation which might
lead to critical behavior, especially if non-expert users are
interacting with these systems. Further approaches cope with
errors by incorporating redundancy in the system thereby
reducing the probability of a total fallout [5]. Such methods
may be seen as supplementary solutions as they focus on the
effect rather than the cause of the problem.

In this paper we propose a more flexible method to detect
errors in robotic systems. Our approach is based on inter-
component communication of the system and therefore can
be learned from data. As model basis we choose the concept
of anomaly detection. which refers to the problem of finding
patterns in data that do not conform to expected behavior.
Exploiting anomaly detection for the self-awareness model is
reasonable as it does not demand for the specification of all
possible faults which may occur while the robot is in field.

A plenty amount of work exist concerning anomaly de-
tection. Existing approaches can be broadly subdivided into
two groups, deterministic and stochastic approaches. Deter-
ministic approaches like classification based approaches [21]
assume that it is possible to cluster the feature space in order
to separate normal classes from anomalous ones. Here, a pre-
computed model is used which makes the testing phase very
fast. To each test instance a definite label (class) is assigned
which is disadvantageous when information about the degree
of class-membership of an instance is desired rather than a
concrete label. There are also Nearest Neighbor based ap-
proaches [4] which assume that normal data instances occur
in dense neighborhoods, while anomalies occur far from their
closest neighbors. This technique is purely data driven and
unsupervised. The drawback is that the performance greatly
relies on a distance measure.

Statistical techniques [9], [18], [3], [26] assume that nor-
mal data instances occur in high probability regions, while
anomalies occur in low probability regions. Here, the idea is
to fit a model to the given data and then apply a statistical
inference test if an instance belongs to this model or not.
Besides the inferred decision a statistical model provides a
scoring of anomaly by its nature which can be interpreted as
the confidence of the decision.

The aforementioned related work do not completely fit
the needs and properties of data gathered from a complex
robotic system. Such data results from intensive component
interaction and communication. Therefore it is reasonable to
treat is as a sequence and assume that information about the
system state is also encoded in the order of occurrence of the
data elements as well as in the time intervals between them.
Additionally, in the context of robotic systems uncertainty
occurs due to noisy sensor inputs, variable computation
time of the components and the unforeseeable events in
the environment which is reflected in the data, too. Re-
garding this, applying classification based approaches will

Fig. 1. BIRON performing at RoboCup@Home German Open 2009.

be a challenging task as they operate only on sets of data
thereby completely omitting temporal properties and the
order of the elements in the set. Deterministic approaches
in general fail to cope with uncertainty which makes them
an inappropriate choice, too. Using Markov or HMM based
approaches [9], [3], [26] seems to be a promising solution.
These techniques are able to capture the frequencies and the
temporal order in a sequence. Furthermore, there exist an
extension [18] which allows to explicitly model the duration
between consecutive sequence elements. However, as these
approaches are based on the Markov assumption, they do not
cover situations where temporal correlation exists between
elements of the sequence which do not occur in consecutive
order. In case of a communication pattern produced by a set
of strongly interacting components the Markov assumption
does not necessarily hold which makes the application of
such techniques also challenging.

III. THE SELF-AWARENESS MODEL

In this paper we propose a different approach to build
the self-awareness model. In contrast to the aforementioned
probabilistic techniques, our approach is able to model
durations between each combination of two elements of a
sequence. By this means the model is able to capture more
temporal correlations as it is not restricted to consecutive
occurrences. Furthermore, our approach implicitly models
the frequency of occurrence and the temporal order of the
sequence elements.

As the basis for our anomaly detection we hypothesize the
following: The Components of a system communicate with
each other to fulfill a given overall task. They produce and
consume data which leads to complex communication pat-
terns. If the communication is disturbed due to a component
failure (i.e., missing data, delayed data) it is highly probable
that the task won’t be executed correctly. At the same time
it is probable that the generated communication pattern will
change, too. To preserve information encoded in temporal
pattern the communication data is interpreted as a temporal
ordered sequence.

