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Abstract— In a stabilizing control for nonholonomic mobile
robots with two independent driving wheels, a nonholonomic
double integrator in the kinematic model is first considered as a
controlled object model. Then, a quasi-continuous exponential
stabilizing control method is proposed as one of underactuated
control methods by using invariant manifold theory. Next,
to extend the velocity input control in a kinematic level to
the torque input control in a dynamical level, an extended
nonholonomic double integrator consisting of the kinematic
and dynamical models is treated as a controlled object model.
A quasi-continuous exponential stabilizing controller is further
derived for such an extended model by using the same way
as used in the kinematic level control. The effectiveness of the
present method is proved with some demonstrative simulations.

I. INTRODUCTION

It is known that, for systems described by symmetric affine
systems that are based on a kinematic model in nonholo-
nomic systems, underactuated control is well achieved by
using a discontinuous model [1] or applying a switching
control (e.g., a logical switching method [2], a two-stage
switching method such as sliding model control [3], [4].
Among them, a switching control and a quasi-continuous
exponential stabilizing control based on invariant manifolds
[5] are proposed for a power form system with two-inputs
and three-states or with two-inputs and n-states [6], in which
such control methods are considered as general forms for
sliding mode control that is known as a conventional switch-
ing control for nonlinear systems. Similar considerations are
applied for a kinematic model with four-inputs and six-states
in a chained form, and for a dynamical model with two-
inputs and five-states in a kind of second-order chained forms
[7]. Furthermore, a discontinuous time-invariant feedback
control is adopted for a chained form [8] and a recursive
algorithm is given for an n-th order power form system
[9],[10].

In this paper, for a double integrator model that is known
as an alternative canonical model in nonholonomic sys-
tems [11], a quasi-continuous exponential stabilizing control
method is considered by following the invariant manifold
method as mentioned above. In particular, from the view-
points of nonholonomic systems, stabilizing controllers are
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newly derived for a case of a kinematic model with two-
inputs and three-states, and similarly for a case of a dynami-
cal model with two-inputs and five states that is viewed as an
extended double integrator model. The effectiveness of them
is demonstrated thorough simulations for a mobile robot with
two independent driving wheels, in which for the kinematic
case three states are controlled by using two inputs, whereas
for the dynamical case five states are controlled by using
only two inputs. Thus, an alternative underactuated control
approach is given for stabilizing such a nonholonomic mobile
robots.

It should be noted that there exists a similar study for an
affine system with a drift term in Khennouf & Canudas de
Wit [7], but their canonical system is not an extended double
integrator system. The present quasi-continuous exponential
stabilizing control law fundamentally adopts a kind of two-
stage control methods, in which the first step control is to
realize an attractive control to an invariant manifold, the
second step control is to stabilize the invariant manifold
and finally each control law is directly superimposed, or is
superimposed after modifying each control law slightly to
construct a continuous stabilizing control law.

II. INVARIANT MANIFOLD FOR NONHOLONOMIC
DOUBLE INTEGRATOR SYSTEM

Let the controlled object be described by the following
nonholonomic double integrator system:

ẋ1 = u1

ẋ2 = u2 (1)
ẋ3 = x1u2 − x2u1

and consider a stabilizing control problem such that x(t) =
[x1 x2 x3]T becomes zero as t → ∞. Here, all the states are
assumed to be measurable.

To derive an invariant manifold, the feedback law given
by

u1 = −kx1

u2 = −kx2, k > 0 (2)

is assumed to be applied to Eq. (1).
Then, solving the time response of the closed-loop system

gives

x1(t) = x1(0)e−kt

x2(t) = x2(0)e−kt (3)
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Therefore, since x3(t) is given by

ẋ3(t) = x1(0)e−ktu2 − x2(0)e−ktu1

= −kx1(0)x2(0)e−2kt + kx1(0)x2(0)e−2kt

≡ 0 (4)

it follows that
x3(t) = x3(0) (5)

