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Abstract— Road detection is a crucial problem in the 
application of autonomous vehicle and on-road mobile robot. 
Most of the recent methods only achieve reliable results in some 
particular well-arranged environments. In this paper, we 
describe a road detection algorithm for front-view monocular 
camera using road probabilistic distribution model (RPDM) 
and online learning method. The primary contribution of this 
paper is that the combination of dynamical RPDM and Fuzzy 
Support Vector Machines (FSVMs) makes the algorithm being 
capable of self-supervised learning and optimized learning from 
the inheritance of previous result. The secondary contribution 
of this paper is that the proposed algorithm uses road 
geometrical assumption to extract assumption based 
misclassified points and retrains itself online which makes it 
easier to find potential misclassified points. Those points take an 
important role in online retraining the classifier which makes 
the algorithm adaptive to environment changing.  

I. INTRODUCTION 

oad detection is a crucial problem in the application of 
autonomous vehicle and on-road mobile robot. Many 

researchers have been studying road detection for several 
decades, there has been a dramatic development in this field 
[1]-[6] Since most of the researchers were focusing on road 
detection with lane marking, promising results were obtained 
especially in highways lane marking detection. But those 
methods are failed to apply to most of unstructured roads with 
inhomogeneous surfaces or without lane marks, such as rural 
roads and campus roads etc. Recently, there are several 
researchers has been working on unstructured-road detection. 
Most of them used machine learning method to solve this 
problem [7]-[9]. The author in [7] demonstrated a 
well-performed self-supervised road detection algorithm in 
rural road environment. It used one-dimensional template 
matching and the sum of squared differences (SSD) 
combined with optical flow to determine the most similar 
regions in front of vehicle. That method can just be applied to 
open road sections because an unexpected moving obstacle in 
the front view of ego vehicle would probably affect the 
template quality and matching result. The author in [9] used 
dynamical sampling windows to select training set and train a 
neural network classifier to detect road. But the 
window-based learning algorithm has a drawback that the 

 
Shengyan Zhou is a PhD student in the Intelligent Vehicle Research 

Center, Beijing Institute of Technology and also a visiting PhD student in 
Robotic Mobility Group, MIT (e-mail: zhousy@mit.edu) 

Karl Iagnemma is with Robotic Mobility Group, MIT.(e-mail: 
kdi@mit.edu) 

training set derived from sampling windows can not well 
represents the real road/non-road classes feature space in the 
whole image. The classifier trained by that training set can not 
classify the real data accurately (See Fig.1). The pixels in sky 
area are misclassified as road class because the features in sky 
haven't been learnt in the sampling windows.  

 
(a)                 (b) 

Fig.1.Result of Window-based Learning Algorithm. (a).Sampling windows 
image. Red window contains positive training set while blue window 
contains negative training set. (b). Result of Classification. Red pixels are 
positive class while yellow pixels are negative class. 

  In this paper, we will introduce a novel machine learning 
based road detection algorithm in order to solve the above 
problems. What’s more, The proposed algorithm is capable of 
not only online evaluating the quality of previous 
classification result, but also self-supervised online learning 
by automatically detecting the new training set which has 
more contribution in determining the hyperplane which 
makes the proposed algorithm adaptive to environment 
changing. 
  The primary contribution of this paper is, in our algorithm, 
instead of using sampling windows to select training set, we 
build the dynamical RPDM based on previous detection 
result which is used for weighting the training points to train a 
FSVMs classifier. The combination of RPDM and FSVMs 
solves the problem that learning from an inaccurate training 
set to get a relative accurate classifier. The secondary 
contribution is the proposed algorithm uses geometrical 
assumption which makes it easier to find possible 
misclassified points. This innovation answers the question 
that how we can find the possible misclassified points online 
without ground truth. The algorithm proposed in this paper 
can also be applied as a novel framework for self-supervised 
online learning method in the application of vision-based 
classification in the robotic field. 
  The rest of paper is organized as follows: In Section II, we 
provide brief overview of FSVMs which we use in our 
algorithm and demonstrate some comparison results between 
SVMs and FSVMs to demonstrate the advantage of FSVMs 
in  some particular situation. The overview of proposed 
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algorithm is presented in Section III. A detailed introduction 
of individual part of proposed algorithm is given in Section 
IV. Then, the experimental results and conclusion are 
individually presented in Section V and Section VI.  