In our approach we exploit this hypothesis as follows:

2746

A. Encoding Data

To build a model for the complete system we have to
define a uniform representation of the recorded system data.
This is necessary to process output from different compo-
nents homogeneously in one model. Therefore, we define
a transformation function f which operates on single data
entity of the communication sequence as:

f(dj) : Dj 7→ E := e (1)

where dj denotes an element of the sequence with the
specific domain space Dj and E denotes the common domain
space. We call E the event space and the representation e of
the data entity dj in E an event.

B. Building The Self-awareness Model

The self-awareness model is build upon a training event
sequence Etrain. Let UE = Set(Etrain) be the unique set
of all events in Etrain. For each tuple (ei, ej) ∈ UE × UE

a distribution P(i,j) := P (t|ei, ej) is derived from Etrain.
P(i,j) describes the probability that the event ei occurs at
time stamp ti and that the event ej follows this event with a
delay of t, respectively occurring at time stamp ti = tj + t.
Additionally, we constrain ei to be the last seen occurrence of
this type of event as we want to model temporal correlations
only between the current event and the last occurrence of a
given event.

We approximate P with a histogram based probability
distribution. This discrete technique makes no assumption
regarding the shape of the distribution over the durations
between the events and features fast computation. The only
parameter which has to be defined is the bin size sb of the
underlying histogram. sb defines the resolution of temporal
correlation modeled with the distribution Pi,j . The algorithm
in listing 1 describes how to build the distribution for two
events ei, ej .

Algorithm 1 calculateDistribution(ei, ej , sb, Etrain)
Pi,j ← 0
ti ← 0
for e = e1, . . . , en do

if e == ej then
b = b t(e)−ti

sb
c

Pi,j(b) = Pi,j(b) + 1
else

if e == ei then
ti = t(e)

return normalize(Pi,j)

The algorithm traverses the whole sequence Etrain. It
permanently tracks the time stamp ti of the last occurrence
of the event ei. Each time it discovers the event ej in the
sequence it calculates the timespan between the point in time
ti at which ei has been seen last and the time stamp t(e :=
ej) of the just discovered event ej and updates Pi,j . After
the whole sequence has been traversed, Pi,j is normalized to
fulfill the requirements of a probability distribution.

Based on Pi,j , the self-awareness model is defined as M =
{Pi,j |(ei, ej) ∈ UE × UE} i.e., the set of probabilities for
all tuples in UE × UE .

C. Evaluating The System State

The evaluation of the current system state corresponds to
calculating a fitness value for a sequence of events E. We
call this fitness value the score of the sequence and denote
it with ŝE . In order to assess ŝE we first calculate a score
sj for each event ej in E and then average over the number
of events:

ŝE =
1

#E

∑
ej∈E

sj (2)

Calculating the score sj for an event ej which occurred at the
time stamp t comprises querying M to get all probabilities
pi,j = Pi,j(∆ti) and fusing them to a single score sj . This
again requires that the timestamps of the last occurrences of
each event ei which appeared during training are tracked to
calculate the corresponding time spans ∆ti. The score value
sj is defined as:

sj =
∑

ei ∈ E

wi,j · pi,j . (3)

Where E denotes the set of events tracked over the time.
The weight wi,j is defined as:

wi,j = 1− hi,j

Hj
. (4)

hi,j denotes the entropy of the distribution Pi,j and Hj =∑E
ei

hi,j is the sum of all entropy values of the distributions
Pi,j which have to be considered when calculating the score
of the event ej . The reason to weight each Pi,j with its
entropy value hi,j is that it provides valuable information
about the correlation of the two corresponding events at
low computational costs. A high entropy value indicates
high uncertainty in the distribution and consequently low
correlation.

D. Assessing The System State

To assess abnormality of the system it is necessary to map
the continuous score value for a sequence E to a binary
decision (i.e., normal/abnormal). This is done by a threshold
function:

abnormal(E) =
{

True : ŝE < s∗

False : else (5)

If ŝE of E is high enough it is declared as normal. Otherwise
abnormality is assumed. The threshold s∗ is determined by
calculating the receiver operating characteristic curve [22]
on test-data and finding the optimal cut-off in the curve.