From the constant term of this x3(t), it is possible to select

S(x) = x3(t) (6)

as one candidate of an invariant manifold.
Under the above conditions, let the feedback law given by

u1 = −kx1

u2 = −kx2, k > 0 (7)

be applied to Eq. (1). Differentiating S(x) with respect to
time yields

Ṡ(x) = ẋ3(t)
= x1u2 − x2u1

= −kx1x2 + kx1x2 ≡ 0 (8)

and under the feedback law given by Eq. (7), it holds that

S(x) = Const. (9)

so it is seen that S(x) is reduced to one invariant manifold.
From these, since if S(x) = 0 can be assured at time

t = T , then it can hold that S(x) = 0 for t ≥ T , applying
Eq. (7) to Eq. (1) gives

ẋ1(t) = −kx1, ẋ2(t) = −kx2

so that x1(t) and x2(t) are asymptotically stable, i.e., x1 → 0
and x2 → 0 as t → ∞. Of course, it is seen from Eq. (6) that
x3 → 0, because it has been already assured that S(x) = 0.

III. ATTRACTIVE CONTROL TO INVARIANT MANIFOLD

An attractive controller is described here to the manifold
derived in the previous section.

For the case of x2
1(0)+x2

2(0) �= 0, i.e., when x1(0) �= 0 or
x2(0) �= 0, to obtain the first-step control law for realizing
S(x) = 0, selecting the Lyapunov function of S(x) as

V (x) =
1
2
S2(x) (10)

and setting the control input as

u1 = fS(x)x2(t)
u2 = −fS(x)x1(t), f > 0 (11)

it follows that

V̇ (x) = SṠ = S[x1u2 − x2u1]

= −S[x2
1fS + x2

2fS]
= −fS2W (x) ≤ 0 (12)

where
W (x)

�
= x2

1(t) + x2
2(t) (13)

Note here that, under the control law of Eq. (11), this W (x)
becomes

Ẇ = 2(x1ẋ1 + x2ẋ2)
= 2(x1u1 + x2u2) ≡ 0 (14)

namely, it is seen that W (x(t)) = W (x(0)).
Therefore, Eq. (12) becomes negative definite, so that

S(x) → 0 as t → ∞, as long as W (x(0)) �= 0.
This controller is implementable even if x1(0) ≡ 0 and

x2(0) �= 0. Of course, it is not implementable for the case
of x1(0) = 0 and x2(0) = 0, in which the controller makes
the system unstable.

IV. QUASI-CONTINUOUS EXPONENTIAL STABILIZING
CONTROL

To construct a quasi-continuous exponential stabilizing
controller, the attractive controller given in section III is
superimposed on the feedback controller given in section II
with slight modifications.

Now, let the control inputs be set as[
u1

u2

]
= f

S

W

[
x2

−x1

]
− k

[
x1

x2

]
(15)

Then, it follows that

Ẇ = 2(x1ẋ1 + x2ẋ2)
= 2(x1u1 + x2u2)

= 2[x1(f
S

W
x2 − kx1) + x2(−f

S

W
x1 − kx2)]

= −2k(x2
1 + x2

2) ≡ −2kW (16)

and

Ṡ = ẋ3 = x1u2 − x2u1

= x1(−f
S

W
x1 − kx2) − x2(f

S

W
x2 − kx1)

= −f
S

W
(x2

1 + x2
2)

= −fS (17)

so that their time-responses become

W (t) = W (x(0))e−2kt

S(t) = S(x(0))e−ft (18)

From these, W (t) → 0, S(t) → 0 as t → ∞, and therefore
x1(t), x2(t) and x3(t) asymptotically converge to the origin.

Note here that Eq. (15) may diverge, because W (x(t)) →
0 if x1 → 0, x2 → 0. However, noting that

S(x)
W (x)

=
S(x(0))e−ft

W (x(0))e−2kt
(19)

the numerator is shown to converge faster than the denom-
inator if f > 2k, and therefore the whole will converge to
zero if f > 2k and S(x(0))/W (x(0)) is finite so that the
input will asymptotically converge to zero.

Note also that the system is not stable with the controller
deigned in Eq. (15) for the case that x1(0) = 0, x2(0) = 0,
and x3(0) �= 0.
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V. INVARIANT MANIFOLD FOR EXTENDED
NONHOLONOMIC DOUBLE INTEGRATOR SYSTEM

Let the controlled object be represented by the following
extended nonholonomic double integrator system:

ẋ1 = y1

ẋ2 = y2

ẋ3 = x1y2 − x2y1 (20)
ẏ1 = u1

ẏ2 = u2

and consider a stabilizing problem such that x(t) =
[x1 x2 x3 y1 y2]T is settled to zero as t → ∞. Here, all
the states are assumed to be measurable.