I. FSVMS REVIEW 

A Support Vector Machine (SVM) learns decision surface 
from the training points of two distinct classes. In many 
applications, the training points are labeled by human or some 
supervisor with high confidence. In another word, the training 
sets are assumed to be correct. In that case, if the features of 
two classes in feature space are separable, we could get a well 
decision hyperplane by training the labeled training set. 
However, there are still some applications which the training 
points are not all corrected, giving the challenge to use this 
non-optimal training data. Fortunately, we have some 
confidences (weights) on those points. We hope that the point 
with lower weight has less contribution in determining the 
decision surface, vice versa. A novel SVMs algorithm called 
Fuzzy Support Vector Machines (FSVMs) proposed in [10] 
can solve this problem. In this section, we will give a brief 
review about FSVMs and provide the comparison results 
between SVMs and FSVMs to demonstrate the advantage of 
controllability of FSVMs. The readers can refer to [10] for the 
detail about FSVMs.  

A. FSVMs 

  Suppose we are given a set S of labeled training points with 
weights 

1 1 1( , , ),..., ( , , )i i iy x s y x s .                      (1) 

Each training point N
ix  belongs to either of two classes 

and is given a label  1,1yi   and is with 1, ...,i l , 

1is   and sufficient small . Let ( )z x denote the 

kernel which maps the x from original feature space N to a 

feature space Z . The weight is is the confidence of the 

corresponding point ix belonging to either of two classes. For 

example: ( 1, , 0.80)i i iy x s   means ix 80% belongs to class 

one and 20% belongs to meaningless. With those training 

points, the optimal hyperplane problem is then regarded as 

the solution to 

minimize:
1

( ) / 2
l

i i
i

w w C s


           

subject to ( ) 1 ,i i iy w z b       1,...,i l     

0,i    1,...,i l        (2) 

where w Z and b , C is a constant. It is noted that 

smaller is reduces the effect of the parameter i in problem (2) 

such that the corresponding point ix has less contribution in 

the minimization in (2). 
  Like SVMs, searching the optimal hyperplane in (2) is a QP 
problem, which can be solved by constructing a Lagrangian 

and transformed into the dual 

maximize 
1 1 1

1
( ) ( , )
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l l l

i i j i j i j
i i j

W a a a a y y K x x
  

      

subject to
1

0
l

i i
i

y a


   0 i ia s C  , 1,...,i l     (3) 

and the Kuhn-Tucker conditions are defined as 

( ( ) 1 ) 0i i i ia y w z b      , 1,...,i l    (4) 

( ) 0i i is C a   , 1,...,i l     (5) 

  The point ix with the corresponding 0ia  is called a 

support vector. There are two types of support vectors. The 

one with corresponding 0 i ia s C  lies on the margin of the 

hyperplane. The one with corresponding i ia s C is 

misclassified. An important difference between SVM and 

FSVM is that each point has individual constraint in FSVM in 

(3). The only free parameter C in SVM controls the tradeoff 

between the maximization of margin and the amount of 

misclassifications. A larger C makes the training less 

misclassifications and narrower margin. The decrease of C 

makes SVM ignore more training points and get wider margin. 

In FSVM, if we fix the value of C. With different value of is , 

we can control the tradeoff of the respective training point ix . 

A smaller values of is makes the corresponding point ix less 

important in the training. 

B. Comparison Results of SVMs and FSVMs 

 
(a) 

 
(b)            (c) 

 
(d)             (e) 

Fig.2. Comparison results of SVMs and FSVMs. 
(a). Poor Training Set. Red points are positive training data. Blue points are 
negative training data. (b) and (c) are decision hyperplanes derived from 
SVMs with linear kernel and RBF kernel. (d) and (e) are decision 
hyperplanes derived from FSVMs with linear kernel and RBF kernel. 