IV. MODEL APPLICATION IN SERVICE ROBOTICS

The self-awareness model introduced in the previous
section was continuously integrated and evaluated on our
mobile robot BIRON. The BIRON efforts are aiming at
developing a robot companion exhibiting social interaction
capabilities [23]. The robot is i.e. able to focus and recognize

2747

its current interaction partner from a number of persons,
which allows the robot to provide personalized services and
to interact in a more efficient and natural means while
carrying out useful tasks. One of the scenarios we aim at
is the so-called home-tour scenario which is driven by the
vision of future household robots being introduced for the
first time use after purchase.

While we claim that the self-awareness model described in
this paper is generally usable across a wide range of similar
robotic systems, minimal requirements for its application are
(i) a modular architecture, (ii) the capability to monitor inter-
nal component communication and (iii) the existence of an
encoding function f . In the remainder of this section, these
requirements and their fulfillment on BIRON are explained
to exemplify the use of the self-awareness model on a recent
service robot.

A. FUNCTIONAL MODULARITY

A necessary pre-condition most current robotics systems
fulfill is the call for a modular system architecture. Despite
other disadvantages for system development, the lack of
functional structure in a robotic system makes the application
of the self-awareness model challenging as the structure
information is implicitly exploited in the model. Here, expert
knowledge may be needed to instrument monolithic building
blocks with additional measuring points in order to compen-
sate the missing inherent functional decomposition.

In contrast, BIRON features a modular architecture. The
number and type of active system components in a certain
context depends on the task the system has to accomplish.
In this work we focus on a specific task called “Follow
Me” where approximately 15 components reaching from
motor control and SLAM to face detection as well as person
tracking and path planning are active.

Typically, exchanged data in these systems spans over a
wide range of abstraction levels. On the one hand, compo-
nents exist which produce raw data output like the laser
scanner component. On the other hand, components such
as multi-modal person tracking [13] generate high-level
hypothesis about the presence and state of person in a scene.
Hence, while modularity is a necessary pre-requisite for the
self-awareness model, it must be able to process and monitor
data from different abstraction levels.

B. ARCHITECTURAL SUPPORT

The self-awareness model has to be trained from internal
information which requires architectural support for moni-
toring internal data flow. A conceivable worst case scenario
is again a monolithic system without architectural support
for introspecting the data flow in the system. In this case the
monitoring of the communication has to be realized on the
programming language or on the operating system level.

In contrast to this, Event-Driven Architectures [16] usu-
ally allow components easy monitoring of inter-component
communication by subscribing to all advertised event types.
Received event notifications are in turn be used to train the

self-awareness models for certain operational modes of the
system.

Information exchange on BIRON utilizes so-called active
memories [24], [11]. These virtual shared memories are used
for the integration of the different layers in BIRON’s system
architecture [7]. This concept puts forward the ideas of event-
driven integration on the basis of flexible notification and a
heterogeneous document-oriented data model. On BIRON,
the self-awareness model thus just subscribes to all events
generated through active memory instances.

C. ENCODING FUNCTION
Having access to the exchanged data, the encoding func-

tion f maps a recorded data point d to an event domain
space E . This is beneficial to process data from different
components with different domains in one model.

In context of the BIRON system the mapping function is
defined as follows:

f(d) : D → SOURCE × SCOPE × TY PE

That is, each data point d is mapped to an event e which rep-
resents the producing component of the data point, the scope
where this data point can be perceived by other components
and the type. Here, the type of an event i.e. takes one of
the values insert (new data), delete (data becomes invalid)
or update (data changes). This extensible set of values maps
to common processing possibilities of information.

This definition of f is very general and it is possible to
define more sophisticated mapping functions which might
take further information into account (e.g., the content of a
data point or further properties of the generating component
or the communication channel). However, we chose this
definition of f to minimize the required knowledge about
the functioning of the components in the system.