To derive an invariant manifold for this system, assume
that the following state feedback law

u1 = −2ky1 − k2x1

u2 = −2ky2 − k2x2
(21)

is applied to Eq. (20).
Now, defining the state vector of the linear partial system

in (20) as
xsub(t)

�
= [x1 x2 y1 y2]T (22)

its closed-loop linear partial system becomes

ẋsub(t) = Axsub(t),

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−k2 0 −2k 0
0 −k2 0 −2k

⎤
⎥⎥⎦ (23)

so that its time response is written by

xsub(t) = eAtxsub(0) (24)

where

eAt =

⎡
⎢⎢⎣

e−kt 0 te−kt 0

0 e−kt + kte−kt 0 te−kt

−k2te−kt 0 e−kt − kte−kt 0

0 −k2te−kt 0 e−kt − kte−kt

⎤
⎥⎥⎦

(25)

Therefore, the closed-loop linear partial system is reduced to

x1(t) = x1(0)[e−kt + kte−kt] + y1(0)te−kt

x2(t) = x2(0)[e−kt + kte−kt] + y2(0)te−kt

y1(t) = x1(0)[−k2te−kt] + y1(0)[e−kt − kte−kt]
y2(t) = x2(0)[−k2te−kt] + y2(0)[e−kt − kte−kt]

(26)

Furthermore, it is easy to derive that

x3(t) = x3(0) − x1(0)y2(0)
2k

[e−2kt − 1]

+
y1(0)x2(0)

2k
[e−2kt − 1] (27)

From this constant term, it is found that

S(x) = x3(t) +
1
2k

x1(t)y2(t) − 1
2k

x2(t)y1(t) (28)

can be derived as one candidate for the invariant manifold.

Actually, applyig the following feedback law

u1 = −k2x1 − 2ky1

u2 = −k2x2 − 2ky2, k > 0 (29)

to the original system (20) and then taking its time derivative
to examine the behavior of S(x), it follows that

Ṡ(x) = ẋ3(t) +
1
2k

[ẋ1(t)y2(t) + x1(tẏ2(t)]

− 1
2k

[ẋ2(t)y1(t) + x2(t)ẏ1(t)]

= x1y2 − x2y1 +
1
2k

[−k2x1x2 − 2kx1y2

+ k2x1x2 + 2kx2y1] ≡ 0 (30)

and moreover it holds under the above feedback control that

S(x) = Const. (31)

subsequently, S(x) becomes one invariant manifold.
Thus, for a switching method in two-step control, if it

holds that S(x) = 0 at any time t = T , then it keeps that
S(x) = 0 for t ≥ T .

On the other hand, when the above feedback law is
adopted at t ≥ T , it is easily found that x1(t), x2(t), y1(t)
and y2(t) are all asymptotically stable, i.e., x1 → 0, x2 →
0, y1 → 0, y2 → 0 as t → ∞. Then, it can be also seen that
x3 → 0 because S(x) = 0 has been already satisfied.

VI. ATTRACTIVE CONTROL TO INVARIANT MANIFOLD
S(x) IN EXTENDED SYSTEM

One type of attractive controllers is described here to the
manifold derived in section V, depending on the initial states
x1(0) and y1(0).

An attractive control to S(x) = 0 is performed in the first-
step for t < T , and at the stage of |S(x)| ≤ ε in practice
the following second-step control

u1 = −k2x1 − 2ky1

u2 = −k2x2 − 2ky2
(32)

is applied for T ≤ t.
In order to obtain the first step control law, letting the

Lyapunov function be selected as

V (x) =
1
2
S2(x) (33)

and setting the control input as

u1 = −2ky1

u2 = −fS(x)/x1(t) − 2ky2, f > 0 (34)

it follows that

V̇ (x) = SṠ = S[x1y2 − x2y1 +
1
2k

(x1u2 − x2u1)]

= S[x1y2 − x2y1 +
1
2k

(−fS) − x1y2 + x2y1]