Fig.2 shows an extremely bad training set. Because this 
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comparison is shown to prove the controllability of FSVM, 
two assumptions are made for simplifying: the mislabeled 
points are known and the weights of mislabeled points are 
low. In the Fig.2-a, we hope that the decision hyperplane is 
x=y. So we assume that all the positive training points lay in 
x<y are mislabeled. The only free parameter C in SVMs can’t 
control the contributions of each point. From the results in 
Fig.2 (b) and (c), we could see that both decision hyperplanes 
are affected by the mislabeled positive training points. Instead 
of SVMs, we weight each mislabeled positive training point 
with smaller value (0.01 in this example). Those points 
become less important in determining the hyperplane. The 
reasonable results is shown in Fig.2 (d) and (e). 
  In proposed algorithm, the training set can be automatically 
found out from online. However, it is probably that some 
training points are mislabeled. In traditional SVM, those 
misclassified would disturb decision hyperplane in training 
SVMs classifier. Given the RPDM built in our algorithm, the 
points with high probability mislabeled will be weighted with 
low weights. In that case, the relative accurate classifier can 
still be trained using FSVMs training method. In following 
sections, we provide a detailed description of this innovative 
algorithm.  

II. OVERVIEW OF PROPOSED ALGORITHM 

  The proposed algorithm contains five components which are 
initialization, training, classification, evaluation and updating 
(as show in Fig.3).  In initialization, the module of feature 
extraction extracts pixel-based visual color and texture 
features from the input image. Meantime, the module of 
RPDM is initialized according to the camera parameters by 
calibration [11]. Then, based on the initial RPDM, the 
dynamic training database (DTD) is built by randomly 
choosing certain number of positive training points and 
negative training points in the image which include visual 
features and probabilistic weights at the position of those 
points. Then in training process, the algorithm estimates the 
kernel parameters and trains the FSVMs classifier using the 
training data in DTD. In the component of classification, the 
features of all the pixels are extracted and classified. Given 
the classification result, morphological operation is 
implemented to reduce the noise in the classification result. 
By comparison of morphological result and classification 
result, the quality of current classifier is evaluated and the 
potential misclassified points are detected. Then, the DTD 
and RPDM are updated based on the result of evaluation 

component.  
  A detailed description of initialization, evaluation and 
updating is given in the next section. The components of 
training and classification are implemented according to the 
instruction of LIBSVM [12]. The readers can refer to [12] for 
the detail.  

III. DETAILED DESCRIPTION OF PROPOSED ALGORITHM 

A. Initialization 

  In initialization, the module of feature extraction extracts 
pixel-based visual features such as color, texture. Meantime, 
the module of RPDM is initialized according to the camera 
parameters by calibration [11]. Then, the DTD is built by 
randomly choosing certain number of positive training points 
and negative training points in the image which include visual 
features and probabilistic weights.  

1) Feature Extraction:  
The visual features used in our algorithm are color features 
and texture features. For color features, hue, saturation, and 
value (HSV) representation of color is used. Texture is a 
measure of the local spatial variation in the intensity of an 
image. In this paper, the first five Haralick statistical features 
[13] are exploited as texture features. Those three color 
features and five texture features are combined to form an 
eight-element feature vector as following: 

1 2 3 4 5 1 2 3, ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )[ , , , , , , , ]i j t i j t i j t i j t i j t i j c i j c i j c i jF f f f f f f f f  

1,..., 240i   1,...,320j       (6) 

where ( , )nt i jf  is the n-th Haralick statistical texture feature at 

the point ( , )i j , 1,...,5n  .  ( , )mc i jf  is the m-th color feature at 

the point ( , )i j  in HSV color space, 1,2,3m  .  
2) Initial RPDM: 