Furthermore, this definition of f can be applied straight-
forward to other robotic systems developed with similar
approaches such as DORA built using the CAS toolkit where
all processes are coupled by means of working memories
through which information is mediated and exchanged. With
little adaptation of the encoding function, the approach
can be transferred to other architectures at least sharing a
data-driven or event-based robotics middleware concept, e.g.
ROS [17], Yarp [6] or OROCOS [2].

V. EVALUATION
A. Scenario

The self-awareness model was evaluated on data recorded
during the interaction between a human and our robotic
platform called BIRON. As a realistic interaction scenario the
robocup@home task called “Follow Me’ has been chosen. In
the context of this task the human partner uses the commands
follow me, stop, turn right and turn left to advice the robot
what to do. In return the robot is allowed to ask questions
(e.g. do you want me to follow you?) if it is unsure which
action to perform. This task requires 15 different components
which exchange information at an overall frequency of
163Hz. Thereby, the range of frequencies spawns between
0.5Hz and 86Hz.

2748

B. Induced Error Cases

To determine the performance of the algorithm we simu-
late the occurrence of different types of errors. The first two
failures are crashes of components which we denote with
CC1 and CC2. For CC1 we trigger the crash of a component
called player which publishes laser data into the system.
This crash results in the immobility of the robot. The second
crash affects the slam component which generates hypothesis
about the robot’s position in the environment. Without the
information from the slam component, the robot cannot
navigate anymore. With the help of these two cases we test
if the approach is capable of detecting errors on different
levels of data processing i.e., barely processed sensory data
and hypothesis of the robot’s position. As third error we
trigger a resource starvation (RS) failure by inducing a high
CPU-load via a dedicated busy worker component. Resource
starvation errors are of interest as they occur fairly often
when integrating independently developed components into a
robotic system. Another interesting abnormality occurs in the
context of distributed systems and results from asynchronous
clocks of the underlying operating system. This error affects
all pairs components which rely on synchronization based on
the system clock if they run on different hardware. We denote
this error the asynchronous communication error (AC).

C. Results

For each error case we record 100 seconds of internal
communication data shortly before and after the occurrence
of the error. Additionally, we record four data sequences of
normal system behavior where normal behavior is defined by
the system designer1. The number of events in the records
varies between 9000 and 16000. Two records of normal
behavior are used to train the model, one to generate the
anomaly threshold s∗ and one for testing purposes. For each
record a sequence S of score values is calculated by first
splitting the record into sequences Ei of 100 milliseconds
length and then applying the formula 2 to each Ei. The
threshold is calculated with the ROC curve method and
results in s∗ = 4.5. The record of normal behavior which
we dedicate for testing is used to calculate the False Positive
rate resulting in 6.51%.

Figure 2 shows a qualitative overview of the score se-
quences calculated for the error records. In each plot the
threshold s∗ is drawn for comparison. Each plot displays
two seconds of the recorded data nearby the point in time
when the particular error has been triggered. This position
is marked with a vertical bar in each plot. Each plot shows
a degradation of the score value after the failure has been
triggered. For CC1 and CC2 the degradation happens nearly
instantaneously. This can be ascribed to the sudden omis-
sion of the events related to the crashed component. The
timestamps of occurrence of the omitted events won’t be
updated in the algorithm and the durations between the last

1For the case of normal behavior it cannot be guaranteed that the recorded
data do not contain any inconsistencies. However, the probabilistic model
used in this approach compensates small variations in the data.