= − f

2k
S2 ≤ 0 (35)

In addition, when using Eq. (34), Ṡ is reduced to

Ṡ(t) = − f

2k
S(t) (36)
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Note however that u2 in Eq. (34) may diverge as x1(t) →
0. Using the above equation and the representation of the
solution to x1(t) in Eq. (20) with the input of Eq. (34), if
x1(0) �= 0 and x1(0) + y1(0)/2k �= 0, then it can be said
that

lim
t→∞

S(x)
x1(t)

= lim
t→∞

S(x(0))e−
f
2k t

x1(0) − 1
2ky1(0)(e−2kt − 1)

=
0

x1(0) + y1(0)
2k

= 0 (37)

Otherwise, if x1(0) �= 0 and x1(0) + y1(0)/2k = 0, then
it results in ∣∣∣∣S(x)

x1(t)

∣∣∣∣ =

∣∣∣∣∣
S(x(0))e−

f
2k t

− 1
2ky1(0)e−2kt

∣∣∣∣∣
≤

∣∣∣∣2kS(x(0))
y1(0)

∣∣∣∣ e−( f
2k−2k)t (38)

so that S(x)/x1 decreases exponentially with the exponential
rate (f/2k − 2k) if f/2k > 2k, consequently it can be pre-
vented from the divergence of u2, because 2kS(x(0))/y1(0)
is finite even if x1(0) �= 0, x2(0) = 0, x3(0) = 0,
and y2(0) = 0, as long as y1(0) �= 0 (in fact, y1(0) =
−2kx1(0) �= 0 because of the assumption that x1(0) �= 0
and x1(0) + y1(0)/2k = 0). In general, it is known [10],
[12] that, in a differential equation ẋ(t) = −ax(t) + g(x, t),
when |g(x, t)| decreases with an exponential rate greater than
a > 0, x(t) decreases with the exponential rate a. From this
fact, it is seen that, if f/2k − 2k ≥ 2k, i.e., f ≥ 8k2, and
2kS(x(0))/y1(0) is finite then y2 converges exponentially
to zero with the exponential rate 2k.

VII. QUASI-CONTINUOUS EXPONENTIAL STABILIZING
CONTROL FOR EXTENDED SYSTEM

Now, consider a quasi-continuous exponential stabilizing
control with the control input consisting of Eqs. (32) and
(34) such as

u1 = −k2x1 − 2ky1

u2 = −fS(x)/x1 − k2x2 − 2ky2
(39)

Then, it is found that

Ṡ = x1y2 − x2y1 +
1
2k

(x1u2 − x2u1)

= x1y2 − x2y1 +
1
2k

(−fS − k2x1x2 − 2kx1y2

+ k2x1x2 + 2kx2y1)

= − f

2k
S (40)

and the corresponding time response is given by

S(t) = S(x(0))e−
f
2k t (41)

so that S(t) → 0 as t → ∞.
In addition, to keep the input of u2 finite, it must be that∣∣∣∣ S

x1

∣∣∣∣ < ∞ (42)

In order to examine this condition, it is found from Eq. (26)
that for the case of using Eq. (39) the response of x1 can be
reduced to

x1(t) = x1(0)[e−kt + kte−kt] + y1(0)te−kt

= e−kt[x1(0)(1 + kt) + y1(0)t]

=
x1(0)(1 + kt) + y1(0)t

ekt
(43)

Since the limiting value of x1(t) is just an indefinite form
such as limt→∞ x1(t) = ∞/∞, using the L’hospital’s
theorem gives

lim
t→∞ x1(t) = lim

t→∞
[x1(0)(1 + kt) + y1(0)t]′

(ekt)′

= lim
t→∞

x1(0)k + y1(0)
kekt

= 0 (44)

Similarly, it can be proved that y1(t) is asymptotically stable.
Therefore, if f/2k − k > 0, then it follows that

lim
t→∞

S(t)
x1(t)

= lim
t→∞

S(x(0))e−
f
2k t

e−kt[x1(0)(1 + kt) + y1(0)t]

= lim
t→∞

kS(x(0))e−( f
2k −k)t

x1(0)k + y1(0)
= 0 (45)

and furthermore since it is found from this relation that∣∣∣∣ S(t)
x1(t)

∣∣∣∣ ≤
∣∣∣∣ kS(x(0))
x1(0)k + y1(0)

∣∣∣∣ e−( f
2k −k)t (46)

S/x1(t) decreases with the exponential rate ( f
2k − k).