RPDM means that the longer distance the pixel far from road 
edge, the higher weight the pixel has. In other words, we hope 
that the machine can learn more on those pixels which have 
high possibility in belonging to their classes. Unlike the other 
road models [1][14], our initial RPDM is not necessary to 
match the real road accurately. Without loss of generality, we 
build a flat and straight road model in initialization. Given the 
camera parameters and an initial road width by reasonable 
guessing, the road in 2D planar can be project into image 
coordinates as shown in Fig.4 (a-b). And the RPDM can be 
calculated as following: 

( , )
, 1 f i j

i js e  , 1,..., 240i  , 1,...,360j     (7) 

 
Fig.3 Algorithm Components 
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where ( , )f i j  is the Euclidean distance between the pixel 
( , )i j to road edge. The RPDM of ,i js is shown in Fig.4-c. 
 

         
   (a) Road Model in 2D planar  (b) Road Model in image coordinates 

   
(c) RPDM in 3D     (d) RPDM in 2D 

    
(e) Initial RPDM on snow road    (f) Initial RPDM on concreted road 

Fig.4.Road Probabilistic Distribution Model Construction 

3) Initial DTD 
It has two stages to build the DTD: which are initial stage and 
updating stage. The latter will be discussed in the component 
of updating. In initial stage, the training points are randomly 
chosen from the road/non-road area in RPDM. To reduce the 
computation of training process, the size of DTD we used in 
our algorithm is limited to 1000 pairs of training points.  

B. Evaluation 

1) Morphological operation 

 
Fig.5.Simply connected road model.

1R is simply connected road region. 

( 1)jR j  is non-road region. 

Morphological operations [15] are commonly used to 
understand the structure of image. Morphological operations 
play a key role in applications such as machine vision and 
automatic object detection. 

 
Fig.6.Morphological Operation (a): Classification result (white: represents 
road; black: represents non-road). (b): Largest connected road region (Red). 
(c): Erosion operation. (c): Morphological operation result (red is road region 
and yellow is non-road region) 

In this paper, the main morphological operation is 
flood-filling based on the assumption that road region is 
simply connected (as shown in Fig 5). This operation is 
implemented to determine the largest connected road region 
and erode all the holes (non-road pixels) in that connected 
road region. Then that largest connected road region is 
labeled as road region and all the other regions are non-road 
regions. The process of morphological operation is showed in 
Fig.6. 

2) Potential Misclassified Points Detection 
Based on the comparison between classification result and 
morphological result (Shown in Fig.7) and the assumption of 
simply connected road, the points classified as road in 
classification result lying in the non-road regions of 
morphological result are assumed to be potential 
misclassified points, vice versa. The potential misclassified 
points labeled as new road samples or new non-road samples 
are considered to be candidate points prepared for updating 
DTD.  

      
(a) Classification result          (b) Morphological result 

Fig.7.Comparison of Classification result and Morphological result 

3) Classification Evaluation 
The reason of online learning the road detection classifier 

is that the driving environment is continually changing in 
moving vehicle; the classifier performing high accurate result 
in last frame may not work well in next frame. In order to 
make the road detection method adaptive to environment 
changing, the proposed algorithm is designed to be capable of 
online learning according to the quality of last classification 
result derived from evaluation. The evaluation function is 
implemented to evaluate the performance of previous 
classification and determine if the online learning is 
necessary to be implemented for future road detection task. 
This evaluation function shown in the following formulas is 
also based on the assumption we mentioned in previous 
sections that the road region is simply connected.  