Fig. 2. Comparison of score values generated by the self-awareness model:
The blue lines in each plot match the threshold s∗ = 4.5 . The red curves
match diverse induced failures. Note note in the case of asynchronous
communication the plot has been copied together to demonstrate the
occasional occurrence of the error.

occurrence and the current timestamp increase. After some
time the durations reach values which are not covered by the
trained distributions and the score decreases. The algorithm
is able to detect the occurrence of both errors. What is more
important, in both cases the algorithm constantly reports the
presence of the error without False Negatives. Regarding
the resource starvation error RS the score curve shows
a different behavior after inducing the failure. Instead to
collapse the score degrades slowly over time. This results
from slowly increasing intervals between event emissions
due to continuously diminishing resources of the system.
However, after successfully detecting the error the model
constantly tracks it with a False Negative rate of 1.7%. The
last case, the asynchronous communication error AC differs
from the previous ones in terms of its occurrence. It does
not manifest itself constantly over time after it has been
induced in the system but rather appears sporadically. The
reason for this behavior may be that the asynchronism of
the two clocks becomes sensible to the self-awareness model
only if components are effected that synchronize each other
via the monitored communication channels. This happens in
sporadic intervals which leads to discontinuous detection of
this failure. An deeper analysis of the event stream reveals
that during the detection of the error an expected event
does not occur. Usually, the person tracking and anchoring
component of the system updates its hypothesis about tracked

2749

persons by emitting a specific event. Such a hypothesis will
be discarded if it is too old which is usually a normal
behavior. In the case of the asynchronous communication
error there exist time intervals where no single hypothesis
is tracked which results in complete absence of the update
event and a degradation of the score value. To cope with
such errors the self-awareness model requires an additional
reasoning mechanism which enables the linking of sporadic
occurrences of the error to a coherent failure recognition.

In this section we evaluated errors with permanent impact
on the performance of the system after occurrence. However,
in real world scenarios the Quality of Service (QoS) delivered
by the system may decrease only temporarily. We expect our
approach to detect QoS-degradation given that the quality
parameters are encoded in the attributes of the recorded
events. An exemplary application which would directly ben-
efit from detection of QoS-degradation is the approach for
composition of robotic services for complex task solving
based on the maximization of the QoS of a system [25].

VI. CONCLUSION AND OUTLOOK

In this paper we presented a novel method for fault
detection in robotic systems constructed on the basis of
discrete event-based data interchange. The introduced self-
awareness model is strongly data driven and thus (i) can be
trained from good examples of normal system behavior, (ii)
is largely independent from specific scenarios and (iii) shows
promising results even for transient malfunctions in system
behavior.

The resulting self-awareness model provides a basis for
a sophisticated autonomic computing architecture in the
domain of robotic systems, enhancing safety and robustness
of robot operation and ultimatively increasing the autonomoy
of intelligent robot systems.

Future work will focus on a broader and more realistic
daily life evaluation as well as an exhaustive complexity and
performance analysis of the demonstrated approach. Over
a long distance our goal will be closing the autonomic
control loop, effectively allowing modification of relevant
system properties upon detected anomalies, the integration
of anomaly detection with behavioral control and the further
exploration of fault diagnosis models for robotic applications.

VII. ACKNOWLEDGMENTS

The research project “An Autonomic Computing Ap-
proach for Systemic Self-Regulation” is supported by the
Honda Research Institute Europe.

REFERENCES

[1] R. Bischoff and V. Graefe. Design principles for dependable robotic
assistants. International Journal of Humanoid Robotics, 1:95–125,
2004.

[2] Herman Bruyninckx. Open robot control software, 2008.
http://www.orocos.org.

[3] Marta Casar and Jos A. R. Fonollosa. Overcoming HMM time
independence assumption using n-gram based modelling for contin-
uous speech recognition. In European Signal Processing Conference.
EUSIPCO 2008, pages 3–7. EURASIP, August 2008.

[4] Varun Chandola, Eric Eilertson, Levent Ertoz, Gyorgy Simon, and
Vipin Kumar. Data mining for cyber security. Springer, 2006.

[5] Ada Diaconescu and John Murphy. A framework for using component
redundancy for self-optimising and self-healing component based
systems. In WADS workshop, ICSE, 2003.

[6] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-
lived robot genes. Robotics and Autonomous Systems, 56(1):29–45,
2008.