On the other hand, since when using u2 in Eq. (39), the
differential equations for x2 and y2 in Eq. (20) are given by

ẋ2 = y2

ẏ2 = −k2x2 − 2ky2 − fS(x)/x1
(47)

it is seen that

d

dt

[
x2

y2

]
=

[
0 1

−k2 −2k

] [
x2

y2

]
+

[
0

− fS(x)
x1

]
(48)

Assuming that

As =
[

0 1
−k2 −2k

]
, d1(t) = −fS(x)

x1
(49)

it is obtained that

eAst =
[
e−kt + kte−kt te−kt

−k2te−kt e−kt − kte−kt

]
(50)

so that the following solutions are obtained:

x2(t) = x2(0)[e−kt + kte−kt] + y2(0)te−kt

+
∫ t

0

(t − τ)e−k(t−τ)d1(τ)dτ

y2(t) = x2(0)[−k2te−kt] + y2(0)[e−kt − kte−kt]

+
∫ t

0

[e−k(t−τ) − k(t − τ)e−k(t−τ)]d1(τ)dτ

(51)

Since S(x)/x1 has been shown to decrease with the expo-
nential rate (f/2k − k) and the free response term of Eq.
(51) can be shown to converge to zero with the exponential
rate k as the same as the previous x1(t) and y1(t), it is seen
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easily that x2(t) and y2(t) in Eq. (51) converge to zero with
the exponential rate k, if f/2k − k ≥ k, i.e., f ≥ 4k2.

It is concluded from these results that if S(x), x1(t),
x2(t), y1(t), and y2(t) converge to zero as t → ∞, then
x3(t), from Eq. (28), also converges to zero.

VIII. SIMULATION EXAMPLES

A. The case of kinematic model
Consider the kinematic model for the following mobile

robot with two-independent driving wheels:⎡
⎣ẋ

ẏ

θ̇

⎤
⎦ =

⎡
⎣cos θ 0

sin θ 0
0 1

⎤
⎦

[
v
ω

]
(52)

where (x, y) denotes the geometrical center, θ is the azimuth,
v is the translational velocity of the robot, and ω denotes the
azimuth velocity. Then, taking a transformation from (x, y, θ)
to the intermediate variables (z1, z2, z3)

z1 = θ
z2 = x cos θ + y sin θ
z3 = x sin θ − y cos θ

(53)

and moreover taking a transformation from (z1, z2, z3) to
(x1, x2, x3) [13]

x1 = z1

x2 = z2

x3 = −2z3 + z1z2

(54)

the double integrator model in Eq. (1) is obtained, where

u1 = ω, u2 = z3ω + v (55)

Therefore, for the case of using the kinematic model, the
states x1, x2 and x3 are generated by using the transfor-
mation equations of Eq. (53) and Eq. (54) with the actual
measurements x, y and θ, any quasi-continuous exponential
stabilizing control law that was presented in section IV and
based on the kinematic model is calculated, and finally the
actual inputs v and ω are generated through the inverse
transformation of Eq. (55).

Fig. 1 shows the time histories of the states and inputs
for the case of implementing a quasi-continuous exponential
stabilizing control law with W , under the conditions that
x(0) = −1.5 [m], y(0) = 4 [m], and θ(0) = −2.3 [rad],
where it was assumed that the sampling width was Δt =
0.01 [s] and the control gains were set to k = 4 and f = 10.

It is found from these figures that all the states in the
kinematics converge to the origin very quickly.

B. The case of dynamical model

Combining the kinematic model given in Eq. (52) and the
so-called steering model for such a mobile robot with two-
independent driving wheels, the following dynamical model
is obtained by⎡

⎢⎢⎢⎢⎣

ẋ
ẏ

θ̇
v̇
ω̇

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

v cos θ
v sin θ

ω
0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0
0
0
1
M
0

⎤
⎥⎥⎥⎥⎦ F +

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1
I

⎤
⎥⎥⎥⎥⎦ τ (56)
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Fig. 1. Time histories of the states and control inputs for the quasi-
continuous control law (15)

where M denotes the mass of the robot, I is the moment
of inertia for the robot, F is the force, and τ is the torque,
where using the left and right torques (τ1, τ2) it is obtained
that

F =
1
R

(τ1 + τ2), τ =
L

R
(τ1 − τ2) (57)

in which R denotes the radius of the wheel and 2L is the
tread. Note here that (v, ω) denote the translational velocity
of the steering axis and its rotational speed.