240 360 240 360

1 1
1 1 1 1

( , ) ( , )M
AFP

r c r c

E V r c R r c
   

            (9) 

240 360 240 360

2 1 1 2 1 1

( , ) ( , )
N N

M
AFN j j

j r c j r c

E V r c R r c
     

     (10) 

240 360 240 360

1 1 1 1 1 1

( , ) ( , )
N N

M
AF j j

j r c j r c

E V r c R r c
     

     (11) 

1, ( ( , ) ( , ))
( , )

0, ( ( , ) ( , ))

C M
j j

j C M
j j

if R r c R r c
V r c

if R r c R r c

  


         

1,..., 240; 1,...,360; 1,...,r c j N       (12) 

where AFP refers to Assumption-based False Positive, AFN 
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refers to Assumption-based False Negative and AF refers to 

Assumption-based classification False, the r and c denote the 

row and column, the ( , )
C

j
R r c is the value of classification result 

at ( , )r c , the ( , )
M

j
R r c is the morphological operation result at 

( , )r c , the j  is the number of region. Apparently, 

( , )jV r c indicates whether ( , )
C

j
R r c and ( , )

M

j
R r c  are belonged to 

the same class. So the performance of the road detection 

classifier is assessed by computing the value 

of AFPE , AFNE and AFE derived from the formulas (9)-(12).  

  Given the values of
AFP

E ,
AFN

E and
AF

E , we have three 

thresholds of
AFPET , 

AFNET and
AFET to tune. If the value of 

evaluation is larger than its threshold, the retraining process is 

implemented. 

C. Updating 

The component of updating is the crucial part in proposed 
algorithm. It is this component that makes our road detection 
algorithm finding the optimized way in the next frame and 
adaptive to environment changing. This component includes 
two parts: RPDM updating and DTD updating. The updating 
process in proposed algorithm is trying to answer those 
questions: what we can inherit most from the previous result 
and how we can inherit them without reducing the 
performance of the classifier. 

1)  RPDM Updating 
The RPDM is initialized in the component of initialization. 
We have to admit that the initialized RPDM is not very 
accuracy (See Fig.4-e and Fig.4-f). However, because the 
rough model ensure that most of correct training points have 
higher weights than the mislabeled training points, in other 
words, the decision hyperplane of classifier is affected more 
by the correct training points than mislabeled ones, the 
classification result in first frame is still acceptable. It is the 
combination of RPDM with FSVMs that solves the 
contradiction of inaccurate model and relative accurate 
classification result (Results are shown in Section V ). After 
initialization, the RPDM is recalculated using equation (7) 
according to the current morphological result because it is 
more accurate and closer to the real road than the initial 
RPDM.  

    
(a)      (b)      (c)      (d) 

Fig.8.RPDM updating (a).Road Image (b).Morphological result (c). Updated 
RPDM in 2D (d).Updated RPDM in 3D 

2) DTD Updating 
As we mentioned above, each training point in DTD is 
associated with weight, labeled class and visual features 
which are used for training FSVMs classifier. In initialization, 
the training points are selected from initial RPDM. Because 
of environment changing, the training points need to be 
updated online in order to well represent the changing 
environment. The DTD should be able to be updated 

according to environment. In proposed algorithm, the 
potential misclassified points are considered to be the 
candidate updating points. We provide an example in Fig. 9 to 
explain the contribution of misclassified points in retraining. 
The dataset is shown in Fig.9a. In Fig.9b, part of data is 
selected as training data and used for training classifier. From 
the result shown in Fig.9c we could see three positive points 
and two negative points are misclassified. Suppose that the 
misclassified is found and used for update the training data 
(shown in Fig.9d), the retrained classifier (Fig.9e) is perfectly 
classify all dataset in Fig.9f.  

 
(a)        (b)        (c) 

 
(d)        (e)        (f) 

Fig.9.The contribution of misclassified points in retraining 
(a) All dataset. (b) Training data and decision hyperplane (c) Classification 
result (d) Updated training data  (e) Retrained decision hyperplane (f) 
Classification result 

  Given the above conclusion, there are still two questions in 
performing the process of DTD updating: Are all potential 
misclassified points really misclassified? in order to limit the 
total amount of training points in DTD (1000 pairs of training 
points in this paper), how to discard the previous training data 
to leave more room for new training data in DTD? 

 (1) Are all potential misclassified points really 
misclassified? 