[7] Jannik Fritsch, Markus Kleinehagenbrock, Axel Haasch, Sebastian
Wrede, and Gerhard Sagerer. A Flexible Infrastructure for the De-
velopment of a Robot Companion with Extensible HRI-Capabilities.
In Proceedings IEEE International Conference on Robotics and Au-
tomation, pages 3419–3425, Barcelona, Spain, April 2005.

[8] B. Graf, C. Parlitz, and M. H
”agele. Robotic home assistant care-o-bot R© 3 product vision and
innovation platform. Proceedings of the 13th International Conference
on Human-Computer Interaction. Part II: Novel Interaction Methods
and Techniques, page 320, 2009.

[9] Robert Gwadera, Mikhail J. Atallah, and Wojciech Szpankowski.
Reliable detection of episodes in event sequences. In Knowledge and
Information Systems, pages 67–74, 2004.

[10] A. Haasch, S. Hohenner, S. H
”uwel, M. Kleinehagenbrock, S. Lang, I. Toptsis, GA Fink, J. Fritsch,
B. Wrede, and G. Sagerer. Biron–the bielefeld robot companion. In
Proc. Int. Workshop on Advances in Service Robotics, 2004.

[11] Marc Hanheide, Sebastian Wrede, Christian Lang, and Gerhard
Sagerer. Who am i talking with? a face memory for social robots.
In Proceedings of the IEEE International Conference on Robotics and
Automation, Pasadena, CA, USA, 2008. IEEE, IEEE.

[12] Rolf Isermann. Model-based fault detection and diagnosis - status
and applications. In Alexander Nebylov, editor, Automatic control in
aerospace 2004 : proceedings from the 16th IFAC symposium, Saint-
Petersburg, Russia, 2005. Elsevier.

[13] Kai Jngling, M. Arens, Marc Hanheide, and Gerhard Sagerer. Fusion
of perceptual processes for real-time object tracking. In International
Conference on Information Fusion, 2008.

[14] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. IEEE Computer, 36:41–50, 2003.

[15] RoboCup league’s committees. Robocup@home rules & regulations.
2009.

[16] D.C. Luckham. The power of events. Addison-Wesley, 2002.
[17] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully B.

Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-
source robot operating system. In Proc. of the Int. Conf. on Robotics
and Automation, Open-Source Software workshop, 2009.

[18] L.R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Readings in speech recognition,
53(3):267–296, 1990.

[19] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and
K. Fujimura. The intelligent asimo: System overview and integration
intelligent robots and system. In Proc. Of IEEE/RSJ International.
Conference on Intelligent Robots and Systems, 2002.

[20] A. Sloman. Varieties of affect and the cogaff architecture schema.
In Proceedings Symposium on Emotion, Cognition, and Affective
Computing AISB, 2001.

[21] Claudio De Stefano, Carlo Sansone, and Mario Vento. To reject
or not to reject: that is the question-an answer in case of neural
classifiers. IEEE Transactions on Systems, Man, and Cybernetics,
Part C, 30(1):84–94, 2000.

[22] A.R. van Erkel and P.M.T. Pattynama. Receiver operating charac-
teristic (roc) analysis: basic principles and applications in radiology.
European Journal of radiology, 27:88–94, 1009.

[23] Britta Wrede, Marcus Kleinehagenbrock, and Jannik Fritsch. Towards
an integrated robotic system for interactive learning in a social context.
In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems - IROS
2006, Bejing, 2007.

[24] Sebastian Wrede. An Information-Driven Architecture for Cognitive
Systems Research. PhD thesis, Technical Faculty – Bielefeld Univer-
sity, 2009.

[25] A. Yachir, K. Tari, Y. Amirat, A. Chibani, and N. Badache. Qos based
framework for ubiquitous robotic services composition. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009.

[26] N. Ye. A markov chain model of temporal behavior for anomaly
detection. In Proceedings of the 2000 IEEE Systems, Man, and
Cybernetics Information Assurance and Security Workshop, pages
171–174, 2000.

2750