Then, taking a transformation from (x, y, θ, v, ω) to
(z1, z2, z3, z4, z5)

z1 = θ
z2 = x cos θ + y sin θ
z3 = x sin θ − y cos θ
z4 = ω
z5 = v − (x sin θ − y cos θ)ω

(58)

and further taking a transformation from (z1, z2, z3, z4, z5)
to (x1, x2, x3, y1, y2) [13]

x1 = z1

x2 = z2

x3 = −2z3 + z1z2

y1 = z4

y2 = z5

(59)

the extended double integrator model in Eq. (20) is obtained,
where u1 and u2 are given by

u1 =
τ

I

u2 = −z2
4z2 − τ

I
z3 +

F

M

(60)

2866



0 5 10 15
-4

-3

-2

-1

0

1

2

3

4

5

6

7

Time  t [s]

S
ta

te
s 

 x
 [

m
],

  y
 [

m
] 

an
d 

θ 
[r

ad
]

 

 

 x
 y
θ

0 5 10 15
-4

-3

-2

-1

0

1

2

3

4

5

6

7

Time  t [s]

S
ta

te
s 

 v
 [

m
/s

] 
an

d 
ω

 [
ra

d/
s]

 

 

 v
ω 

0 5 10 15
-1

0

1

2

3

4

5

6

Time  t [s]

In
pu

ts
 τ

1 [
N

m
] 

an
d 

τ 2 [
N

m
]

 

 

τ
1

τ
2

(a) States 1, 2 and 3 (b) States 4 and 5 (c) Inputs

Fig. 2. Time histories of the states and inputs for the quasi-continuous control law (39)

Therefore, for this control of using a dynamical model,
the states x1, x2, x3, y1, and y2 are generated by using the
transformation equations of Eq. (58) and Eq. (59) with the
actual measurements x, y, θ, v, and ω, the quasi-continuous
exponential stabilizing control law that was presented in
section VII and based on the dynamical model is calculated,
and the inputs F and τ are solved through an inverse
transformation of Eq. (60), and finally the left and right
torque inputs τ1 and τ2 are generated for the actual robot
through the inverse transformation of Eq. (57).

Fig. 2 shows the time histories of the states and inputs
for the case of implementing a quasi-continuous exponential
stabilizing control law, under the conditions that x(0) =
−1.5 [m], y(0) = 4 [m], θ(0) = −2.3 [rad], v(0) = −1
[m], and ω(0) = 1 [rad/s] and using the physical parameters
such as M = 10 [kg], I = 2 [kgm2], R = 0.03 [m], and
L = 0.06 [m], where it was assumed that the sampling width
was Δt = 0.01 [s] and the control gains were set to k = 1.5
and f = 9.

Observe from this experiment that for the case of using this
dynamical controller a satisfied convergence is obtained very
quickly, as well as the case of using the kinematic controller.
Especially it is worthy to note that the controlled system
due to the present approach is very simpler compared to
the conventional dynamical approach, e.g., due to Fierro and
Lewis [14], [15]. Because in their approach the controlled
system is very complicated due to the combination of three
parts: any kinematic controller, a backstepping controller, and
a partial linearization of the degenerate state-space model.

IX. CONCLUSIONS

In this paper, a new underactuated control method has
been proposed for nonholonomic mobile robots by applying
a double integrator model and the invariant manifold the-
ory. Especially, the quasi-continuous exponential stabilizing
controller was able to be applied to both a kinematics-based
model and a dynamics-based model, where the latter model
should be interpreted as an extended double integrator model,
whereas the former one is a conventional double integrator
model in nonholonomic systems. Although a stabilizing
control problem was only considered at present, there remain

other path following control problem and trajectory tracking
control problem as future work.
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