Definitely not. As we mentioned in Section IV, the potential 
misclassified points is generated by comparison of 
classification result and morphological result. Both are not 
ground truth. But the wrong decision in mislabeling the 
potential misclassified points high probably happens near the 
edge of morphological result because, even that edge is not 
real road edge, we still believe that edge is similar to real edge. 
When some points are mislabeled, it would not have much 
affect on retrained decision hyperplane because the RPDM 
weights those points by very low values. That is also a 
creative point we combine RPDM with FSVMs. 

(2) How to discard the previous training data to leave 
more room for new training data in DTD? 

Among those training points in previous DTD, the point 
which is not support vector has no contribution in 
determining the decision hyperplane [16]. Without loss of 
generality, we set the weights of those points as 0. From the 
previous trained classifier we could get the support vectors 
and their weights in determining the decision hyperplane (See 
equation (4) for proof). Then, we rank those training points by 
their weights in increasing order  
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1 2 1000...x x xw w w         (13) 

Then, we randomly choosing T pairs of training samples from 
the potential misclassified points and discard the old training 
data from 1,..., Tx x . T is a threshold to determine the 
updating speed. Too large value of T would lead our 
algorithm to over learning on new training data while too 
small would make our algorithm low adaptive to environment 
changing. After many experiments, it is recommended to set 
T as 1/20 of the size of DTD (T is 50 in this paper).  

IV. RESULT 

We tested our method on the various unstructured road 
such as paint road and rural road. There are two functional 
stages in the implement of proposed algorithm: initial stage 
and online stage. In the initial stage, the algorithm is 
initialized by a rough RPDM and train the initial road 
classifier for road detection task. In the online stage, the 
algorithm is activated to learn the new training points from 
previous result and retrain the road classifier for future 
detection task. we provide the results of both stages. All the 
following results are compared with manually annotated 
frames to measure the accuracy. 

A. Results in initial stage 

   

   

    

    

   
Fig.10. Initial detection results of SVMs and FSVMs 
The first row shows initial RPDMs on images. The second row shows ground 
truth labeled by hand for detection accuracy calculation. The third row shows 
classification results by SVM classifier. The fourth row is the results detected 
by FSVMs classifier. The three charts in fifth row show the detection rates of 
both classifiers. In each chart, A represents true negative rate while B 
represents true positive rate.  

  We just assume that the autonomous vehicle is on the road 

without any accurate geometrical constraint. In that case, the 
road can successfully be detected using initial RPDM. We 
compare FSVMs with SVMs in this experiment,. From the 
result in Fig.10 one can see, the FSVMs is robust to bad 
training set and gets more accurate detection rate than SVMs.  

B. Results in online stage 

We tested our method in two tough situations: concrete 
road with shadows and dust and rural road with snow and 
shadows (as shown in Fig.11). In order to demonstrate the 
necessary of online learning, we compare our online learning 
method to the offline learning method. Both methods start 
from the initial trained classifier we mentioned above. The 
former method can retrain itself through the online training 
process while the latter uses the initial trained classifier from 
beginning to end. From the result shown in Fig.11, our online 
learning method is capable of learning the novel training data 
and adaptive to environment changing.  

V. CONCLUSION 

  In this paper, we introduced the novel self-supervised 
road detection algorithm. The algorithm is able to effectively 
learn from previous result which makes the algorithm 
adaptive to environment changing. The primary innovation is 
that the combination of RPDM and FSVMs successfully 
conquers the contradiction of non-accurate model and relative 
accurate result. The secondary innovation is using the 
comparison of classification result and morphological result 
to get the potential misclassified points and use them for 
online learning. From many experiments, most of those 
points labeled as potential misclassified points are correct. 
The algorithm presented in this paper can also be seen as a 
novel framework for self-supervised online learning in the 
applications of vision-based region detection in the robot 
field. 
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Frame 1       Frame 20       Frame 60     Frame 70       Frame 1       Frame 20       Frame 50       Frame 60  

(a) Result in scene one                  (b) Result in scene two   
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Fig.11 Results in online stage 
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third rows in (a) and (b) shows the morphological results after morphological operations on those classification results. The fourth rows provide the results 
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